JPH06302855A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH06302855A
JPH06302855A JP6952193A JP6952193A JPH06302855A JP H06302855 A JPH06302855 A JP H06302855A JP 6952193 A JP6952193 A JP 6952193A JP 6952193 A JP6952193 A JP 6952193A JP H06302855 A JPH06302855 A JP H06302855A
Authority
JP
Japan
Prior art keywords
array
scanning device
optical scanning
semiconductor substrate
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6952193A
Other languages
Japanese (ja)
Inventor
Masashi Nagashima
正志 永嶋
Hiroyuki Chiba
弘幸 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Priority to JP6952193A priority Critical patent/JPH06302855A/en
Priority to EP94400656A priority patent/EP0618078A3/en
Publication of JPH06302855A publication Critical patent/JPH06302855A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE: To eliminate the need of the alignment between elements and simply and accurately focus by forming an automatic focusing optical source element integrated with the same chip as that of an optical element array. CONSTITUTION: An optical light emitting element array 2 and automatic focusing optical source element 3 for adjusting the distance between the array 2 and a work 5 scanned by this array 2 are formed in one body on the same chip 1 of a semiconductor substrate. The substrate is e.g. a GaAs substrate, the array 2 is e.g. an AlGaAs LED array 2 formed on a GaAs substrate and the optical source element 3 is a GaAs LED formed on a GaAs substrate from which a part of the AlGaAs LED array 2 is removed. The array 2 emits a light having a wavelength within the sensitivity curve range of a photosensitive material used for printing and the optical source element 3 emits a light having a wavelength outside this range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学素子アレイと自動焦
点調節用素子とを一体形成した光学走査装置に関し、特
に特に記録用のLEDアレイ又はレーザアレイチップ上
に焦点調節用LEDを該記録用アレイと一体化形成した
二波長LEDプリンタ等の光学走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device in which an optical element array and an automatic focusing element are integrally formed, and more particularly to a focusing LED on a recording LED array or laser array chip. The present invention relates to an optical scanning device such as a dual wavelength LED printer integrally formed with an array.

【0002】光源を用いる高解像度プリンタでは、感光
ドラムの回転むらや感光紙面のずれ等により、光源から
の光が感光紙面上で焦点を結ばなくなることがあり、こ
れにより印刷品質の低下をもたらす。そのため、これら
のプリンタ等の光学走査装置1は、なんらかの焦点ずれ
防止機構が必要である。
In a high-resolution printer using a light source, the light from the light source may not be focused on the photosensitive paper surface due to uneven rotation of the photosensitive drum, deviation of the photosensitive paper surface, or the like, which causes deterioration of print quality. Therefore, the optical scanning device 1 such as these printers requires some kind of defocus prevention mechanism.

【0003】[0003]

【従来の技術】従来は、光学素子アレイを用いた光学走
査装置における自動焦点機構は知られていない。光学素
子アレイを用いた光学走査装置以外の装置における自動
焦点機構としては、一般には、半導体レーザを使う光デ
ィスク記録において、ディスクからの反射光を利用した
自動焦点調節技術が一般に知られている。この従来の光
ディスク記録における自動焦点調節技術を図8により説
明する。
2. Description of the Related Art Conventionally, an automatic focusing mechanism in an optical scanning device using an optical element array has not been known. As an automatic focusing mechanism in a device other than an optical scanning device using an optical element array, an automatic focusing technique using reflected light from a disc is generally known in optical disc recording using a semiconductor laser. The conventional automatic focus adjustment technique for optical disk recording will be described with reference to FIG.

【0004】図8において、81はレーザドライバ、8
2は半導体レーザ、83はコリメータレンズ、84は偏
光ビームスプリッター、85は1/4波長板、86は集
光レンズ、87はレンズ駆動系、88はディスク、89
は光検知器である。ディスク88からの反射光はビーム
スプリッター84により光検知器89へ導かれ焦点ずれ
が検出される。
In FIG. 8, reference numeral 81 denotes a laser driver, and 8
2 is a semiconductor laser, 83 is a collimator lens, 84 is a polarization beam splitter, 85 is a quarter wavelength plate, 86 is a condenser lens, 87 is a lens drive system, 88 is a disc, and 89.
Is a light detector. The reflected light from the disk 88 is guided to the photodetector 89 by the beam splitter 84, and defocus is detected.

【0005】代表的な検知方法として、「非点収差法」
を図9に示す。図9に於いて、円筒レンズ91を通った
光束は、焦点が合っている場合は(b)に示すように受
光面92で円形スポットになるが、焦点がずれている場
合は(a)又は(c)に示すように楕円となる。これを
四分割された光検知器89(図8)でそれぞれの信号差
分をとり集束レンズ93の位置合わせに用いる。
As a typical detection method, the "astigmatism method" is used.
Is shown in FIG. In FIG. 9, the light flux that has passed through the cylindrical lens 91 becomes a circular spot on the light receiving surface 92 as shown in (b) when it is in focus, but when it is out of focus (a) or It becomes an ellipse as shown in (c). This is divided into four parts by a photodetector 89 (FIG. 8) and used for alignment of the focusing lens 93.

【0006】図8及び図9により示した上記従来技術
は、光ディスク記録における自動焦点技術であって、本
発明の対象である光学素子アレイを用いた光学走査装置
における自動焦点技術ではない。光学走査装置における
自動焦点技術としては、特開平第2−304515号公
報が知られている。この公報に開示されている技術で
は、記録用の光束の波長と自動焦点調節用の光束の波長
とを異ならしめることにより、記録とは独立に自動焦点
調節が行われる。この時、自動焦点調節用の光の波長は
印刷光感剤の感度のない領域が選ばれる。しかし、この
公報に開示の技術は、単一の半導体レーザ光束に対する
自動焦点調節技術であって、やはり本発明の対象である
光学素子アレイを用いた光学走査装置における自動焦点
技術ではない。一方、プリンタ用LEDアレイ等の光学
素子アレイを用いた光学走査装置では、従来は機械的精
度に頼る固定式が普通である。
The above-mentioned conventional technique shown in FIGS. 8 and 9 is an autofocus technique for recording an optical disc, not an autofocus technique for an optical scanning device using an optical element array which is the object of the present invention. Japanese Patent Laid-Open No. 2-304515 is known as an automatic focusing technique in an optical scanning device. In the technique disclosed in this publication, the wavelength of the light beam for recording is made different from the wavelength of the light beam for automatic focus adjustment, so that automatic focus adjustment is performed independently of recording. At this time, the wavelength of the light for automatic focus adjustment is selected in a region where the printing photosensitizer has no sensitivity. However, the technique disclosed in this publication is an automatic focusing technique for a single semiconductor laser beam, and is not an automatic focusing technique in an optical scanning device using an optical element array which is also the object of the present invention. On the other hand, in an optical scanning device using an optical element array such as a printer LED array, a fixed type that relies on mechanical accuracy has been conventionally used.

【0007】[0007]

【発明が解決しようとする課題】図8及び図9により示
した上記従来技術を、光学素子アレイを用いた光学走査
装置における自動焦点技術、例えば印刷における自動焦
点技術に使おうとすると、レーザビームがオフの時、す
なわち書き込み信号がない時、自動焦点機能が働かなく
なるという問題があり、光学素子アレイを用いた光学走
査装置における自動焦点技術には応用不可能である。。
When the above-mentioned conventional technique shown in FIGS. 8 and 9 is applied to an auto-focusing technique in an optical scanning device using an optical element array, for example, an auto-focusing technique in printing, a laser beam is generated. When it is off, that is, when there is no write signal, there is a problem that the autofocus function does not work, and it is not applicable to the autofocus technology in the optical scanning device using the optical element array. .

【0008】上記特開平第2−304515号公報に開
示の技術を利用して、記録用光源をLEDアレイとし、
自動焦点調節用に異なる波長のLEDを用いることが考
えられる。しかしながら、この時、それぞれのLED素
子の位置合わせをどのようにするかが問題となる。上記
機械的精度に頼る固定式の焦点調節では、被走査面と走
査用光学素子との間の距離が、感光ドラムや感光紙面等
の位置ずれの毎に調節をしなおす必要が生じるので煩雑
である。
Utilizing the technique disclosed in Japanese Patent Laid-Open No. 2-304515, the recording light source is an LED array,
It is conceivable to use different wavelength LEDs for autofocus. However, at this time, how to align the respective LED elements becomes a problem. In the fixed focus adjustment relying on the mechanical accuracy, the distance between the surface to be scanned and the scanning optical element is complicated because it is necessary to readjust the position for each misalignment of the photosensitive drum or the photosensitive paper surface. is there.

【0009】本発明の目的は、上記従来技術における問
題に鑑み、光学素子アレイを用いた光学走査装置におい
て、被走査体と走査用光学素子アレイとの間の距離を自
動的に調節可能な自動焦点調節用光源素子を光学素子ア
レイと同一チップ上に一体形成することにより、素子間
の位置合わせを不要にし、簡単且つ正確な焦点合わせを
可能にすることにある。
In view of the above-mentioned problems in the prior art, an object of the present invention is to provide an optical scanning device using an optical element array in which the distance between the object to be scanned and the scanning optical element array can be automatically adjusted. By integrally forming the light source element for focus adjustment on the same chip as the optical element array, there is no need for alignment between the elements, and simple and accurate focusing is possible.

【0010】[0010]

【発明が解決しようとする課題】上記目的を達成するた
めに、本発明により提供されるものは、光学素子アレイ
と、光学素子アレイにより走査される被走査体との間の
距離を調節するための自動焦点調節用光源素子とを半導
体基板の同一チップ上に一体形成した光学走査装置であ
る。本発明の一態様によれば、光学素子アレイは、発光
素子アレイである。この場合、半導体基板は化合物半導
体基板であり、発光素子アレイは、半導体基板上の半導
体基板とは組成の異なる半導体内にP−N接合により形
成されるLEDアレイであり、自動焦点調節用光源素子
は、化合物半導体基板にP−N接合により形成されてい
る。さらに、半導体基板はGaAs基板であり、LED
アレイはGaAS基板上に形成されたAlGaAsLE
Dアレイであり、自動焦点調節用光源素子は、GaAs
基板上に形成されたAlGaAsLEDアレイの一部を
除去した部分に形成されたGaAsLEDであることが
好ましい。好ましくは、光学走査装置は被走査体に情報
を記録するためのプリンタヘッドである。この場合、光
学素子アレイは印刷に使われる光感材を感光させる波長
を有し、かつ自動焦点調節用光源素子からの光の波長は
印刷に使われる光感材を感光させない領域とにある。
In order to achieve the above object, the present invention provides a device for adjusting a distance between an optical element array and a scanned object scanned by the optical element array. The optical scanning device in which the light source element for automatic focus adjustment is integrally formed on the same chip of the semiconductor substrate. According to one aspect of the invention, the optical element array is a light emitting element array. In this case, the semiconductor substrate is a compound semiconductor substrate, and the light emitting element array is an LED array formed by P-N junction in a semiconductor having a different composition from the semiconductor substrate on the semiconductor substrate. Are formed on the compound semiconductor substrate by P-N junction. Furthermore, the semiconductor substrate is a GaAs substrate, and the LED
The array is AlGaAsLE formed on a GaAs substrate.
D array, the light source element for automatic focusing is GaAs
It is preferable that the GaAs LED is formed on a portion where a part of the AlGaAs LED array formed on the substrate is removed. Preferably, the optical scanning device is a printer head for recording information on the scanned object. In this case, the optical element array has a wavelength at which the photosensitive material used for printing is exposed, and the wavelength of light from the light source element for automatic focusing is in a region where the photosensitive material used for printing is not exposed.

【0011】本発明の他の態様によれば、半導体基板は
化合物半導体基板であり、発光素子アレイは、半導体基
板と、半導体基板とは組成の異なる半導体内にP−N接
合により形成されるレーザアレイであり、自動焦点調節
用光源素子は、化合物半導体基板にP−N接合により形
成されている。
According to another aspect of the present invention, the semiconductor substrate is a compound semiconductor substrate, and the light emitting device array is a laser formed by PN junction in a semiconductor substrate and a semiconductor having a composition different from that of the semiconductor substrate. The light source element for automatic focusing is an array and is formed by PN junction on a compound semiconductor substrate.

【0012】[0012]

【作用】光学素子アレイを用いた光学走査装置におい
て、被走査体と走査用光学素子アレイとの間の距離を自
動的に調節可能な自動焦点調節用光源素子を光学素子ア
レイと同一チップ上に一体形成したことにより、素子間
の位置合わせが不要になり、簡単且つ正確な焦点合わせ
が可能となる。
In the optical scanning device using the optical element array, the light source element for automatic focus adjustment capable of automatically adjusting the distance between the object to be scanned and the scanning optical element array is provided on the same chip as the optical element array. The integral formation eliminates the need for alignment between the elements and enables simple and accurate focusing.

【0013】[0013]

【実施例】以下の説明では、一実施例としてLEDプリ
ンタについて記載するが、本発明はこれに限定されず、
レーザプリンタ、スキャナー等の光学走査装置に適用可
能である。図1は本発明の実施例によるLEDプリンタ
の構成を示す図である。同図において、1はLEDアレ
イチップ、2は波長λ1の光線を放射するLEDアレ
イ、3は波長λ2の光線を放射する焦点調節用LED、
4は集光レンズ、5は被走査体の感光面、6はレンズ、
7は光検出器、8は集光レンズ4の位置制御用ドライバ
である。本発明の実施例ではLEDアレイチップ1上に
焦点調節用LED3を一体形成する。焦点調節用LED
3をLEDアレイ2と同一チップ上に一体化することに
よりLEDアレイ2とLED3との素子間の位置合わせ
が不要になり、簡単かつ正確な焦点調節が可能になる。
図1に示した480dpi(ドットパーインチ)のLE
Dアレイ2を高解像度の集光レンズ4で1/5に縮小
し、2400dpiの出力で印刷する場合、集合レンズ
の集点深度が浅いために焦点位置は感光面から±5μm
以内に制御する必要がある。
EXAMPLES In the following description, an LED printer will be described as an example, but the present invention is not limited to this.
It is applicable to optical scanning devices such as laser printers and scanners. FIG. 1 is a diagram showing a configuration of an LED printer according to an embodiment of the present invention. In the figure, 1 is an LED array chip, 2 is an LED array that emits light of wavelength λ1, and 3 is a focusing LED that emits light of wavelength λ2.
4 is a condenser lens, 5 is the photosensitive surface of the object to be scanned, 6 is a lens,
Reference numeral 7 is a photodetector, and 8 is a driver for controlling the position of the condenser lens 4. In the embodiment of the present invention, the focusing LED 3 is integrally formed on the LED array chip 1. Focusing LED
By integrating the LED array 2 and the LED 3 on the same chip, alignment between the elements of the LED array 2 and the LED 3 becomes unnecessary, and simple and accurate focus adjustment becomes possible.
LE of 480 dpi (dot per inch) shown in FIG.
When the D array 2 is reduced to 1/5 by the high-resolution condenser lens 4 and printed with 2400 dpi output, the focal point is ± 5 μm from the photosensitive surface because the collective lens has a shallow focal point.
Need to control within.

【0014】図2は本発明の実施例による記録用LED
アレイ2と焦点調節用LED3及び感光材の波長関係を
示す図である。同図に示すように、LED3からの光の
波長λ2は、感光面5の材料の感度曲線の範囲外に選ば
れているので、LED3による光によっては感光面5に
記録はされない。LED3からの光は感光面5で反射さ
れ、レンズ6で集光されて光検出器7に到り、光検出器
7の出力により位置制御用ドライバ8が集光レンズ4の
位置を制御してLEDアレイ2の焦点を感光面5に合わ
せる。この自動焦点合わせの方法としては、前述の従来
の非点収差法や、特開平2─304515合公報に記載
されているスポットサイズを最小にする方法等が使用出
来る。
FIG. 2 shows a recording LED according to an embodiment of the present invention.
It is a figure which shows the wavelength relationship of the array 2, the LED3 for focus adjustment, and the photosensitive material. As shown in the figure, since the wavelength λ2 of the light from the LED 3 is selected outside the range of the sensitivity curve of the material of the photosensitive surface 5, it is not recorded on the photosensitive surface 5 by the light from the LED 3. The light from the LED 3 is reflected by the photosensitive surface 5, condensed by the lens 6 and reaches the photodetector 7. The position control driver 8 controls the position of the condensing lens 4 by the output of the photodetector 7. The LED array 2 is focused on the photosensitive surface 5. As the automatic focusing method, the above-mentioned conventional astigmatism method or the method of minimizing the spot size described in Japanese Patent Laid-Open No. 2-304515 can be used.

【0015】本発明の実施例のLEDアレイ2は半導体
基板およびその上にエピタキシャル成長する組成の異な
る半導体上に構成し、基板半導体部分に焦点調節用LE
D3を形成するものである。既存のLEDアレイ2は、
例えば、GaAs基板の上にGaAsPまたはAlGa
Asをエピタキシャル成長しp−n接合を形成すること
により発光部を構成する。発光波長は一般的にAlGa
Asで660〜870nm、GaAsPで660〜72
0nmである。従って焦点調節用の波長λ2をGaAs
基板からの発光、記録用波長λ1をλ2から十分に離れ
た所に選び、またλ2に感度のない感光剤を選ぶことに
より印刷とは独立に自動焦点調節機能を持たせることが
できる。
The LED array 2 of the embodiment of the present invention is formed on a semiconductor substrate and a semiconductor having a different composition which is epitaxially grown on the semiconductor substrate, and the substrate semiconductor portion is provided with a focus adjustment LE.
D3 is formed. The existing LED array 2 is
For example, GaAsP or AlGa on a GaAs substrate
A light emitting portion is formed by epitaxially growing As to form a pn junction. The emission wavelength is generally AlGa
660 to 870 nm for As, 660 to 72 for GaAsP
It is 0 nm. Therefore, the wavelength λ2 for focusing is set to GaAs
By selecting the wavelength λ1 for light emission from the substrate and the recording wavelength λ1 sufficiently away from λ2, and selecting a photosensitive agent having no sensitivity to λ2, an automatic focusing function can be provided independently of printing.

【0016】図3〜図6はそれぞれ本発明の実施例によ
り記録用LEDアレイ2と焦点調節用LED3を一体化
したチップの断面図である。図3〜図6において共通
に、10と20はGaAs基板、30は絶縁層、40と
50はエピタキシャル層である。GaAs基板20はG
aAs基板10の伝導型を反転させた部分、エピタキシ
ャル層50はエピタキシャル層40の伝導型を反転させ
た部分である。10と20及び40と50の境界がそれ
ぞれp−n接合位置である。このp−n接合位置は、す
なわち発光部でありそこから光が基板に垂直に出射す
る。焦点合わせ用の波長λ2は接合10−20から、記
録用波長λ1は接合40−50から得られる。基板にn
型GaAsを用いた場合は10と40はn型、20と5
0はp型となり、逆に基板にp型GaAsを用いた場合
は10と40はp型、20と50はn型となる。
3 to 6 are sectional views of chips in which the recording LED array 2 and the focus adjusting LED 3 are integrated according to an embodiment of the present invention. In FIGS. 3 to 6, 10 and 20 are GaAs substrates, 30 is an insulating layer, and 40 and 50 are epitaxial layers. GaAs substrate 20 is G
The conductivity type of the aAs substrate 10 is inverted, and the epitaxial layer 50 is the conductivity type of the epitaxial layer 40 inverted. The boundaries of 10 and 20 and 40 and 50 are pn junction positions, respectively. This pn junction position is, that is, a light emitting portion, from which light is emitted perpendicularly to the substrate. The focusing wavelength λ2 is obtained from the junction 10-20 and the recording wavelength λ1 is obtained from the junction 40-50. N on the board
When using type GaAs, 10 and 40 are n-type, 20 and 5
0 is p-type, and conversely, when p-type GaAs is used for the substrate, 10 and 40 are p-type and 20 and 50 are n-type.

【0017】LEDアレイ部分の作成方法は、図3のよ
うにエピタキシャル層40にマスクを介して不純物を拡
散させる方法や、図5のようにエピタキシャル成長時に
p−n接合を形成しエッチングにより素子分離を行う方
法などがある。焦点用LED3の作成方法は、図3のよ
うに部分エッチングによりGaAs基板を露出させ記録
用LEDアレイ2の不純物拡散工程で同時に作成する方
法、或いは図4のように焦点用LED3の部分のみ基板
まで届く深い拡散をする方法などがある。焦点用LED
は一個に限らず、図6のようにLEDアレイチップの両
端に設けることも可能である。これにより平面的位置ず
れの補正ができる。またエピタキシャル層の厚さは通常
数ミクロンで焦点合わせでは問題とならない。エピタキ
シャル層のp−n接合はホモ接合、シングルヘテロ接
合、ダブルヘテロ接合が考えられるが、GaAs基板か
らの洩れ発光を妨げるダブルヘテロ接合が特に望まし
い。
The LED array portion can be formed by a method of diffusing impurities in the epitaxial layer 40 through a mask as shown in FIG. 3 or a device for element isolation by etching by forming a pn junction during epitaxial growth as shown in FIG. There are ways to do it. The focusing LED 3 is produced by exposing the GaAs substrate by partial etching as shown in FIG. 3 and simultaneously making it in the impurity diffusion step of the recording LED array 2, or as shown in FIG. 4, only the portion of the focusing LED 3 up to the substrate. There are methods such as deep diffusion to reach. Focus LED
The number is not limited to one, but can be provided at both ends of the LED array chip as shown in FIG. As a result, the planar displacement can be corrected. Also, the thickness of the epitaxial layer is usually several microns, which is not a problem in focusing. The pn junction of the epitaxial layer may be a homojunction, a single heterojunction, or a double heterojunction, but a double heterojunction that prevents leakage and light emission from the GaAs substrate is particularly desirable.

【0018】以下に本発明の実施例を更に詳細に説明す
る。図3の基板10として、例えば、n型GaAsを用
い、エピタキシャル層40として、例えば、AlGaA
sを用いる。例えばエピタキシャル層40にAlxGa
1-xAsを用い、発光部のAlの組成を20%とすると
λ1=740nmになり、焦点用LEDであるGaAs
の発光波長λ2=870nmとの間に130nmの波長
差を確保できる。反転GaAs基板20と反転エピタキ
シャル層50のp型層は、絶縁層30(SiO2 等)を
マスクとしてZn等の不純物を熱拡散或いはイオン打ち
込み等により形成する。
The embodiments of the present invention will be described in more detail below. As the substrate 10 of FIG. 3, for example, n-type GaAs is used, and as the epitaxial layer 40, for example, AlGaA is used.
s is used. For example, in the epitaxial layer 40, Al x Ga
If 1-x As is used and the composition of Al in the light emitting portion is 20%, then λ1 = 740 nm, which is GaAs which is a focusing LED.
It is possible to secure a wavelength difference of 130 nm with respect to the emission wavelength λ2 of 870 nm. The p-type layers of the inverted GaAs substrate 20 and the inverted epitaxial layer 50 are formed by thermal diffusion or ion implantation of impurities such as Zn using the insulating layer 30 (SiO 2 etc.) as a mask.

【0019】図4ではエッチング工程がないかわり深い
p型領域20を形成するため二回の拡散工程が必要にな
る。図5では素子分離とGaAs露出のためのエッチグ
が同時に行える。エピタキシャル層としてはAlGaA
s、GaAsP以外にもAlGaInPを使うことによ
り550から670nmの発光が可能だし、ZnSeを
使うと470nmの発光が得られる。いずれもGaAs
基板上に成長できる材料であり本発明が実現できる。
In FIG. 4, since the deep p-type region 20 is formed without the etching step, two diffusion steps are required. In FIG. 5, element isolation and etching for exposing GaAs can be performed simultaneously. AlGaA as the epitaxial layer
Light emission of 550 to 670 nm is possible by using AlGaInP in addition to s and GaAsP, and light emission of 470 nm is obtained by using ZnSe. All are GaAs
It is a material that can be grown on a substrate and can realize the present invention.

【0020】図7は本発明の他の実施例によるレーザア
レイと焦点用LEDを一チップ上に一体化した断面図で
ある。同図において、11はn型GaAs基板、21は
p型GaAs層(前述の例と同様に不純物を拡散等して
nをpに反転した層)、31は絶縁体層、41はn型A
lGaAs層、51はP型AlGaAs層、61はAl
GaAs活性層(41及び51とは組成が異なる)であ
る。図7のレーザアレイと図3〜図6のLEDアレイと
の相違は、図7においては、レーザ光が基板端面から出
射するため焦点用LEDも基板端面からの光を利用す
る。LEDアレイの場合と同様にレーザ活性層61から
の発光波長をAlx Ga 1-xAsの組成によりGaAs
LEDからの発光波長から十分離れたところに選べる。
FIG. 7 is a cross-sectional view of a laser array and a focusing LED according to another embodiment of the present invention integrated on one chip. In the figure, 11 is an n-type GaAs substrate, 21 is a p-type GaAs layer (a layer in which n is inverted to p by diffusing impurities as in the above example), 31 is an insulator layer, and 41 is n-type A.
lGaAs layer, 51 is a P-type AlGaAs layer, and 61 is Al
It is a GaAs active layer (having a different composition from 41 and 51). The difference between the laser array in FIG. 7 and the LED arrays in FIGS. 3 to 6 is that in FIG. 7, the laser light is emitted from the end face of the substrate, and therefore the focusing LED also uses the light from the end face of the substrate. As in the case of the LED array, the emission wavelength from the laser active layer 61 is changed to GaAs by the composition of Al x Ga 1-x As.
It can be selected at a place far away from the wavelength of light emitted from the LED.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば、光学素子アレイを用いた光学走査装置におい
て、被走査体と走査用光学素子アレイとの間の距離を自
動的に調節可能な自動焦点調節用光源素子を光学素子ア
レイと同一チップ上に一体形成したことにより、素子間
の位置合わせが不要になり、簡単且つ正確な焦点合わせ
が可能となる。
As is apparent from the above description, according to the present invention, in the optical scanning device using the optical element array, the distance between the object to be scanned and the scanning optical element array is automatically adjusted. By integrally forming a possible light source element for automatic focusing on the same chip as the optical element array, alignment between the elements becomes unnecessary, and simple and accurate focusing becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるLEDプリンタの構成
を示す図である。
FIG. 1 is a diagram showing a configuration of an LED printer according to an embodiment of the present invention.

【図2】本発明の一実施例による焦点調節用LEDの波
長の説明図である。
FIG. 2 is an explanatory diagram of wavelengths of a focusing LED according to an embodiment of the present invention.

【図3】本発明の一実施例によるLEDアレイのチップ
断面図である。
FIG. 3 is a cross-sectional view of a chip of an LED array according to an exemplary embodiment of the present invention.

【図4】本発明の他の実施例によるLEDアレイのチッ
プ断面図である。
FIG. 4 is a chip cross-sectional view of an LED array according to another embodiment of the present invention.

【図5】本発明の更に他の実施例によるLEDアレイの
チップ断面図である。
FIG. 5 is a chip cross-sectional view of an LED array according to still another embodiment of the present invention.

【図6】本発明の更に他の実施例によるLEDアレイの
チップ断面図である。
FIG. 6 is a cross-sectional view of a chip of an LED array according to another embodiment of the present invention.

【図7】本発明の更に他の実施例によるレーザアレイの
チップ断面図である。
FIG. 7 is a sectional view of a chip of a laser array according to another embodiment of the present invention.

【図8】従来の光ディスク記録における自動焦点技術の
説明図である。
FIG. 8 is an explanatory diagram of a conventional autofocus technique in optical disc recording.

【図9】従来の非点収差法の説明図である。FIG. 9 is an explanatory diagram of a conventional astigmatism method.

【符号の説明】[Explanation of symbols]

1…LEDアレイチップ 2…波長λ1のLEDアレイ 3…波長λ2の焦点調節用LED 4…集光レンズ 10…GaAs基板 20…反転GaAs基板 30…絶縁層 40…エピタキシャル層 50…反転エピタキシャル層 DESCRIPTION OF SYMBOLS 1 ... LED array chip 2 ... LED array of wavelength lambda 1 ... Focus adjustment LED 4 of wavelength lambda 2 ... Condensing lens 10 ... GaAs substrate 20 ... Inversion GaAs substrate 30 ... Insulating layer 40 ... Epitaxial layer 50 ... Inversion epitaxial layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B41J 2/455 G02B 7/28 G06K 7/015 C 9191−5L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B41J 2/455 G02B 7/28 G06K 7/015 C 9191-5L

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 光学発光素子アレイと、該光学発光素子
アレイにより走査される被走査体との間の距離を調節す
るための自動焦点調節用光源素子とを半導体基板の同一
チップ上に一体形成したことを特徴とする光学走査装
置。
1. An optical light-emitting element array and an auto-focusing light source element for adjusting a distance between a scanning object scanned by the optical light-emitting element array are integrally formed on the same chip of a semiconductor substrate. An optical scanning device characterized by the above.
【請求項2】 前記半導体基板は化合物半導体基板であ
り、前記発光素子アレイは、前記半導体基板上の該半導
体基板とは組成の異なる半導体内にP−N接合により形
成されるLEDアレイであり、前記自動焦点調節用光源
素子は、前記化合物半導体基板にP−N接合により形成
されている、請求項1記載の光学走査装置。
2. The semiconductor substrate is a compound semiconductor substrate, and the light emitting element array is an LED array formed by PN junction in a semiconductor having a composition different from that of the semiconductor substrate on the semiconductor substrate. The optical scanning device according to claim 1, wherein the light source element for automatic focus adjustment is formed on the compound semiconductor substrate by PN junction.
【請求項3】 前記化合物半導体基板はGaAs基板で
あり、前記LEDアレイは前記GaAs基板上に形成さ
れたAlGaAsLEDアレイであり、前記自動焦点調
節用光源素子は、前記GaAs基板上に形成されたAl
GaAsLEDアレイの一部を除去した部分に形成され
たGaAsLEDである、請求項2記載の光学走査装
置。
3. The compound semiconductor substrate is a GaAs substrate, the LED array is an AlGaAs LED array formed on the GaAs substrate, and the autofocusing light source element is an Al formed on the GaAs substrate.
The optical scanning device according to claim 2, wherein the optical scanning device is a GaAs LED formed on a portion of the GaAs LED array that is partially removed.
【請求項4】 前記化合物半導体基板はGaAs基板で
あり、前記LEDアレイは前記GaAs基板上に形成さ
れたGaAsPLEDアレイであり、前記自動焦点調節
用光源素子は、前記GaAs基板上に形成されたGaA
sPLEDアレイの一部を除去した部分に形成されたG
aAsLEDである、請求項2記載の光学走査装置。
4. The compound semiconductor substrate is a GaAs substrate, the LED array is a GaAsPLED array formed on the GaAs substrate, and the light source element for automatic focusing is a GaA formed on the GaAs substrate.
G formed on the part where the part of the sPLED array is removed
The optical scanning device according to claim 2, which is an aAsLED.
【請求項5】 前記化合物半導体基板はGaAs基板で
あり、前記LEDアレイは前記GaAS基板上に形成さ
れたAlGaInPLEDアレイであり、前記自動焦点
調節用光源素子は、前記GaAs基板上に形成されたA
lGaInPLEDアレイの一部を除去した部分に形成
されたGaAsLEDである、請求項2記載の光学走査
装置。
5. The compound semiconductor substrate is a GaAs substrate, the LED array is an AlGaInPLED array formed on the GaAs substrate, and the autofocusing light source element is an AGaInPLED array formed on the GaAs substrate.
The optical scanning device according to claim 2, wherein the optical scanning device is a GaAs LED formed in a part of the 1GaInPLED array where a part thereof is removed.
【請求項6】 前記光学走査装置は前記被走査体に情報
を記録するためのプリンタヘッドである、請求項1から
5のいずれか1項に記載の光学走査装置。
6. The optical scanning device according to claim 1, wherein the optical scanning device is a printer head for recording information on the object to be scanned.
【請求項7】 前記光学素子アレイは印刷に使われる光
感材の感度曲線範囲内の波長を有する光を放射し、かつ
前記自動焦点調節用光源素子は前記範囲外の波長を有す
る光を放射する、請求項6記載の光学走査装置。
7. The optical element array emits light having a wavelength within a sensitivity curve range of a photosensitive material used for printing, and the autofocusing light source element emits light having a wavelength outside the range. The optical scanning device according to claim 6.
【請求項8】 前記半導体基板は化合物半導体基板であ
り、前記発光素子アレイは、前記半導体基板上の該半導
体基板とは組成の異なる半導体内にP−N接合により形
成されるレーザアレイであり、前記自動焦点調節用光源
素子は、前記化合物半導体基板上にP−N接合により形
成されている、請求項1記載の光学走査装置。
8. The semiconductor substrate is a compound semiconductor substrate, and the light emitting element array is a laser array formed by PN junction in a semiconductor having a composition different from that of the semiconductor substrate on the semiconductor substrate, The optical scanning device according to claim 1, wherein the light source element for automatic focus adjustment is formed on the compound semiconductor substrate by PN junction.
【請求項9】 前記半導体基板はGaAs基板であり、
前記発光素子アレイは前記GaAs基板上に形成された
AlGaAsレーザアレイであり、前記自動焦点調節用
光源素子は、前記GaAs基板上に形成されたAlGa
Asレーザアレイの一部を除去した部分に形成されたG
aAsLEDである、請求項8記載の光学走査装置。
9. The semiconductor substrate is a GaAs substrate,
The light emitting device array is an AlGaAs laser array formed on the GaAs substrate, and the light source device for automatic focus adjustment is AlGa formed on the GaAs substrate.
G formed on a portion of the As laser array that is partially removed
The optical scanning device according to claim 8, which is an aAsLED.
【請求項10】 前記光学走査装置は前記被走査体に情
報を記録するためのプリンタヘッドである、請求項8又
は9に記載の光学走査装置。
10. The optical scanning device according to claim 8, wherein the optical scanning device is a printer head for recording information on the scanned object.
【請求項11】 前記光学素子アレイは印刷用光学素子
アレイであり、前記自動焦点調節用光源素子からの光の
波長は前記光感材の感度曲線範囲外にある、請求項10
記載の光学走査装置。
11. The optical element array is a printing optical element array, and the wavelength of light from the automatic focusing light source element is outside the sensitivity curve range of the photosensitive material.
An optical scanning device as described.
JP6952193A 1993-03-29 1993-03-29 Optical scanning device Pending JPH06302855A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6952193A JPH06302855A (en) 1993-03-29 1993-03-29 Optical scanning device
EP94400656A EP0618078A3 (en) 1993-03-29 1994-03-28 An optical scanning device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6952193A JPH06302855A (en) 1993-03-29 1993-03-29 Optical scanning device

Publications (1)

Publication Number Publication Date
JPH06302855A true JPH06302855A (en) 1994-10-28

Family

ID=13405117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6952193A Pending JPH06302855A (en) 1993-03-29 1993-03-29 Optical scanning device

Country Status (2)

Country Link
EP (1) EP0618078A3 (en)
JP (1) JPH06302855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598973B2 (en) 2004-07-16 2009-10-06 Seiko Epson Corporation Line head and image forming apparatus incorporating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09193450A (en) * 1996-01-22 1997-07-29 Fuji Xerox Co Ltd Image recorder
JPH11138899A (en) 1997-11-11 1999-05-25 Canon Inc Image forming system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817150B2 (en) * 1988-12-19 1998-10-27 ミノルタ株式会社 LED printer head
JPH02249667A (en) * 1989-03-24 1990-10-05 Hitachi Koki Co Ltd Led printer
US5016027A (en) * 1989-12-04 1991-05-14 Hewlett-Packard Company Light output power monitor for a LED printhead
JPH05313092A (en) * 1992-05-13 1993-11-26 Oki Electric Ind Co Ltd Image reading/writing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7598973B2 (en) 2004-07-16 2009-10-06 Seiko Epson Corporation Line head and image forming apparatus incorporating the same

Also Published As

Publication number Publication date
EP0618078A2 (en) 1994-10-05
EP0618078A3 (en) 1995-01-04

Similar Documents

Publication Publication Date Title
US5684523A (en) Optical line printhead and an LED chip used therefor
KR100259490B1 (en) Vertical cavity surface emitting laser
US4737798A (en) Laser diode mode hopping sensing and control system
EP0844707B1 (en) Multiple beam light source device and multiple beam scanning optical apparatus using the device
US6542178B2 (en) Image recording apparatus
JP4642627B2 (en) Scanning optical device and image forming apparatus using the same
US6687272B2 (en) Semiconductor laser device
JPH06302855A (en) Optical scanning device
US5072114A (en) Light beam scanning apparatus and light beam adjusting mechanism for use with such light beam scanning apparatus
US6313935B1 (en) Scanning optical apparatus
JPH09193450A (en) Image recorder
JP2006162739A (en) Optical scanner
US5241554A (en) Laser diode of variable beam divergence and information processor using the same
US5543611A (en) Method and apparatus for back facet monitoring of laser diode power output
US6922269B2 (en) Light scanning unit
JPH09216409A (en) Light source unit and optical scanner using end-face luminescent semiconductor laser element
JP3299018B2 (en) Light source device for optical printer
JP2743858B2 (en) Optical printer
JP3093439B2 (en) Semiconductor light emitting device
JP2002198559A (en) Semiconductor light emitting device and optical printer head using it
JPS6390887A (en) Optical apparatus
JPH079699A (en) Semiconductor laser array light source
JPH05136459A (en) Semiconductor light emitting device
EP0781663B1 (en) Color xerographic printer with multiple linear arrays of surface emitting lasers with dissimilar wavelengths
JPH07198476A (en) Light quantity detector