JPH06300763A - Fluorescent microbead for fluorescent immunoassay and its manufacture - Google Patents

Fluorescent microbead for fluorescent immunoassay and its manufacture

Info

Publication number
JPH06300763A
JPH06300763A JP8764293A JP8764293A JPH06300763A JP H06300763 A JPH06300763 A JP H06300763A JP 8764293 A JP8764293 A JP 8764293A JP 8764293 A JP8764293 A JP 8764293A JP H06300763 A JPH06300763 A JP H06300763A
Authority
JP
Japan
Prior art keywords
fluorescent
microbeads
microbead
porous
immunoassay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8764293A
Other languages
Japanese (ja)
Inventor
Koichi Arishima
功一 有島
Mitsutoshi Hoshino
光利 星野
Koichi Fujiwara
幸一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8764293A priority Critical patent/JPH06300763A/en
Publication of JPH06300763A publication Critical patent/JPH06300763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To provide a fluorescent microbead and its manufacture which is suitable for use in a simple, quick and highly accurate immunoassay. CONSTITUTION:The microbead is characterized in that an amino group is added on the surface of a porous microbead. The manufacture for the microbead comprises a step wherein the amino group is added to the surface of a porous microbead, a step wherein the porous microbead with the amino group is impregrated in a fluorescent solution, and a step wherein the porous microbead dyed with fluorescence is cleansed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、蛍光体と磁性微粒子
により標識した検体の蛍光強度を測定することにより、
該検体の抗原または抗体量を測定する蛍光免疫測定に用
いられる蛍光マイクロビーズ及びその製造方法に関する
ものである。
TECHNICAL FIELD The present invention provides: by measuring the fluorescence intensity of a specimen labeled with a fluorescent substance and magnetic fine particles,
The present invention relates to a fluorescent microbead used for fluorescent immunoassay for measuring the amount of antigen or antibody of the sample and a method for producing the same.

【0002】[0002]

【従来の技術】従来から知られている抗原抗体反応を利
用した免疫測定方法としては、ラジオイムノアッセイ
(RIA)、酵素イムノアッセイ(EIA)、蛍光イム
ノアッセイ(FIA)、レーザイムノアッセイ(LI
A)等が既に実用化されている。これらの方法は、それ
ぞれアイソトープ、酵素、蛍光物質等により標識した抗
原の有無を検出する方法である。しかしながら、EIA
法、FIA法、LIA法は感度が、10-6グラムからせ
いぜい10-10グラムであり、抗原抗体反応において特
に有用である抗原検査としては感度不足であり、実用上
問題があった。また、RIA法は感度的には10-12
ラムあり、超微量分析、抗原検査が可能な測定法である
が、放射性物質を利用するため特殊設備を必要とし、汎
用性、価格等の点で問題があった。
2. Description of the Related Art Conventionally known immunoassay methods utilizing the antigen-antibody reaction include radioimmunoassay (RIA), enzyme immunoassay (EIA), fluorescent immunoassay (FIA) and laser immunoassay (LI).
A) etc. have already been put to practical use. Each of these methods is a method of detecting the presence or absence of an antigen labeled with an isotope, an enzyme, a fluorescent substance, or the like. However, EIA
The methods, FIA method and LIA method have a sensitivity of 10 −6 gram to 10 −10 gram at the most, and are insufficient in sensitivity as an antigen test which is particularly useful in an antigen-antibody reaction, and there is a practical problem. In addition, the RIA method has a sensitivity of 10 -12 grams and is a measurement method capable of ultra trace analysis and antigen test, but requires special equipment because it uses radioactive substances, and in terms of versatility and price, etc. There was a problem.

【0003】そこで、本発明者らは抗原検査が可能な1
-12グラム以上の感度を有し、かつ 汎用性の高い測定
法として、抗体を結合した蛍光色素を含有する蛍光マイ
クロビーズ及び抗体を結合した磁性微粒子(磁性体標識
体)により検体中の抗原を捕捉し、これら蛍光マイクロ
ビーズと磁性微粒子と検体とからなる反応複合体を外部
磁場等により溶液表面の1点に集合させ、該集合点にレ
ーザ光を照射し、該検体から発生する蛍光を検出する免
疫測定法を提案してきた(例えば、特開平2−1517
66号公報等参照のこと)。
Therefore, the present inventors have made it possible to carry out an antigen test 1.
As a highly versatile measuring method having a sensitivity of 0 -12 grams or more, an antigen in a sample is measured by fluorescent microbeads containing a fluorescent dye bound with an antibody and magnetic fine particles (magnetic substance-labeled body) bound with an antibody. Of the fluorescent microbeads, the magnetic fine particles and the sample are collected at one point on the surface of the solution by an external magnetic field or the like, and the collected point is irradiated with laser light to emit fluorescence generated from the sample. An immunoassay method for detection has been proposed (for example, JP-A-2-1517).
66, etc.).

【0004】この新しい測定方法において用いられる蛍
光マイクロビーズは、下記の条件を満足することが要求
される。 (1) 蛍光収率が高い。 (2) 化学残基がマイクロビーズ表面に存在する。 (3) 非特異的反応が少ない。 (4) マイクロビーズ間の凝集、沈降が少ない。 (5) He−Neレーザ等の安価で小型のレーザの発
振波長で励起することができる。 さらに詳しく述べると、まず使用される蛍光色素が高感
度であるためには、蛍光収率が高く、かつ、レーザ発振
波長に該蛍光色素の励起波長が合致していることが必要
である。また、マイクロビーズの材料特性として、抗体
を表面に結合させるために、アミノ基、カルボキシル
基、シアノ基等の化学残基がマイクロビーズ表面に存在
することが必要である。特に、アミノ基に対しては、安
定でかつ反応性の高い架橋剤が実用化されており、アミ
ノ基によりマイクロビーズ表面が修飾されていることは
重要である。
The fluorescent microbeads used in this new measuring method are required to satisfy the following conditions. (1) The fluorescence yield is high. (2) Chemical residues are present on the microbead surface. (3) There are few nonspecific reactions. (4) There is little aggregation or sedimentation between microbeads. (5) It can be excited at the oscillation wavelength of an inexpensive and small laser such as a He-Ne laser. More specifically, in order for the fluorescent dye used to have high sensitivity, it is necessary that the fluorescence yield is high and the excitation wavelength of the fluorescent dye matches the laser oscillation wavelength. Further, as a material property of the microbeads, it is necessary that chemical residues such as amino groups, carboxyl groups and cyano groups be present on the microbead surface in order to bind the antibody to the surface. Particularly, for amino groups, stable and highly reactive cross-linking agents have been put to practical use, and it is important that the surface of the microbeads is modified with amino groups.

【0005】また、免疫アッセイに用いられる材料の基
本的特性として、反応時に抗原との非特異的反応が少な
いことが必要である。ここで述べる非特異的反応とは、
マイクロビーズと磁性微粒子が抗原抗体反応を介しない
で結合することであり、非特異的反応が多いと測定上ノ
イズレベル(いわゆるコントロール値)の上昇を引き起
こし、実質的な感度低下となる。そこで、マイクロビー
ズの非特異的反応を防止するためには、親水性を向上さ
せ、かつ、表面電位をマッチングさせることが重要であ
る。また、マイクロビーズ間の凝集は磁性微粒子による
磁界への集合力を低下させ感度低下につながるために好
ましくない。また、マイクロビーズの沈降も同様の理由
により感度低下につながるために好ましくない。
Further, as a basic characteristic of the material used in the immunoassay, it is necessary that the nonspecific reaction with the antigen during the reaction is small. The non-specific reaction described here is
The microbeads are bound to the magnetic fine particles without an antigen-antibody reaction. If there are many non-specific reactions, the noise level in measurement (so-called control value) is increased, and the sensitivity is substantially reduced. Therefore, in order to prevent the non-specific reaction of the microbeads, it is important to improve the hydrophilicity and match the surface potential. Further, agglomeration between the microbeads is not preferable because it reduces the gathering force of the magnetic fine particles on the magnetic field and leads to a decrease in sensitivity. Also, sedimentation of microbeads is not preferable because it leads to a decrease in sensitivity for the same reason.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の蛍光
マイクロビーズでは、上記条件中(1)及び(5)を満
たすものは多いが、他の条件(2)〜(4)を満足する
ものは皆無である。すなわち、(2)については、化学
残基、特にアミノ基の結合量はせいぜい0.1meq/
gであり、抗体結合において結合量に大きく作用するア
ミノ基量としては不十分な量である。また、(3)につ
いては、従来の蛍光マイクロビーズとタンパク質を混合
した後に表面電位の変化量を求め、この変化量から該蛍
光マイクロビーズの非特異的反応性を調べてみると、ほ
ぼ90%以上の蛍光マイクロビーズで非特異的反応が生
じることが明らかとなった。したがって、従来の蛍光マ
イクロビーズでは、非特異的反応を防止することができ
ない。
By the way, many conventional fluorescent microbeads satisfy the above conditions (1) and (5), but do not satisfy the other conditions (2) to (4). There is none. That is, with respect to (2), the bonding amount of chemical residues, particularly amino groups, is 0.1 meq / at most.
It is g, which is an insufficient amount as the amount of amino group that greatly affects the binding amount in antibody binding. Regarding (3), when the amount of change in surface potential is obtained after mixing conventional fluorescent microbeads and protein, and the non-specific reactivity of the fluorescent microbeads is examined from this amount of change, it is approximately 90%. It was revealed that the above-mentioned fluorescent microbeads cause a nonspecific reaction. Therefore, conventional fluorescent microbeads cannot prevent non-specific reactions.

【0007】また、(4)については、例えば、粒径が
0.5μm以下の蛍光マイクロビーズでは、非常に分散
性が高く室温においても沈降することはないが、凝集が
認められる。また、粒径が3μm以上の蛍光マイクロビ
ーズでは、分散性が低いため沈降し易く、しかも、これ
ら蛍光マイクロビーズ間の凝集が認められる。以上のよ
うに、従来の蛍光マイクロビーズでは、条件(2)〜
(4)を満足するものがなく、特に、蛍光マイクロビー
ズと磁性微粒子と検体とからなる反応複合体にレーザ光
を照射する免疫測定法に適用することはできない。
Regarding (4), for example, fluorescent microbeads having a particle size of 0.5 μm or less have very high dispersibility and do not settle at room temperature, but aggregation is observed. In addition, fluorescent microbeads having a particle size of 3 μm or more have low dispersibility and thus are likely to settle, and aggregation between these fluorescent microbeads is recognized. As described above, in the conventional fluorescent microbeads, the condition (2)-
There is nothing that satisfies (4), and it cannot be applied to an immunoassay method in which a reaction complex composed of fluorescent microbeads, magnetic fine particles, and a specimen is irradiated with laser light.

【0008】本発明は、上記事情に鑑みてなされたもの
であって、簡便で迅速かつ高感度の免疫測定方法に好適
に用いることができる蛍光マイクロビーズ及びその製造
方法を提供することにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a fluorescent microbead that can be suitably used in a simple, rapid, and highly sensitive immunoassay method and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な蛍光マイクロビーズ及びその製造
方法を採用した。すなわち、請求項1記載の蛍光マイク
ロビーズは、抗体を結合した蛍光色素を含有する蛍光マ
イクロビーズ及び抗体を結合した磁性体標識体により検
体中の抗原を捕捉し、これら蛍光マイクロビーズと磁性
体標識体と検体とからなる反応複合体にレーザ光を照射
し、該検体から発生する蛍光を検出する免疫測定法に用
いる蛍光マイクロビーズであって、多孔質マイクロビー
ズの表面にアミノ基を付加したことを特徴としている。
To solve the above problems, the present invention employs the following fluorescent microbeads and a method for producing the same. That is, the fluorescent microbeads according to claim 1 capture the antigen in the sample by the fluorescent microbeads containing the fluorescent dye bound with the antibody and the magnetic substance-labeled substance bound with the antibody. A fluorescent microbead used in an immunoassay for irradiating a reaction complex composed of a body and a specimen with laser light to detect fluorescence emitted from the specimen, wherein an amino group is added to the surface of the porous microbead. Is characterized by.

【0010】また、請求項2記載の蛍光免疫測定用蛍光
マイクロビーズの製造方法は、請求項1記載の蛍光免疫
測定用蛍光マイクロビーズを製造する方法であって、多
孔質マイクロビーズの表面にアミノ基を付加する工程
と、該アミノ基が付加された多孔質マイクロビーズを蛍
光溶液に含浸する工程と、蛍光染色された多孔質マイク
ロビーズを洗浄する工程とを備えたことを特徴としてい
る。
The method for producing the fluorescent microbeads for fluorescent immunoassay according to claim 2 is the method for producing the fluorescent microbeads for fluorescent immunoassay according to claim 1, wherein the surface of the porous microbeads has an amino group. The method is characterized by including a step of adding a group, a step of impregnating the amino group-added porous microbeads with a fluorescent solution, and a step of washing the fluorescently stained porous microbeads.

【0011】ここで、前記蛍光マイクロビーズの製造方
法について、さらに詳しく説明する。まず、多孔質ポリ
マービーズを作製する。この作製は、本発明者等が既に
提案している方法に従って行なう(特開平5−4370
6号公報、特開平5−43707号公報等参照のこ
と)。すなわち、グリシジルメタクリレートを主成分と
し、副成分として2−ヒドロキシエチルメタクリレート
を含有するポリマーを架橋重合し、多孔質ポリマービー
ズを作製する。この多孔質ポリマービーズは粒径が0.
5〜3μmであり、分散性が良好である。また、空隙率
は40%程度であり、非常に多孔質である。
Now, the method for producing the fluorescent microbeads will be described in more detail. First, porous polymer beads are prepared. This fabrication is performed according to the method already proposed by the present inventors (Japanese Patent Laid-Open No. 5-4370).
No. 6, JP-A-5-43707, etc.). That is, a polymer containing glycidyl methacrylate as a main component and 2-hydroxyethyl methacrylate as a subcomponent is cross-linked and polymerized to produce porous polymer beads. The porous polymer beads have a particle size of 0.
It is 5 to 3 μm, and the dispersibility is good. Further, the porosity is about 40%, and it is very porous.

【0012】次いで、この多孔質ポリマービーズをアミ
ノ化する。アミノ化率は、従来のポリマービーズが0.
1meq/g程度であるのに対し、本発明の多孔質ポリ
マービーズは0.8meq/g以上であり非常に大き
い。
Next, the porous polymer beads are aminated. The amination ratio of conventional polymer beads is 0.
While it is about 1 meq / g, the porous polymer beads of the present invention have an extremely large value of 0.8 meq / g or more.

【0013】次いで、このアミノ化された多孔質ポリマ
ービーズを蛍光溶液に含浸する。ここでは、従来のポリ
マービーズの替わりに多孔質ポリマービーズを用いてい
るので、ビーズ内部まで染色され、かつ脱色され難い。
前記蛍光溶液は、蛍光色素を有機溶媒に溶解したもので
ある。蛍光色素は、He−Neレーザ(波長633n
m)やArレーザ(波長514nm,488nm)等の
レーザ光源とのマッチング、励起波長と蛍光波長の波長
差の大きさ等を考慮し選択する。表1に使用可能な蛍光
色素を示す。
Next, the aminated porous polymer beads are impregnated with a fluorescent solution. Here, since porous polymer beads are used instead of conventional polymer beads, it is difficult to stain and decolor the inside of the beads.
The fluorescent solution is a fluorescent dye dissolved in an organic solvent. The fluorescent dye is a He-Ne laser (wavelength 633n
m) or Ar laser (wavelengths 514 nm, 488 nm) or the like, matching with a laser light source, the size of the wavelength difference between the excitation wavelength and the fluorescence wavelength, and the like are selected. Table 1 shows usable fluorescent dyes.

【0014】[0014]

【表1】 [Table 1]

【0015】また、有機溶媒としては、蛍光色素の溶解
性がよく、かつ染色後の水系洗浄液と容易に置換できる
ように水との相溶性の良好なものであればよく、例え
ば、エタノール、メタノール、ジメチルホルムアミド等
が好適に用いられる。
As the organic solvent, any solvent may be used as long as it has good solubility of the fluorescent dye and good compatibility with water so that it can be easily replaced with the aqueous washing solution after dyeing. For example, ethanol and methanol. , Dimethylformamide and the like are preferably used.

【0016】ここで、蛍光色素の濃度及び浸漬時間は、
蛍光マイクロビーズの蛍光特性を左右する重要な要素で
ある。蛍光色素の濃度が高い場合には、マイクロビーズ
表面における蛍光色素の濃度が高くなり、蛍光消光の要
因となる。また、蛍光色素の濃度が低い場合には、染色
時間が著しく増大し、かつ、蛍光色素の染色量も理想的
な最大値に到達しない場合がある。
Here, the concentration of the fluorescent dye and the immersion time are
It is an important factor that influences the fluorescent characteristics of fluorescent microbeads. If the concentration of the fluorescent dye is high, the concentration of the fluorescent dye on the surface of the microbeads will be high, which will cause fluorescence quenching. Further, when the concentration of the fluorescent dye is low, the dyeing time may be significantly increased, and the dyeing amount of the fluorescent dye may not reach the ideal maximum value.

【0017】本発明者等は、蛍光強度と蛍光色素濃度及
び浸漬時間との関係について鋭意検討した結果、表2に
示すような蛍光強度の浸漬時間及び蛍光色素濃度依存性
なる知見を得た。また、蛍光強度は蛍光色素の種類によ
らないこともわかった。
As a result of earnest studies on the relationship between the fluorescence intensity, the fluorescent dye concentration and the immersion time, the present inventors have found that the fluorescence intensity depends on the immersion time and the fluorescent dye concentration as shown in Table 2. It was also found that the fluorescence intensity does not depend on the type of fluorescent dye.

【0018】[0018]

【表2】 [Table 2]

【0019】この結果によれば、最適な含浸条件は、蛍
光色素濃度が10-4〜3×10-5mol/l、浸漬時間
が1日〜4日であり、より好適な条件は、蛍光色素濃度
が1.5×10-5mol/l、浸漬時間が4日である。
According to these results, the optimum impregnation condition is that the fluorescent dye concentration is 10 −4 to 3 × 10 −5 mol / l, and the immersion time is 1 to 4 days. The dye concentration is 1.5 × 10 −5 mol / l, and the immersion time is 4 days.

【0020】[0020]

【実施例】以下、本発明の一実施例について説明する。
なお、以下に開示する実施例は、本発明の単なる例示に
過ぎず本発明の範囲を何等限定するものではない。
EXAMPLES An example of the present invention will be described below.
The examples disclosed below are merely examples of the present invention and do not limit the scope of the present invention.

【0021】まず、蛍光染色用のマイクロビーズを作製
した。プロピオン酸エチル25.3mlに、グリシジル
メタクリレートを3.6ml及び2−ヒドロキシエチル
メタクリレートを0.34mlそれぞれ加えて混合し、
さらに、架橋剤としてトリエチレングリコールジメタク
リレートを0.74ml、重合開始剤としてアゾビスイ
ソブチルニトリルを0.55gそれぞれ添加した。 次
に、この混合溶液を直ちに40℃の温度中に3時間静置
して重合した後、該重合反応液をアセトン中に投入し、
重合を停止して架橋重合体とした。このようにして、真
球状の単分散微粒子であるマイクロビーズを作製するこ
とができた。
First, micro beads for fluorescent staining were prepared. To 25.3 ml of ethyl propionate, 3.6 ml of glycidyl methacrylate and 0.34 ml of 2-hydroxyethyl methacrylate were added and mixed, respectively.
Furthermore, 0.74 ml of triethylene glycol dimethacrylate was added as a crosslinking agent, and 0.55 g of azobisisobutylnitrile was added as a polymerization initiator. Next, this mixed solution was immediately allowed to stand at a temperature of 40 ° C. for 3 hours for polymerization, and then the polymerization reaction solution was put into acetone,
Polymerization was stopped to obtain a crosslinked polymer. In this way, it was possible to produce the microbeads, which are spherical monodisperse particles.

【0022】次に、このマイクロビーズを遠心洗浄し
た。まず、前操作として、このマイクロビーズをエタノ
ール中に分散させ、該エタノールの温度を0〜3℃に保
ちつつ超音波洗浄を行い、その後、アセトンを用いて3
回、その後エタノールを用いて2回それぞれ遠心洗浄を
行なった。
Next, the microbeads were washed by centrifugation. First, as a pre-operation, the microbeads are dispersed in ethanol, ultrasonic cleaning is performed while the temperature of the ethanol is maintained at 0 to 3 ° C., and then acetone is used for 3 times.
Centrifugal washing was carried out twice, and then twice with ethanol.

【0023】洗浄したマイクロビーズをエタノールに分
散した状態で、8%のアンモニア水溶液に投入し、グリ
シジル基のアミノ化を行なった。アミノ化は、アンモニ
ア水溶液の温度を0〜3℃に保ちつつ超音波を照射しな
がら行なった。その後、該溶液の温度を上昇させてアミ
ノ化を促進させた。アミノ化後、マイクロビーズを水洗
し、さらに希硫酸を用いて残存グリシジル基の加水分解
を行ない、次いで、蒸留水を用いて水洗し、マイクロビ
ーズ濃度1.6%のビーズ分散液を作製した。アミノ化
されたマイクロビーズは、平均粒径が1.5μmであっ
た。また、電子顕微鏡により表面観察を行なったとこ
ろ、該マイクロビーズは多孔質であることがわかった。
The washed microbeads in a state of being dispersed in ethanol were put into an 8% aqueous ammonia solution to aminate the glycidyl group. The amination was performed while irradiating ultrasonic waves while keeping the temperature of the aqueous ammonia solution at 0 to 3 ° C. Then, the temperature of the solution was raised to promote amination. After the amination, the microbeads were washed with water, the residual glycidyl group was hydrolyzed using dilute sulfuric acid, and then washed with distilled water to prepare a bead dispersion having a microbead concentration of 1.6%. The aminated microbeads had an average particle size of 1.5 μm. In addition, when the surface was observed with an electron microscope, it was found that the microbeads were porous.

【0024】次に、該マイクロビーズを蛍光溶液に含浸
し、蛍光マイクロビーズを作製した。まず、蛍光色素オ
キサジン720(分子量431)0.66mgをエタノ
ール1000mlに溶解し、10-5Mの蛍光溶液を作製
した。次に、この蛍光溶液5mlに前記ビーズ分散液を
0.5ml加え、含浸した。所定時間放置した後、回転
数3000rpmにて10分間遠心分離し、上澄を除去
した。さらに、0.05%BSA−HEPES溶液を1
0ml加え、再度同一条件にて遠心分離を行い、上澄を
除去した。この操作を3回繰り返し行なった。遠心後の
蛍光マイクロビーズは、1%BSA−HEPES溶液1
mlに分散した。
Next, the microbeads were impregnated with a fluorescent solution to prepare fluorescent microbeads. First, 0.66 mg of the fluorescent dye oxazine 720 (molecular weight 431) was dissolved in 1000 ml of ethanol to prepare a 10 −5 M fluorescent solution. Next, 0.5 ml of the above bead dispersion was added to 5 ml of this fluorescent solution to impregnate it. After leaving it for a predetermined time, it was centrifuged at a rotation speed of 3000 rpm for 10 minutes to remove the supernatant. Further, add 1% of 0.05% BSA-HEPES solution.
0 ml was added and the mixture was centrifuged again under the same conditions to remove the supernatant. This operation was repeated 3 times. The fluorescent microbeads after centrifugation were 1% BSA-HEPES solution 1
dispersed in ml.

【0025】このようにして得られた蛍光マイクロビー
ズの諸特性は、表3のとおりである。
Table 3 shows various characteristics of the thus obtained fluorescent microbeads.

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上説明した様に、本発明の請求項1記
載の蛍光マイクロビーズによれば、多孔質マイクロビー
ズの表面にアミノ基を付加したので、蛍光収率を向上さ
せることができ、したがって、簡便で迅速かつ高感度の
免疫測定方法に好適に用いることができる蛍光マイクロ
ビーズを提供することができる。
As described above, according to the fluorescent microbeads of the first aspect of the present invention, since amino groups are added to the surface of the porous microbeads, the fluorescent yield can be improved, Therefore, it is possible to provide a fluorescent microbead that can be suitably used in a simple, rapid, and highly sensitive immunoassay method.

【0027】また、請求項2記載の蛍光免疫測定用蛍光
マイクロビーズの製造方法によれば、多孔質マイクロビ
ーズの表面にアミノ基を付加する工程と、該アミノ基が
付加された多孔質マイクロビーズを蛍光溶液に含浸する
工程と、蛍光染色された多孔質マイクロビーズを洗浄す
る工程とを備えたので、簡易でかつ高い蛍光収率の蛍光
マイクロビーズを製造することができる。
According to the method for producing fluorescent microbeads for fluorescent immunoassay according to claim 2, the step of adding an amino group to the surface of the porous microbead and the porous microbead to which the amino group is added Since the method includes a step of impregnating a fluorescent solution with a fluorescent solution and a step of washing the fluorescent-stained porous microbeads, it is possible to easily manufacture fluorescent microbeads with a high fluorescence yield.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 抗体を結合した蛍光色素を含有する蛍光
マイクロビーズ及び抗体を結合した磁性体標識体により
検体中の抗原を捕捉し、これら蛍光マイクロビーズと磁
性体標識体と検体とからなる反応複合体にレーザ光を照
射し、該検体から発生する蛍光を検出する免疫測定法に
用いる蛍光マイクロビーズであって、多孔質マイクロビ
ーズの表面にアミノ基を付加したことを特徴とする蛍光
免疫測定用蛍光マイクロビーズ。
1. A reaction consisting of fluorescent microbeads containing a fluorescent dye bound to an antibody and a magnetic substance-labeled substance bound to an antibody to capture an antigen in a specimen, and comprising the fluorescent microbeads, the magnetic substance-labeled substance and the specimen. A fluorescent immunobead for use in an immunoassay for irradiating a complex with laser light to detect fluorescence emitted from the specimen, characterized in that an amino group is added to the surface of the porous microbead. Fluorescent micro beads.
【請求項2】 多孔質マイクロビーズの表面にアミノ基
を付加する工程と、該アミノ基が付加された多孔質マイ
クロビーズを蛍光溶液に含浸する工程と、蛍光染色され
た多孔質マイクロビーズを洗浄する工程とを備えたこと
を特徴とする請求項1記載の蛍光免疫測定用蛍光マイク
ロビーズの製造方法。
2. A step of adding an amino group to the surface of the porous microbeads, a step of impregnating the porous microbeads to which the amino group has been added with a fluorescent solution, and washing the fluorescent-stained porous microbeads. The method for producing fluorescent microbeads for fluorescent immunoassay according to claim 1, further comprising:
JP8764293A 1993-04-14 1993-04-14 Fluorescent microbead for fluorescent immunoassay and its manufacture Pending JPH06300763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8764293A JPH06300763A (en) 1993-04-14 1993-04-14 Fluorescent microbead for fluorescent immunoassay and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8764293A JPH06300763A (en) 1993-04-14 1993-04-14 Fluorescent microbead for fluorescent immunoassay and its manufacture

Publications (1)

Publication Number Publication Date
JPH06300763A true JPH06300763A (en) 1994-10-28

Family

ID=13920642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8764293A Pending JPH06300763A (en) 1993-04-14 1993-04-14 Fluorescent microbead for fluorescent immunoassay and its manufacture

Country Status (1)

Country Link
JP (1) JPH06300763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504528A (en) * 2004-06-23 2008-02-14 ザ、ユニバーシティ、オブ、テキサス、システム Methods and compositions for detection of biological molecules using two-particle complexes
JP2008032411A (en) * 2006-07-26 2008-02-14 Jsr Corp Magnetic particle, its manufacturing method and probe bonded particle
JP2009258034A (en) * 2008-04-21 2009-11-05 Fujifilm Corp Method and apparatus for detecting radiation light from surface plasmon, sample cell for detecting radiation light from surface plasmon and kit
JP2015155813A (en) * 2014-02-20 2015-08-27 国立大学法人東京工業大学 Fluorescent polymer fine particle and fluorescent marker set

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504528A (en) * 2004-06-23 2008-02-14 ザ、ユニバーシティ、オブ、テキサス、システム Methods and compositions for detection of biological molecules using two-particle complexes
US8871917B2 (en) 2004-06-23 2014-10-28 Board Of Regents Of The University Of Texas System Compositions for the detection of biological molecules using a two particle complex
US9442117B2 (en) 2004-06-23 2016-09-13 Board Of Regents Of The University Of Texas System Method for the detection of biological molecules using a two particle complex
JP2008032411A (en) * 2006-07-26 2008-02-14 Jsr Corp Magnetic particle, its manufacturing method and probe bonded particle
JP2009258034A (en) * 2008-04-21 2009-11-05 Fujifilm Corp Method and apparatus for detecting radiation light from surface plasmon, sample cell for detecting radiation light from surface plasmon and kit
JP2015155813A (en) * 2014-02-20 2015-08-27 国立大学法人東京工業大学 Fluorescent polymer fine particle and fluorescent marker set

Similar Documents

Publication Publication Date Title
US5716855A (en) Fluorescent latex containing at least two fluorochromes, process for producing it and application thereof
JP2003504506A (en) Production and use of luminescent microparticles and nanoparticles
JP6148033B2 (en) Cellulose microparticles containing fluorescent dye compounds
Garcia-Cruz et al. Molecularly imprinted nanoparticles-based assay (MINA)–detection of leukotrienes and insulin
CN110736737A (en) microsphere composition for chemiluminescence detection and application thereof
EP3054283B1 (en) Method for detecting target substance
CN112240929A (en) Donor particle for homogeneous phase chemiluminescence analysis and application thereof
JPWO2005023961A1 (en) New fluorescent fine particles
JP6865813B2 (en) Hydrophilic colored cellulose fine particles
CN106519150B (en) A kind of preparation method of fluorescence polarization fluorescence magnetic molecular engram sensor
JPH06300763A (en) Fluorescent microbead for fluorescent immunoassay and its manufacture
CN1265197C (en) Beta-diketone-trivalent europium complex nano fluorescent probe, its preparation and use thereof
CN116380883B (en) Photosensitive microsphere for photoexcitation chemiluminescence detection
Qin et al. A boronate affinity MIP-based resonance light scattering sensor for sensitive detection of glycoproteins
CN110736738A (en) microsphere composition for chemiluminescence detection and application thereof
Shao et al. Preparation of fluorescence-encoded microbeads with large encoding capacities and application of suspension array technology
Chehreghanianzabi et al. Study of polyethylene glycol-fluorophore complex formation by fluorescence correlation spectroscopy
Dinga et al. High brightness red emitting polymer beads for immunoassays: Comparison between trifluoroacetylacetonates of Europium
WO2023219139A1 (en) Analysis method and analysis device employing measurement based on polarization anisotropy
CN112240928A (en) Homogeneous phase chemiluminescence analysis method and application thereof
WO2022259989A1 (en) Polarized light-emitting particles for specimen inspection
CN112240930A (en) Homogeneous phase chemiluminescence analysis method and application thereof
CN112114131A (en) Homogeneous phase chemiluminescence detection method and application thereof
EP4276446A1 (en) Analysis method and analysis apparatus each employing measurement based on polarization anisotropy
JP2023168250A (en) Analysis method and analyzer by measurement based on polarization anisotropy