JPH06302793A - Solid-state image sensing device and manufacture thereof - Google Patents
Solid-state image sensing device and manufacture thereofInfo
- Publication number
- JPH06302793A JPH06302793A JP5114212A JP11421293A JPH06302793A JP H06302793 A JPH06302793 A JP H06302793A JP 5114212 A JP5114212 A JP 5114212A JP 11421293 A JP11421293 A JP 11421293A JP H06302793 A JPH06302793 A JP H06302793A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- lens
- polishing
- state image
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、マイクロレンズを備
えた固体撮像装置及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device having a microlens and a method of manufacturing the same.
【0002】[0002]
【従来の技術】一般に、CCDやMOSイメージャ等の
固体撮像装置は、同一半導体基板上に、入射光を電気信
号に変換する受光部と、受光部で発生した信号を転送す
る信号読み出し部を有している。図5の(A),(B)
は従来のMOS型固体撮像装置の画素断面図及び平面図
である。図において、1は半導体基板、2は受光部、3
はn+ 拡散領域、4はゲート電極、5はゲート酸化膜、
6はp+ 拡散領域、7,8は絶縁層間膜、9は金属配
線、10はフィールド酸化膜、11はコンタクトホール、12
は入射光をそれぞれ示している。2. Description of the Related Art Generally, a solid-state image pickup device such as a CCD or a MOS imager has a light receiving portion for converting incident light into an electric signal and a signal reading portion for transferring a signal generated in the light receiving portion on the same semiconductor substrate. is doing. 5A and 5B
FIG. 4A is a pixel cross-sectional view and a plan view of a conventional MOS solid-state imaging device. In the figure, 1 is a semiconductor substrate, 2 is a light receiving portion, 3
Is an n + diffusion region, 4 is a gate electrode, 5 is a gate oxide film,
6 is a p + diffusion region, 7 and 8 are insulating interlayer films, 9 is a metal wiring, 10 is a field oxide film, 11 is a contact hole, 12
Indicates incident light, respectively.
【0003】ところで、このように構成されているMO
S型固体撮像装置において、光が入射される領域全体の
面積の中、実際に入射光12が光電変換する受光部2の面
積比(開口率)は、前記信号読み出し部等により、10〜
50%程度に制限されるという欠点がある。By the way, the MO configured as described above
In the S-type solid-state imaging device, the area ratio (aperture ratio) of the light receiving portion 2 where the incident light 12 is actually photoelectrically converted, out of the area of the entire region where the light is incident, is 10 to 10
It has the drawback of being limited to about 50%.
【0004】この開口率を補う手段として、例えば特公
昭60−59752号に開示されているマイクロレンズ
積層構造が知られている。図6は、従来のマイクロレン
ズを備えた固体撮像装置の画素断面を示す図である。こ
の構成例は、撮像素子の表面に透明な絶縁層間膜14を形
成し、該層間膜14上に、受光部2及びその周辺部に入射
する光を、受光部2に集光させるマイクロレンズ層13を
形成したものであり、この構成により、マイクロレンズ
層を形成しない従来例に比べ、固体撮像装置の出力が10
〜500 %向上する見込みがある。As a means for compensating for this aperture ratio, for example, a microlens laminated structure disclosed in Japanese Patent Publication No. 60-97552 is known. FIG. 6 is a diagram showing a pixel cross section of a conventional solid-state imaging device including a microlens. In this configuration example, a transparent insulating interlayer film 14 is formed on the surface of an image sensor, and a microlens layer for condensing light incident on the light receiving portion 2 and its peripheral portion on the light receiving portion 2 on the interlayer film 14. 13 is formed, and with this configuration, the output of the solid-state imaging device is 10% compared to the conventional example in which the microlens layer is not formed.
~ 500% expected to improve.
【0005】[0005]
【発明が解決しようとする課題】ところが、従来のマイ
クロレンズ層の形成方法は、熱軟化によるフローイング
法が主流である。このため、マイクロレンズ層形成後の
固体撮像装置は、マイクロレンズ層形成材質の軟化点以
上の耐熱性をもたせることは困難であり、したがって加
熱を要する加工後工程や、また固体撮像装置の使用範囲
が限定されるという問題点があった。またマイクロレン
ズ層材質によっては、薬品やガス等による変質により、
更には材質そのものにより、透過率が劣化するという欠
点もあった。However, the conventional method of forming a microlens layer is mainly a flowing method by thermal softening. Therefore, it is difficult for the solid-state imaging device after forming the microlens layer to have heat resistance equal to or higher than the softening point of the material for forming the microlens layer. There was a problem that was limited. In addition, depending on the material of the microlens layer, due to deterioration due to chemicals or gas,
Further, there is a drawback that the transmittance deteriorates due to the material itself.
【0006】本発明は、従来のマイクロレンズを備えた
固体撮像装置における上記問題点を解消するためになさ
れたもので、従来の半導体装置程度の耐熱性,耐薬品性
等の信頼性を備え、また透過率の低減により分光感度を
変えることのないマイクロレンズを備えた固体撮像装置
及びその製造方法を提供することを目的とする。The present invention has been made in order to solve the above-mentioned problems in the conventional solid-state image pickup device having a microlens, and has the reliability such as heat resistance and chemical resistance as those of conventional semiconductor devices. Another object of the present invention is to provide a solid-state imaging device including a microlens that does not change the spectral sensitivity by reducing the transmittance and a manufacturing method thereof.
【0007】[0007]
【課題を解決するための手段及び作用】上記問題点を解
決するため、本発明は、半導体基板にマトリクス状に配
列された複数の光電変換素子を備えた固体撮像装置にお
いて、前記光電変換素子の受光部に対応する部分に、入
射光を集光する、耐熱性及び耐薬品性に安定な透明絶縁
膜からなるマイクロレンズをそれぞれ設けるものであ
る。In order to solve the above-mentioned problems, the present invention provides a solid-state image pickup device having a plurality of photoelectric conversion elements arranged in a matrix on a semiconductor substrate. A microlens made of a transparent insulating film that collects incident light and is stable in heat resistance and chemical resistance is provided in a portion corresponding to the light receiving portion.
【0008】このように構成した固体撮像装置において
は、耐熱性,耐薬品性の優れた絶縁膜でマイクロレンズ
を形成しているので、マイクロレンズ形成後も加熱性の
積層やエッチング等の半導体プロセスを行うことが可能
となり、また固体撮像装置の使用範囲も限定されない。
更に透過率も低減せず、分光感度の変動も抑えることが
可能となる。In the solid-state image pickup device having such a structure, the microlenses are formed of an insulating film having excellent heat resistance and chemical resistance. Therefore, even after the microlenses are formed, a semiconductor process such as heating lamination or etching is performed. It is possible to perform the above, and the use range of the solid-state imaging device is not limited.
Further, it is possible to suppress the fluctuation of the spectral sensitivity without reducing the transmittance.
【0009】また本発明に係る固体撮像装置の製造方法
は、絶縁膜からなるマイクロレンズは、前記絶縁膜を化
学−機械研磨法により研磨して形成するものである。Further, in the method for manufacturing a solid-state image pickup device according to the present invention, the microlenses made of an insulating film are formed by polishing the insulating film by a chemical-mechanical polishing method.
【0010】化学−機械研磨法とは、“Solid state te
ch/日本版, July, 1992, pp32〜37”等に開示されてい
る半導体の平坦化法の1つで、主にDRAM等に用いら
れつつある。図1の(A)に化学−機械研磨法の概念図
を示す。この化学−機械研磨法は、絶縁層間膜の凸部21
を研磨することによって凹部22との段差を減らす完全平
坦化を目的とするものである。このため、図1の(A)
に示すように、絶縁層間膜の凸部21の上面に圧力を集中
し、垂直方向23に研磨を進めるため、固い研磨パッド
(硬研磨)を用いる。この場合、ウェーハ面内のチップ
間の研磨均一性を確保するために、研磨パッドの研磨界
面をウェーハの等高性に合わせる等の処置が必要であ
る。なお図1の(A)において、24は研磨横方向圧力、
25は凸部端部にかかる圧力を示している。このような研
磨を行うことにより、図1の(B)に示すように、凸部
21は21aで示す形状に研磨される。なお図1の(B)に
おいて、aは研磨前高さ、bは研磨後高さ、cは底とな
る高さを示している。The chemical-mechanical polishing method refers to "Solid state te
ch / Japan version, July, 1992, pp32-37 ", etc., which is one of the semiconductor planarization methods and is being used mainly for DRAMs and the like. Chemical-mechanical polishing is shown in FIG. The chemical-mechanical polishing method is used for the projection 21 of the insulating interlayer film.
The purpose is to completely flatten the surface of the concave portion 22 by polishing it. Therefore, (A) of FIG.
As shown in, a hard polishing pad (hard polishing) is used in order to concentrate the pressure on the upper surface of the convex portion 21 of the insulating interlayer film and advance the polishing in the vertical direction 23. In this case, in order to secure the polishing uniformity between chips in the wafer surface, it is necessary to take measures such as adjusting the polishing interface of the polishing pad to the contour of the wafer. In FIG. 1 (A), 24 is the polishing lateral pressure,
The numeral 25 indicates the pressure applied to the end of the convex portion. By performing such polishing, as shown in FIG.
21 is ground into a shape 21a. In addition, in FIG. 1B, a indicates a height before polishing, b indicates a height after polishing, and c indicates a height serving as a bottom.
【0011】これに対し、比較的柔らかい研磨パッド
(軟研磨)を用いると、図2の(A)に示すように、絶
縁層間膜の凸部21において、水平方向にも研磨圧が分散
し、研磨横方向圧力24が大となり、凸部21の端部付近に
おいて斜め方向に集中的に圧力25が掛かるようになる。
このため、平坦化のための研磨としては不十分となる
が、ウェーハ面全体にあたる圧力も分散されているた
め、ウェーハ面内は均一に研磨され易くなる。したがっ
て、この軟研磨を進めていくと、図2の(B)に示すよ
うに、凸部21の形状がやがて26で示すよう球面状に研磨
されることになる。したがって、この軟研磨法をマイク
ロレンズの形成加工に用い、被研磨硬度,研磨剤,研磨
回転速度等を適宜設定することにより、任意のレンズ比
をもつマイクロレンズを形成することができる。On the other hand, when a relatively soft polishing pad (soft polishing) is used, as shown in FIG. 2A, the polishing pressure is dispersed in the horizontal direction in the convex portion 21 of the insulating interlayer film, The polishing lateral pressure 24 becomes large, and the pressure 25 is intensively applied in the oblique direction near the end of the convex portion 21.
For this reason, the polishing is insufficient for polishing for flattening, but since the pressure applied to the entire wafer surface is dispersed, the wafer surface is likely to be uniformly polished. Therefore, as the soft polishing proceeds, the shape of the convex portion 21 will be polished into a spherical shape as indicated by 26, as shown in FIG. 2B. Therefore, by using this soft polishing method for forming a microlens and appropriately setting the hardness to be polished, the polishing agent, the polishing rotation speed, etc., a microlens having an arbitrary lens ratio can be formed.
【0012】したがって、研磨条件により、例えばSiO
2 等の材質を研磨してレンズを形成することが可能とな
るため、耐熱性,耐薬品性に安定な材質を用いたマイク
ロレンズを形成することができる。Therefore, depending on the polishing conditions, for example, SiO 2
Since it becomes possible to polish a material such as 2 to form a lens, it is possible to form a microlens using a material having stable heat resistance and chemical resistance.
【0013】[0013]
【実施例】次に、実施例について説明する。図3の
(A)〜(F)は、本発明に係るマイクロレンズを備え
た固体撮像装置及びその製造方法の一実施例を説明する
ための製造工程図である。まず、図3の(A)に示すよ
うに、受光部2と信号読み出し部を備えた、図5の
(A)に示した従来例と同様な構成のMOS型固体撮像
装置を形成する。この製造工程は、一般的なものである
ので説明は省略し、また図5の(A)と同一部分には同
一符号を付して示している。なお、本実施例は、MOS
型固体撮像装置に本発明を適用したものを示している
が、例えば、CCD,AMI,SIT,CMD等の光電
変換素子を用いた固体撮像装置であれば、いずれも適用
することができる。EXAMPLES Next, examples will be described. 3A to 3F are manufacturing process diagrams for explaining one embodiment of a solid-state imaging device including a microlens according to the present invention and a manufacturing method thereof. First, as shown in FIG. 3A, a MOS type solid-state imaging device having the same configuration as that of the conventional example shown in FIG. Since this manufacturing process is a general process, its description is omitted, and the same parts as those in FIG. In this embodiment, the MOS
Although the present invention is applied to a solid-state image pickup device, any solid-state image pickup device using photoelectric conversion elements such as CCD, AMI, SIT, and CMD can be applied.
【0014】次に図3の(B)に示すように、スピン・
オン・ガラス法を用いて、例えばOCDTYPE−7(東京
応化製)等を回転塗布し、絶縁層間膜31を形成する。こ
の絶縁層間膜31の形成方法としては、この他にも、通常
のCVD法やスパッタ法に加え、TEOS−CVD法や
バイアススパッタ法、前記のスピン・オン・ガラス法等
を、単独又はそれらを組み合わせた方法でもよい。ま
た、この絶縁層間膜31の材質としては、光を透過し且つ
機械的強度があればよく、例えばSiOX (0<X≦
2),SiNY (0<Y≦1.3),SiCZ (0<Z≦1)
等でもよい。Next, as shown in FIG.
Using the on-glass method, for example, OCDTYPE-7 (manufactured by Tokyo Ohka Co., Ltd.) is spin coated to form the insulating interlayer film 31. In addition to the usual CVD method and sputtering method, TEOS-CVD method, bias sputtering method, the above spin-on-glass method, etc. may be used alone or by any of these as a method of forming this insulating interlayer film 31. A combination of methods may be used. The insulating interlayer film 31 may be made of any material as long as it transmits light and has mechanical strength. For example, SiO X (0 <X ≦
2), SiN Y (0 <Y ≦ 1.3), SiC Z (0 <Z ≦ 1)
And so on.
【0015】次に、図3の(C)に示すように、絶縁層
間膜31上にレンズ層32をSiO2 のプラズマCVD法等に
より形成する。このレンズ層32は、前記絶縁層間膜31と
同様の材料や形成方法でよく、また前記絶縁層間膜31自
体で形成してもよい。そしてレジスト等によりレンズ間
隙となる部分を開口したパターンを形成した後、ウェッ
トエッチング法やCDE法等の等方性エッチングを行
い、レンズ間隙部33のレンズ層32を除去すると共に、レ
ンズ形状の外形となる凸形状のレンズ層32を形成する。
これも例えば、RIE等の異方性エッチングやリフトオ
フ法等により、凸形状の形成を行ってもよい。次に、図
3の(D)に示すように、化学−機械研磨法を利用して
凸形状レンズ層32を研磨し、レンズ形状部34を形成す
る。Next, as shown in FIG. 3C, a lens layer 32 is formed on the insulating interlayer film 31 by a plasma CVD method of SiO 2 . The lens layer 32 may be made of the same material and the same forming method as the insulating interlayer film 31, or may be formed of the insulating interlayer film 31 itself. Then, after forming a pattern in which the lens gap is opened with a resist or the like, isotropic etching such as wet etching or CDE is performed to remove the lens layer 32 in the lens gap 33 and to form the outer shape of the lens shape. Then, a convex lens layer 32 is formed.
Also in this case, for example, the convex shape may be formed by anisotropic etching such as RIE or a lift-off method. Next, as shown in FIG. 3D, the convex lens layer 32 is polished by using a chemical-mechanical polishing method to form a lens-shaped portion 34.
【0016】次に、図4に基づいて化学−機械研磨を行
う研磨装置について説明する。まず、研磨するウェーハ
44を研磨面を上にして、ガラスやステンレス製の固定台
40に固定剤41で固定する。この後、TiO2 等を含むスラ
リー(粘性)状の研磨液42で満たした綿等の布製の研磨
パッド43を、ウェーハ44及び研磨台40に押し付け、研磨
パッド43又はウェーハ44、もしくはその両方を研磨回転
板45で回転移動させ、ウェーハ44の表面を研磨する。こ
の時、軟研磨とするために、研磨回転速度を1000回転/
分以下とする。また、スラリー粒子としては、TiO2 の
他にCeO2 ,SiO2 等の酸化物系のものや、SiC,C等
でもよい。更に、研磨パッド43は布製以外のポリウレタ
ン系のものでもよい。これら任意の研磨スラリーや回転
速度により、ウェーハ44の表面の凸形状をレンズ形状に
形成する。Next, a polishing apparatus for chemical-mechanical polishing will be described with reference to FIG. First, the wafer to be polished
Fixing base made of glass or stainless steel with polishing side facing up
Fix to 40 with fixative 41. After that, a polishing pad 43 made of a cloth such as cotton filled with a slurry (viscous) polishing liquid 42 containing TiO 2 or the like is pressed against the wafer 44 and the polishing table 40, and the polishing pad 43 or the wafer 44, or both of them are pressed. The surface of the wafer 44 is polished by rotating the polishing rotating plate 45. At this time, in order to achieve soft polishing, the polishing rotation speed is 1000 rotations /
Not more than a minute. As the slurry particles, those oxides based CeO 2, SiO 2 or the like in addition to TiO 2 and, SiC, may be C or the like. Further, the polishing pad 43 may be made of polyurethane other than cloth. The convex shape on the surface of the wafer 44 is formed into a lens shape by these arbitrary polishing slurries and the rotation speed.
【0017】次に、図3の(E)に示すように、研磨
後、水洗シャワー,スクラビング及び超音波洗浄等でウ
ェーハの洗浄を行い、更にHF希釈水溶液等でレンズ形
状部34の表面層をリンスする。なお図3の(E)におい
て35はリンス後のレンズ表面を示している。最後に、図
3の(F)に示すように、レンズ表面35にMgF等の反射
防止膜36を形成し、マイクロレンズを設けた固体撮像装
置を完成する。Next, as shown in FIG. 3E, after polishing, the wafer is cleaned by washing with water, showering, scrubbing, ultrasonic cleaning, etc., and the surface layer of the lens-shaped portion 34 is further cleaned with an HF diluted aqueous solution. Rinse. In FIG. 3E, reference numeral 35 indicates the lens surface after rinsing. Finally, as shown in FIG. 3F, an antireflection film 36 of MgF or the like is formed on the lens surface 35 to complete a solid-state imaging device provided with microlenses.
【0018】以上のように、本発明においては、熱的及
び機械的に安定な材質でマイクロレンズが形成されるた
め、例えば、前記反射防止膜36や無機系カラーフィルタ
等の積層及び加工時に、加熱工程を必要とするものの形
成が可能となる。As described above, in the present invention, since the microlens is formed of a thermally and mechanically stable material, for example, when the antireflection film 36 and the inorganic color filter are laminated and processed, It is possible to form a material that requires a heating process.
【0019】[0019]
【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、耐熱性,耐薬品性等の信頼性を備え、
また透過率の低減による分光感度の変動もきたさないマ
イクロレンズを備えた固体撮像装置を実現することがで
きる。また本発明の製造方法によれば、耐熱性,耐薬品
性に安定な材質を用いて容易にマイクロレンズを形成す
ることができる。As described above on the basis of the embodiments,
According to the present invention, it has reliability such as heat resistance and chemical resistance,
Further, it is possible to realize a solid-state imaging device including a microlens that does not cause a change in spectral sensitivity due to a reduction in transmittance. Further, according to the manufacturing method of the present invention, a microlens can be easily formed using a material having stable heat resistance and chemical resistance.
【図1】化学−機械研磨法の概念を説明するための説明
図である。FIG. 1 is an explanatory diagram for explaining the concept of a chemical-mechanical polishing method.
【図2】化学−機械研磨における軟研磨の概念を説明す
るための説明図である。FIG. 2 is an explanatory diagram for explaining the concept of soft polishing in chemical-mechanical polishing.
【図3】本発明に係る固体撮像装置及びその製造方法の
一実施例を説明するための製造工程図である。FIG. 3 is a manufacturing process diagram for explaining an embodiment of the solid-state imaging device and the manufacturing method thereof according to the present invention.
【図4】化学−機械研磨装置の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of a chemical-mechanical polishing device.
【図5】従来のMOS型固体撮像装置の構成例を示す断
面図及び平面図である。5A and 5B are a cross-sectional view and a plan view showing a configuration example of a conventional MOS solid-state imaging device.
【図6】従来のマイクロレンズを備えたMOS型固体撮
像装置の構成例を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration example of a conventional MOS solid-state imaging device including a microlens.
1 半導体基板 2 受光部 3 n+ 拡散領域 4 ゲート電極 5 ゲート酸化膜 6 p+ 拡散領域 7,8 絶縁層間膜 9 金属配線 10 フィールド酸化膜 31 絶縁層間膜 32 レンズ層 33 レンズ間隙部 34 レンズ形状部 35 レンズ表面 36 反射防止膜1 semiconductor substrate 2 light receiving part 3 n + diffusion region 4 gate electrode 5 gate oxide film 6 p + diffusion region 7, 8 insulating interlayer film 9 metal wiring 10 field oxide film 31 insulating interlayer film 32 lens layer 33 lens gap 34 lens shape Part 35 Lens surface 36 Anti-reflection film
Claims (4)
複数の光電変換素子を備えた固体撮像装置において、前
記光電変換素子の受光部に対応する部分に、入射光を集
光する、耐熱性及び耐薬品性に安定な透明絶縁膜からな
るマイクロレンズをそれぞれ設けたことを特徴とする固
体撮像装置。1. A solid-state image pickup device comprising a plurality of photoelectric conversion elements arranged in a matrix on a semiconductor substrate, wherein incident light is condensed at a portion corresponding to a light receiving portion of the photoelectric conversion element, and heat resistance and A solid-state image pickup device comprising microlenses each formed of a transparent insulating film having stable chemical resistance.
SiNY (0<Y≦1.3),SiCZ (0<Z≦1)のいず
れかで構成されていることを特徴とする請求項1記載の
固体撮像装置。2. The insulating film is formed of SiO x (0 <X ≦ 2),
2. The solid-state image pickup device according to claim 1, wherein the solid-state image pickup device is composed of either SiN Y (0 <Y ≦ 1.3) or SiC Z (0 <Z ≦ 1).
複数の光電変換素子の受光部に対応する部分に、入射光
を集光する、耐熱性及び耐薬品性に安定な透明絶縁膜か
らなるマイクロレンズをそれぞれ形成する固体撮像装置
の製造方法において、前記絶縁膜からなるマイクロレン
ズは、前記絶縁膜を化学−機械研磨法により研磨して形
成することを特徴とする固体撮像装置の製造方法。3. A micro insulating film comprising a transparent insulating film which collects incident light at a portion corresponding to a light receiving portion of a plurality of photoelectric conversion elements arranged in a matrix on a semiconductor substrate and which is stable in heat resistance and chemical resistance. In the method of manufacturing a solid-state imaging device, each of which forms a lens, the microlens made of the insulating film is formed by polishing the insulating film by a chemical-mechanical polishing method.
パッドを用いた不完全平坦化研磨とすることを特徴とす
る請求項3記載の固体撮像装置の製造方法。4. The method for manufacturing a solid-state imaging device according to claim 3, wherein the chemical-mechanical polishing method is incomplete planarization polishing using a soft polishing pad.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5114212A JPH06302793A (en) | 1993-04-19 | 1993-04-19 | Solid-state image sensing device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5114212A JPH06302793A (en) | 1993-04-19 | 1993-04-19 | Solid-state image sensing device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06302793A true JPH06302793A (en) | 1994-10-28 |
Family
ID=14632028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5114212A Withdrawn JPH06302793A (en) | 1993-04-19 | 1993-04-19 | Solid-state image sensing device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06302793A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002361597A (en) * | 2001-06-11 | 2002-12-18 | Nikon Corp | Micro-lens array manufacturing method, micro-lens array, optical system, and projective exposing device |
NL1015511C2 (en) * | 1999-06-28 | 2004-08-26 | Hyundai Electronics Ind | Semiconductor image sensor in which an optical layer is included. |
CN113130518A (en) * | 2020-01-15 | 2021-07-16 | 台湾积体电路制造股份有限公司 | Image sensor and method for manufacturing the same |
-
1993
- 1993-04-19 JP JP5114212A patent/JPH06302793A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1015511C2 (en) * | 1999-06-28 | 2004-08-26 | Hyundai Electronics Ind | Semiconductor image sensor in which an optical layer is included. |
JP2002361597A (en) * | 2001-06-11 | 2002-12-18 | Nikon Corp | Micro-lens array manufacturing method, micro-lens array, optical system, and projective exposing device |
CN113130518A (en) * | 2020-01-15 | 2021-07-16 | 台湾积体电路制造股份有限公司 | Image sensor and method for manufacturing the same |
US11380729B2 (en) | 2020-01-15 | 2022-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Image sensor having lens layer and manufacturing method thereof |
TWI789601B (en) * | 2020-01-15 | 2023-01-11 | 台灣積體電路製造股份有限公司 | Image sensor and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5682312B2 (en) | Method for manufacturing solid-state imaging device | |
TWI608600B (en) | Image sensor and related fabrication method | |
US7709918B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
JP6020933B2 (en) | Solid-state imaging device and manufacturing method thereof | |
TW200525744A (en) | Solid-state imaging device and method for manufacturing the same | |
TWI744438B (en) | Solid-state imaging element | |
JPH0964325A (en) | Solid-state image sensing device and its manufacture | |
JP2002064193A (en) | Solid-state imaging device and manufacturing method thereof | |
US8987113B2 (en) | Image sensor including multiple lenses and method of manufacture thereof | |
JP2012174937A (en) | Semiconductor device, manufacturing method of semiconductor device, bonding method of semiconductor wafer and electronic apparatus | |
US20090189233A1 (en) | Cmos image sensor and method for manufacturing same | |
US20220262845A1 (en) | Lens structure configured to increase quantum efficiency of image sensor | |
JP4923357B2 (en) | Method for manufacturing solid-state imaging device | |
JPH06302793A (en) | Solid-state image sensing device and manufacture thereof | |
JPH10189936A (en) | Solid-state image sensor and manufacture thereof | |
CN101667585A (en) | Image sensor and manufacturing method thereof | |
JP2004319896A (en) | Solid-state image pickup device | |
JP2017092179A (en) | Solid state imaging device and method of manufacturing the same | |
JP2003234465A (en) | Method for fabricating semiconductor device | |
KR100489351B1 (en) | Manufacturing method of image sensor with protective film to which planarization process is applied | |
KR100851755B1 (en) | Image sensor and method for manufacturing thereof | |
KR100521969B1 (en) | Image sensor having high light sensitivity and manufacturing method | |
JP2001044406A (en) | Solid-state image pickup element and manufacture thereof | |
JP2007294525A (en) | Manufacturing method for solid-state imaging element | |
JP2007248662A (en) | Method of forming color filter, color filter, solid-state imaging element and liquid crystal driving element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |