JPH06303042A - Linear modulation wave envelope control method and linear transmitter - Google Patents

Linear modulation wave envelope control method and linear transmitter

Info

Publication number
JPH06303042A
JPH06303042A JP5087089A JP8708993A JPH06303042A JP H06303042 A JPH06303042 A JP H06303042A JP 5087089 A JP5087089 A JP 5087089A JP 8708993 A JP8708993 A JP 8708993A JP H06303042 A JPH06303042 A JP H06303042A
Authority
JP
Japan
Prior art keywords
envelope
component
quadrature
signal
modulated wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5087089A
Other languages
Japanese (ja)
Inventor
Katsumi Takeda
克美 竹田
Yutaka Nishiki
豊 西喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5087089A priority Critical patent/JPH06303042A/en
Publication of JPH06303042A publication Critical patent/JPH06303042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To amplify power of a modulation wave at a high efficiency while a distortion factor of the modulation wave is always reduced in an excellent way by controlling variably a delay based on a frequency error between a linear modulation wave subjected to envelope control and a setting reference frequency component. CONSTITUTION:An envelope signal is delayed at a variable delay circuit 7 by a desired value and obtained as a power amplifier control signal via a D/A converter circuit 8 and received by an envelope control circuit 9 as an envelope control signal to control an envelope of the modulation wave from a quadrature modulation circuit 5 in a desired way with respect to the envelope signal. As a result, a less distortion modulation wave is obtained as an object to be power-amplified from the circuit 9 and outputted from the circuit 9 to the power amplifier. The modulated wave from the circuit 9 is detected frequency components at the frequency error detection circuit 12 via an A/D conversion circuit 15 then its frequency components is compared with reference frequency components stored in a memory 14 in advance. Thus, the frequency error signal is obtained and the delay of the circuit 7 is controlled based on the frequency error signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線形送信装置における
線形変調波包絡線制御方法とその線形送信装置そのもの
に係わり、特に線形変調波の歪率を低減するのに好適と
された線形変調波包絡線制御方法、並びに線形送信装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear modulation wave envelope control method for a linear transmission device and the linear transmission device itself, and particularly to a linear modulation wave suitable for reducing the distortion factor of the linear modulation wave. The present invention relates to an envelope control method and a linear transmission device.

【0002】[0002]

【従来の技術】これまで、高周波帯の線形送信装置にお
いては、移動体通信機として使用される場合を想定し
て、変調波を高電力効率を以て増幅した上、送信するた
めの工夫が各種なされているが、その際、変調波の歪率
を低減せしめる方法としては、例えば特開平3−347
09号公報に記載のものが知られている。これによる場
合、(線形)変調波の歪率を低減すべく、変調器のベー
スバンド処理部で発生された同相包絡線成分および直交
包絡線成分からは、直交変調器により変調波が、更には
ベースバンド帯域のディジタル演算処理により高周波増
幅器へのドレイン制御信号が生成された上、変調波はそ
のドレイン制御信号にもとづき飽和特性を以て電力増幅
されるようになっている。
2. Description of the Related Art Hitherto, in a high frequency band linear transmitter, various devices have been devised for amplifying a modulated wave with high power efficiency and transmitting it, assuming that it is used as a mobile communication device. However, at that time, as a method for reducing the distortion rate of the modulated wave, for example, Japanese Patent Laid-Open No. 3-347
The one described in Japanese Patent Publication No. 09 is known. In this case, in order to reduce the distortion rate of the (linear) modulated wave, the in-phase envelope component and the quadrature envelope component generated in the baseband processing unit of the modulator cause the modulated wave by the quadrature modulator and further The drain control signal to the high frequency amplifier is generated by digital operation processing of the base band, and the modulated wave is power-amplified with a saturation characteristic based on the drain control signal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
報による場合には、ドレイン制御信号の時間波形と、直
交変調器からの変調波の包絡線波形とが時間的に一致せ
ず、これがために変調波の歪率の低減効果は不十分であ
るばかりか、それら波形を時間的に一致せしめるべく、
ドレイン制御信号、または直交変調器からの変調波の包
絡線波形を時間的に遅延せしめるにしても、そのための
遅延回路では遅延量の調整が難しく、一旦遅延量が調整
された後であっても、回路、あるいは素子各々での温度
変化に伴い変調波の歪率は劣化されるものとなってい
る。本発明の目的は、温度変化に対する遅延調整不要と
して、変調波の歪率が常時良好に低減された状態で、変
調波が高効率で電力増幅され得る線形変調波包絡線制御
方法並びに線形送信装置を供することにある。
However, in the case of the above publication, the time waveform of the drain control signal and the envelope waveform of the modulation wave from the quadrature modulator do not coincide with each other in time, and this is why modulation is performed. Not only is the effect of reducing the distortion factor of the waves insufficient, but in order to make their waveforms coincide in time,
Even if the drain control signal or the envelope waveform of the modulation wave from the quadrature modulator is delayed in time, it is difficult to adjust the delay amount with a delay circuit for that purpose, and even after the delay amount is once adjusted, The distortion factor of the modulated wave is deteriorated with the temperature change in each of the circuit and the element. An object of the present invention is to provide a linear modulation wave envelope control method and a linear transmission device capable of performing power amplification on a modulation wave with high efficiency in a state where the distortion factor of the modulation wave is always favorably reduced without requiring delay adjustment for temperature changes. To serve.

【0004】[0004]

【課題を解決するための手段】上記目的は、線形変調
波、包絡線信号の少なくとも何れか一方を遅延量可変と
して遅延せしめた状態で、該包絡線信号を電力増幅制御
信号として該包絡線信号により該線形変調波を、該線形
変調波の歪みを低減すべく包絡線制御した上、包絡線制
御された線形変調波を電力増幅対象として、該線形変調
波の設定基準周波数成分との間の周波数誤差にもとづ
き、上記遅延量が可変制御されることで達成され、ま
た、線形送信装置をそのように構成することで達成され
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an envelope signal as a power amplification control signal in a state where at least one of a linear modulation wave and an envelope signal is delayed by varying a delay amount. The linearly modulated wave is subjected to envelope control in order to reduce distortion of the linearly modulated wave, and the linearly modulated wave subjected to the envelope control is used as a power amplification target, and is set between the set reference frequency component of the linearly modulated wave. This is achieved by variably controlling the delay amount based on the frequency error, and is also achieved by configuring the linear transmission device as such.

【0005】[0005]

【作用】線形変調波、包絡線信号の少なくとも何れか一
方を遅延量可変として遅延せしめた状態で、その包絡線
信号により変調波を包絡線制御した上、包絡線制御され
た線形変調波の設定基準周波数成分との間の周波数誤差
にもとづき、上記遅延量が可変制御される場合は、包絡
線制御された線形変調波の歪が低減されるべく、変調
波、包絡線信号相互間での相対的遅延時間が最適に制御
され得るものである。
Operation: In a state where at least one of the linear modulation wave and the envelope signal is delayed by varying the delay amount, the modulation wave is envelope-controlled by the envelope signal, and then the envelope-controlled linear modulation wave is set. When the delay amount is variably controlled based on the frequency error between the reference frequency component and the relative frequency between the modulation wave and the envelope signal, the distortion of the envelope-controlled linear modulation wave should be reduced. The delay time can be optimally controlled.

【0006】[0006]

【実施例】以下、本発明を図1から図4により説明す
る。既述したように、本発明による線形変調波包絡線制
御方法では、線形変調波、包絡線信号の少なくとも何れ
か一方を遅延量可変として遅延せしめた状態で、その包
絡線信号を電力増幅制御信号としてその包絡線信号によ
りその線形変調波を、その線形変調波の歪みを低減すべ
く包絡線制御した上、包絡線制御された線形変調波を電
力増幅対象として、線形変調波の設定基準周波数成分と
の間の周波数誤差にもとづき上記遅延量が可変制御され
ているが、図1〜図4各々は何れも本発明による線形送
信装置の各種構成を示したものである。先ず図1に示す
ものから説明すれば、入力端子1からのベースバンド信
号はI/Q信号生成回路(複素包絡線生成回路)2でデ
ィジタル信号処理されることによって、同相包絡線成分
I(t)および直交包絡線成分Q(t)が生成されるものと
なっている。より詳細にその処理について説明すれば、
変調波の搬送角周波数をωC、包絡線信号をR(t)、変
調位相をφ(t)とすれば、変調波e(t)は一般的に以
下の数式1として表されるものとなっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS. As described above, in the linear modulation wave envelope control method according to the present invention, at least one of the linear modulation wave and the envelope signal is delayed as a variable delay amount, and the envelope signal is subjected to the power amplification control signal. As the linear modulation wave by the envelope signal, the envelope control is performed to reduce the distortion of the linear modulation wave, and the linear modulation wave with the envelope control is subjected to power amplification, and the set reference frequency component of the linear modulation wave is set. The amount of delay is variably controlled on the basis of the frequency error between and, but FIGS. 1 to 4 each show various configurations of the linear transmission device according to the present invention. First, referring to FIG. 1, the baseband signal from the input terminal 1 is subjected to digital signal processing by an I / Q signal generation circuit (complex envelope generation circuit) 2 to generate an in-phase envelope component I (t ) And the orthogonal envelope component Q (t) are generated. If you explain the process in more detail,
Assuming that the carrier angular frequency of the modulated wave is ω C , the envelope signal is R (t), and the modulation phase is φ (t), the modulated wave e (t) is generally expressed as Equation 1 below. Has become.

【0007】[0007]

【数1】 [Equation 1]

【0008】但し、数式1中、Re[f]は関数fの実数
部を、また、E(t)は数式2,3として表される複素包
絡線をそれぞれ示す。
However, in Expression 1, Re [f] represents the real part of the function f, and E (t) represents the complex envelope represented by Expressions 2 and 3, respectively.

【0009】[0009]

【数2】 [Equation 2]

【0010】[0010]

【数3】 [Equation 3]

【0011】以上のように、I/Q信号生成回路2では
ディジタル信号処理により同相包絡線成分I(t)および
直交包絡線成分Q(t)が生成されているわけであるが、
更に、これら同相包絡線成分I(t)、直交包絡線成分Q
(t)はD/A変換回路3,4各々を介しアナログ信号波
形に変換された上、直交変調回路5で搬送波発振器13
からの搬送波が乗算されることによって、変調波e(t)
が得られるものとなっている。直交変調回路5では、周
波数ωCを発振している搬送波発振器13からの搬送波
を用い、同相包絡線成分I(t)には同相搬送波が、ま
た、直交包絡線成分Q(t)には直交搬送波がそれぞれ乗
算された上、加算されることによって、変調波e(t)が
その出力として得られているものである。
As described above, in the I / Q signal generation circuit 2, the in-phase envelope component I (t) and the quadrature envelope component Q (t) are generated by digital signal processing.
Furthermore, the in-phase envelope component I (t) and the quadrature envelope component Q
(t) is converted into an analog signal waveform through each of the D / A conversion circuits 3 and 4, and the quadrature modulation circuit 5 uses the carrier oscillator 13
Is multiplied by the carrier wave from the modulated wave e (t)
Is obtained. In the quadrature modulation circuit 5, the carrier wave from the carrier wave oscillator 13 oscillating at the frequency ω C is used, the in-phase carrier wave is in the in-phase envelope component I (t), and the quadrature envelope component Q (t) is in the quadrature. The modulated waves e (t) are obtained as their outputs by multiplying and adding the respective carrier waves.

【0012】一方、包絡線信号生成回路6では、I/Q
信号生成回路2からの同相包絡線成分I(t)および直交
包絡線成分Q(t)を用い、以下の数式4より包絡線信号
R(t)が生成されるものとなっている。
On the other hand, in the envelope signal generating circuit 6, the I / Q
Using the in-phase envelope component I (t) and the quadrature envelope component Q (t) from the signal generating circuit 2, the envelope signal R (t) is generated by the following equation 4.

【0013】[0013]

【数4】 [Equation 4]

【0014】この包絡線信号R(t)は可変遅延回路7で
所望量(この遅延量については後述)遅延された上、D
/A変換回路8を介し電力増幅制御信号として得られる
一方では、包絡線制御信号として包絡線制御回路9に入
力されることで、直交変調回路5からの変調波e(t)の
包絡線は包絡線信号R(t)に対し所望に制御されるもの
である。この結果として、包絡線制御回路9からは電力
増幅対象としての、歪みの少ない変調波e(t)が得られ
た上、出力端子16より電力増幅器に出力されるもので
ある。
This envelope signal R (t) is delayed by the variable delay circuit 7 by a desired amount (this delay amount will be described later), and then D
While being obtained as a power amplification control signal via the A / A conversion circuit 8, it is input to the envelope control circuit 9 as an envelope control signal, so that the envelope of the modulated wave e (t) from the quadrature modulation circuit 5 becomes The envelope signal R (t) is controlled as desired. As a result, the envelope control circuit 9 obtains a modulated wave e (t) as a power amplification target with little distortion and outputs the modulated wave e (t) from the output terminal 16 to the power amplifier.

【0015】一方、包絡線制御回路9からの変調波e
(t)はA/D変換回路15を介し周波数誤差検出回路1
2でその周波数成分が検出された上、メモリ14に予め
記憶設定されている基準周波数成分と比較されること
で、周波数誤差信号が得られるが、これにもとづき可変
遅延回路7での遅延量が制御されているものである。本
例では、その周波数誤差信号はLPF11で一旦アナロ
グ信号に変換された後、A/D回路10を介しディジタ
ル遅延制御信号として可変遅延回路7に作用したものと
なっている。可変遅延回路7は例えば複数段のシフトレ
ジスタ(シリアルイン・パラレルアウト型式)として構
成されているが、A/D回路10からのディジタル遅延
制御信号に応じた段でのパラレル出力が選択出力される
ことで、包絡線信号生成回路6からの包絡線信号R(t)
は所望量遅延され得るものである。これにより、包絡線
制御回路9から得られる変調波e(t)はその周波数成分
が常時所望のスペクトルとなるべく、直交変調回路5か
らの変調波e(t)は包絡線制御信号との相対的遅延時間
が制御されるものである。なお、包絡線制御回路9から
得られる変調波e(t)の周波数成分を検出する方法とし
ては、例えば高速フーリエ変換法などを用い得る。ま
た、メモリ14に予め記憶設定される基準周波数成分の
範囲としては、そのメモリ容量に応じた周波数範囲が設
定されればよい。
On the other hand, the modulated wave e from the envelope control circuit 9
(t) is the frequency error detection circuit 1 through the A / D conversion circuit 15.
The frequency error signal is obtained by detecting the frequency component in 2 and comparing it with the reference frequency component stored in advance in the memory 14, and based on this, the delay amount in the variable delay circuit 7 is determined. It is controlled. In this example, the frequency error signal is once converted into an analog signal by the LPF 11 and then acts on the variable delay circuit 7 as a digital delay control signal via the A / D circuit 10. The variable delay circuit 7 is configured as, for example, a shift register (serial-in / parallel-out type) having a plurality of stages, and a parallel output at a stage corresponding to a digital delay control signal from the A / D circuit 10 is selectively output. Thus, the envelope signal R (t) from the envelope signal generation circuit 6
Can be delayed by a desired amount. As a result, the modulated wave e (t) obtained from the envelope control circuit 9 has a frequency component that always has a desired spectrum, so that the modulated wave e (t) from the quadrature modulation circuit 5 is relative to the envelope control signal. The delay time is controlled. As a method of detecting the frequency component of the modulated wave e (t) obtained from the envelope control circuit 9, for example, the fast Fourier transform method or the like can be used. As the range of the reference frequency component stored and set in the memory 14 in advance, a frequency range according to the memory capacity may be set.

【0016】次に、図2に示すものについて説明すれ
ば、その概略動作や効果は図1の場合とほぼ同様であ
る。即ち、本例では、図示のように、包絡線信号生成回
路6からの包絡線信号R(t)はD/A回路8でアナログ
信号に変換された上、その遅延時間が可変遅延回路7で
制御されているが、可変遅延回路7は、例えばCCDの
ような電荷転送素子を用い構成され得るものとなってい
る。周波数誤差検出回路12からの周波数誤差信号はL
PF11を介しVCO17から、その周波数誤差信号に
応じた周波数のクロック信号として発生された上、可変
遅延回路7にシフトクロックとして入力せしめられるこ
とで、包絡線信号R(t)に対する遅延時間が制御されて
いるものである。
Next, referring to FIG. 2, the general operation and effects are almost the same as those in FIG. That is, in this example, as shown in the figure, the envelope signal R (t) from the envelope signal generating circuit 6 is converted into an analog signal by the D / A circuit 8, and its delay time is changed by the variable delay circuit 7. Although controlled, the variable delay circuit 7 can be configured using a charge transfer element such as a CCD. The frequency error signal from the frequency error detection circuit 12 is L
The delay time for the envelope signal R (t) is controlled by being generated as a clock signal having a frequency corresponding to the frequency error signal from the VCO 17 via the PF 11 and being input as a shift clock to the variable delay circuit 7. It is what

【0017】更に、図3に示すものについて説明すれ
ば、これまた、その概略動作や効果は図1の場合とほぼ
同様となっている。図示のように、本例では、可変遅延
回路7がI/Q信号生成回路2の後段にそれぞれ設けら
れることによって、直交変調回路5への同相包絡線成分
I(t)および直交包絡線成分Q(t)の遅延時間が周波数
誤差信号によりディジタル的に制御されたものとなって
いる。
Further, when the one shown in FIG. 3 is described, the schematic operation and effect thereof are almost the same as those in the case of FIG. As shown in the figure, in this example, the variable delay circuit 7 is provided at the subsequent stage of the I / Q signal generation circuit 2, so that the in-phase envelope component I (t) and the quadrature envelope component Q to the quadrature modulation circuit 5 are provided. The delay time of (t) is digitally controlled by the frequency error signal.

【0018】更にまた、図4に示すものについて説明す
れば、その概略動作や効果は図2の場合とほぼ同様とな
っている。図示のように、本例では、直交変調回路5か
らの変調波e(t)は可変遅延回路7で所望量遅延された
上、包絡線制御回路9に入力されているが、周波数誤差
検出回路12からの周波数誤差信号はLPF11を介し
VCO17から、その周波数誤差信号に応じた周波数の
クロック信号として発生された上、可変遅延回路7にシ
フトクロックとして入力せしめられることで、変調波e
(t)に対する遅延時間が制御されているものである。
Further, when the one shown in FIG. 4 is explained, the general operation and effect are almost the same as in the case of FIG. As shown in the figure, in this example, the modulated wave e (t) from the quadrature modulation circuit 5 is delayed by the variable delay circuit 7 by a desired amount and then input to the envelope control circuit 9, but the frequency error detection circuit The frequency error signal from 12 is generated from the VCO 17 via the LPF 11 as a clock signal having a frequency corresponding to the frequency error signal, and is input to the variable delay circuit 7 as a shift clock.
The delay time for (t) is controlled.

【0019】[0019]

【発明の効果】以上、説明したように、請求項1による
場合は、温度変化に対する遅延調整不要として、変調波
の歪率が常時良好に低減された状態で、変調波が高効率
で電力増幅され得る線形変調波包絡線制御方法が、請求
項2〜4による場合には、温度変化に対する遅延調整不
要として、変調波の歪率が常時良好に低減された状態
で、変調波が高効率で電力増幅され得る線形送信装置が
それぞれ得られるものとなっている。
As described above, according to the first aspect of the present invention, it is not necessary to adjust the delay with respect to the temperature change, and the modulated wave is highly efficiently power-amplified while the distortion rate of the modulated wave is always favorably reduced. In the case where the linearly modulated wave envelope control method that can be performed is according to claims 2 to 4, it is not necessary to adjust the delay with respect to the temperature change, and the modulated wave is highly efficient with the distortion factor of the modulated wave constantly reduced. A linear transmitter that can be power-amplified is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による線形送信装置の第1の例での構成
を示す図である。
FIG. 1 is a diagram showing a configuration of a first example of a linear transmission device according to the present invention.

【図2】本発明による線形送信装置の第2の例での構成
を示す図である。
FIG. 2 is a diagram showing a configuration of a second example of a linear transmission device according to the present invention.

【図3】本発明による線形送信装置の第3の例での構成
を示す図である。
FIG. 3 is a diagram showing a configuration of a linear transmission device according to a third example of the present invention.

【図4】本発明による線形送信装置の第4の例での構成
を示す図である。
FIG. 4 is a diagram showing a configuration of a linear transmission device according to a fourth example of the present invention.

【符号の説明】[Explanation of symbols]

1…入力端子、 2…I/Q信号生成回路(複素包絡線生成回路)、 3,4,8…D/A変換回路、 5…直交変調回路、 6…包絡線信号生成回路、 7…可変遅延回路、 9…包絡線制御回路、 10,15…A/D変換回路、 11…LPF(ローパスフィルタ)、 12…周波数誤差検出回路、 13…搬送波発振器、 14…メモリ、 16…出力端子、 17…VCO(電圧制御型発振器)。 DESCRIPTION OF SYMBOLS 1 ... Input terminal, 2 ... I / Q signal generation circuit (complex envelope generation circuit), 3, 4, 8 ... D / A conversion circuit, 5 ... Quadrature modulation circuit, 6 ... Envelope signal generation circuit, 7 ... Variable Delay circuit, 9 ... Envelope control circuit, 10, 15 ... A / D conversion circuit, 11 ... LPF (low-pass filter), 12 ... Frequency error detection circuit, 13 ... Carrier wave oscillator, 14 ... Memory, 16 ... Output terminal, 17 ... VCO (voltage controlled oscillator).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】入力変調波から該変調波の同相包絡線成分
および直交包絡線成分を生成した上、該同相包絡線成分
および直交包絡線成分から発生される線形変調波を、上
記同相包絡線成分および直交包絡線成分から別途生成さ
れている包絡線信号にもとづき、飽和特性を以て線形電
力増幅する際での線形変調波包絡線制御方法であって、
線形変調波、包絡線信号の少なくとも何れか一方を遅延
量可変として遅延せしめた状態で、該包絡線信号を電力
増幅制御信号として該包絡線信号により該線形変調波
を、該線形変調波の歪みを低減すべく包絡線制御した
上、包絡線制御された線形変調波を電力増幅対象とし
て、該線形変調波の設定基準周波数成分との間の周波数
誤差にもとづき、上記遅延量が可変制御されるようにし
た線形変調波包絡線制御方法。
1. An in-phase envelope component and a quadrature envelope component of the modulated wave are generated from an input modulated wave, and a linear modulated wave generated from the in-phase envelope component and the quadrature envelope component is converted into the in-phase envelope. A linear modulated wave envelope control method for linear power amplification with a saturation characteristic based on an envelope signal separately generated from a component and a quadrature envelope component,
In the state where at least one of the linear modulation wave and the envelope signal is delayed by varying the delay amount, the envelope signal is used as a power amplification control signal, the linear modulation wave is generated by the envelope signal, and the distortion of the linear modulation wave is generated. The envelope amount is controlled to reduce the power consumption of the envelope-controlled linear modulation wave, and the delay amount is variably controlled based on a frequency error between the linear modulation wave and the set reference frequency component of the linear modulation wave. Method for controlling linearly modulated wave envelope.
【請求項2】入力変調波から複素包絡線生成手段にて該
変調波の同相包絡線成分および直交包絡線成分を生成し
た上、該同相包絡線成分および直交包絡線成分から直交
変調手段にて発生される線形変調波が、上記同相包絡線
成分および直交包絡線成分から別途包絡線信号生成手段
にて生成されている包絡線信号にもとづき、飽和型電力
増幅器にて飽和特性を以て線形電力増幅されるべくなし
た線形送信装置であって、包絡線信号生成手段からの包
絡線信号を遅延量可変として遅延せしめる可変遅延手段
と、該可変遅延手段からの包絡線信号を電力増幅制御信
号として該包絡線信号を用い、上記直交変調手段からの
線形変調波の歪みを低減すべく該線形変調波を包絡線制
御する包絡線制御手段と、基準周波数成分が設定記憶さ
れるメモリ手段と、上記包絡線制御手段からの電力増幅
対象としての、包絡線制御された線形変調波の周波数成
分と上記メモリ手段からの基準周波数成分との周波数誤
差を検出した上、上記可変遅延手段での遅延量を可変制
御する周波数誤差検出手段と、を含む構成の線形送信装
置。
2. A complex envelope generating means for generating an in-phase envelope component and a quadrature envelope component of the modulated wave from the input modulated wave, and the quadrature modulating means for producing the in-phase envelope component and the quadrature envelope component. The generated linearly modulated wave is linearly power-amplified with a saturation characteristic by a saturation type power amplifier based on the envelope signal generated by the envelope signal generating means separately from the in-phase envelope component and the quadrature envelope component. A linear transmission device, wherein variable delay means delays the envelope signal from the envelope signal generating means by varying the delay amount, and the envelope signal from the variable delay means as a power amplification control signal. Envelope control means for controlling the envelope of the linear modulation wave to reduce distortion of the linear modulation wave from the quadrature modulation means using a line signal, and memory means for setting and storing a reference frequency component. The amount of delay in the variable delay means, after detecting the frequency error between the frequency component of the envelope-controlled linearly modulated wave and the reference frequency component from the memory means, which is the power amplification target from the envelope control means. And a frequency error detecting means for variably controlling the frequency difference.
【請求項3】入力変調波から複素包絡線生成手段にて該
変調波の同相包絡線成分および直交包絡線成分を生成し
た上、該同相包絡線成分および直交包絡線成分から直交
変調手段にて発生される線形変調波が、上記同相包絡線
成分および直交包絡線成分から別途包絡線信号生成手段
にて生成されている包絡線信号にもとづき、飽和型電力
増幅器にて飽和特性を以て線形電力増幅されるべくなし
た線形送信装置であって、複素包絡線生成手段から直交
変調手段への同相包絡線成分、直交包絡線成分各々を遅
延量同一として可変遅延せしめる可変遅延手段と、包絡
線信号生成手段からの包絡線信号を電力増幅制御信号と
して該包絡線信号を用い、上記直交変調手段からの線形
変調波の歪みを低減すべく該線形変調波を包絡線制御す
る包絡線制御手段と、基準周波数成分が設定記憶される
メモリ手段と、上記包絡線制御手段からの電力増幅対象
としての、包絡線制御された線形変調波の周波数成分と
上記メモリ手段からの基準周波数成分との周波数誤差を
検出した上、上記可変遅延手段各々での遅延量を可変制
御する周波数誤差検出手段と、を含む構成の線形送信装
置。
3. An in-phase envelope component and a quadrature envelope component of the modulated wave are generated from the input modulated wave by the complex envelope generating means, and then the in-phase envelope component and the quadrature envelope component are processed by the quadrature modulating means. The generated linearly modulated wave is linearly power-amplified with a saturation characteristic by a saturation type power amplifier based on the envelope signal generated by the envelope signal generating means separately from the in-phase envelope component and the quadrature envelope component. A linear transmission device configured as described above, including variable delay means for variably delaying the in-phase envelope component and the quadrature envelope component from the complex envelope generating means to the quadrature modulating means with the same delay amount, and the envelope signal generating means. Envelope control means for controlling the envelope of the linear modulation wave from the quadrature modulation means by using the envelope signal as the power amplification control signal A frequency error between the frequency component of the envelope-controlled linearly modulated wave and the reference frequency component from the memory unit, which is a power amplification target from the envelope control unit, and the memory unit in which the reference frequency component is set and stored. And a frequency error detection means for variably controlling the amount of delay in each of the variable delay means.
【請求項4】入力変調波から複素包絡線生成手段にて該
変調波の同相包絡線成分および直交包絡線成分を生成し
た上、該同相包絡線成分および直交包絡線成分から直交
変調手段にて発生される線形変調波が、上記同相包絡線
成分および直交包絡線成分から別途包絡線信号生成手段
にて生成されている包絡線信号にもとづき、飽和型電力
増幅器にて飽和特性を以て線形電力増幅されるべくなし
た線形送信装置であって、直交変調手段からの線形変調
波を遅延量可変として遅延せしめる可変遅延手段と、包
絡線信号生成手段からの包絡線信号を電力増幅制御信号
として該包絡線信号を用い、上記可変遅延手段からの線
形変調波の歪みを低減すべく該線形変調波を包絡線制御
する包絡線制御手段と、基準周波数成分が設定記憶され
るメモリ手段と、上記包絡線制御手段からの電力増幅対
象としての、包絡線制御された線形変調波の周波数成分
と上記メモリ手段からの基準周波数成分との周波数誤差
を検出した上、上記可変遅延手段での遅延量を可変制御
する周波数誤差検出手段と、を含む構成の線形送信装
置。
4. A complex envelope generating means for generating an in-phase envelope component and a quadrature envelope component of the modulated wave from the input modulated wave, and the quadrature modulating means for producing the in-phase envelope component and the quadrature envelope component. The generated linearly modulated wave is linearly power-amplified with a saturation characteristic by a saturation type power amplifier based on the envelope signal generated by the envelope signal generating means separately from the in-phase envelope component and the quadrature envelope component. In the linear transmitter, the variable delay means delays the linearly modulated wave from the quadrature modulating means by varying the delay amount, and the envelope signal from the envelope signal generating means is used as a power amplification control signal. An envelope control means for controlling the envelope of the linearly modulated wave to reduce distortion of the linearly modulated wave from the variable delay means using a signal; a memory means for setting and storing a reference frequency component; The amount of delay in the variable delay means, after detecting the frequency error between the frequency component of the envelope-controlled linearly modulated wave and the reference frequency component from the memory means as the power amplification target from the envelope control means. And a frequency error detecting means for variably controlling the frequency difference.
JP5087089A 1993-04-14 1993-04-14 Linear modulation wave envelope control method and linear transmitter Pending JPH06303042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5087089A JPH06303042A (en) 1993-04-14 1993-04-14 Linear modulation wave envelope control method and linear transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5087089A JPH06303042A (en) 1993-04-14 1993-04-14 Linear modulation wave envelope control method and linear transmitter

Publications (1)

Publication Number Publication Date
JPH06303042A true JPH06303042A (en) 1994-10-28

Family

ID=13905231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5087089A Pending JPH06303042A (en) 1993-04-14 1993-04-14 Linear modulation wave envelope control method and linear transmitter

Country Status (1)

Country Link
JP (1) JPH06303042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156554A (en) * 1999-10-08 2001-06-08 Ma-Com Eurotec System and method for transmitting digital information by using interleaved delta modulation
JP2008124947A (en) * 2006-11-15 2008-05-29 Nec Corp Amplifier
JP2011077979A (en) * 2009-10-01 2011-04-14 Nec Corp Radio communication device and radio communication method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156554A (en) * 1999-10-08 2001-06-08 Ma-Com Eurotec System and method for transmitting digital information by using interleaved delta modulation
JP2008124947A (en) * 2006-11-15 2008-05-29 Nec Corp Amplifier
JP2011077979A (en) * 2009-10-01 2011-04-14 Nec Corp Radio communication device and radio communication method

Similar Documents

Publication Publication Date Title
US7206356B2 (en) Wireless transmitter with reduced power consumption
JP3644965B2 (en) Efficient linear power amplification
CN1130819C (en) Apparatus and method of linearizing power amplifier in mobile radio communication system
JP3169803B2 (en) Nonlinear compensation circuit of power amplifier
CN100481741C (en) Amplifier circuit, wireless base station, wireless terminal, and amplifying method
EP1641131A1 (en) Digital sideband suppression for radio frequency (RF) modulators
JP2000286915A (en) Signal modulation circuit and method
US7158582B2 (en) Digital I/Q modulator having a predistortion
JPH0654877B2 (en) Linear transmitter
JPH08163189A (en) Transmission circuit
US20050226340A1 (en) Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacturre
US8854128B2 (en) Amplifying device and signal processing device
JP2006333450A (en) Polar coordinate modulation circuit, polar coordinate modulation method, integrated circuit, and radio transmission apparatus
EP1450482A2 (en) Circuit and method for compensating for nonlinear distortion of power amplifier
US8509346B2 (en) Transmitter with reduced power consumption and increased linearity and dynamic range
US7221915B2 (en) Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
JPH05175743A (en) Power amplifier
JP3420613B2 (en) Quadrature modulator
JPH06303042A (en) Linear modulation wave envelope control method and linear transmitter
JP2004200767A (en) Distortion compensation apparatus and method, and wireless communication apparatus
JPH04290321A (en) Nonlinear distortion compensating method
JP2002151973A (en) Transmitter and pre-distortion compensation method
JPH0793538B2 (en) Amplifier
JP3984377B2 (en) Digital modulator
WO2004036737A2 (en) Transmitter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 12