JPH06300684A - Quantitative method for spectrochemical analysis - Google Patents

Quantitative method for spectrochemical analysis

Info

Publication number
JPH06300684A
JPH06300684A JP11404793A JP11404793A JPH06300684A JP H06300684 A JPH06300684 A JP H06300684A JP 11404793 A JP11404793 A JP 11404793A JP 11404793 A JP11404793 A JP 11404793A JP H06300684 A JPH06300684 A JP H06300684A
Authority
JP
Japan
Prior art keywords
sum
absorbance
density
concentration
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11404793A
Other languages
Japanese (ja)
Other versions
JP2939848B2 (en
Inventor
Masayuki Adachi
正之 足立
Ko Inoue
香 井上
Yutaka Yamagishi
豊 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP11404793A priority Critical patent/JP2939848B2/en
Publication of JPH06300684A publication Critical patent/JPH06300684A/en
Application granted granted Critical
Publication of JP2939848B2 publication Critical patent/JP2939848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately quantitatively calculate absorbance against an absorption not proportional to density by obtaining as calibration data relationship between the density and an absorbance sum, estimating the sum of components to be measured, and using the relationship between the density and the sum. CONSTITUTION:As calibration data, an absorption spectrum, density and an absorbance sum regarding a certain component are prepared. Then, the spectrum is calculated with a calibration matrix by a method of main component analysis PCR or partial minimum squaring method PLS by using the sum, and a quantity matrix is formed. On the other hand, relationship between the absorbance sum and the density is obtained by executing a nonlinear curve fitting process, and a relation curve between the sum and the density is obtained. Thereafter, an absorbance sum of a component to be measured is estimated from the quantity matrix and a density unknown spectrum obtained separately. The sum obtained by the estimation is substituted for a quartic equation, and an estimated density at this time is obtained. The absorption in which the absorbance is not proportional to the density is accurately quantitated by using the sum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線吸収スペクトル
を用いた定量方法に関し、特に、ランバートベールの法
則に従わない吸収、つまり、吸光度と濃度とが比例関係
にない吸収に対して定量演算を精度よく行う方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantification method using an infrared absorption spectrum, and more particularly, to a quantification calculation for absorption that does not follow Lambert-Beer's law, that is, absorption in which absorbance and concentration are not in a proportional relationship. It relates to a method of performing with high accuracy.

【0002】[0002]

【従来の技術】例えばCO(一酸化炭素)のようにピー
ク形状の鋭い吸収を持つ成分は、装置の分解能が低い場
合、その装置の分解能に起因して非線型な吸収を持つ。
例えば図6は、2373ppmのCOの吸収スペクトル
を、濃度を7分割、つまり、339ppmきざみ(33
9,678,1356,1695,2034,2373
ppm)で表したものであるが、面積は7等分されてな
い。
2. Description of the Related Art A component having a sharp peak shape, such as CO (carbon monoxide), has a non-linear absorption due to the resolution of the device when the resolution of the device is low.
For example, in FIG. 6, the CO absorption spectrum of 2373 ppm is divided into seven concentrations, that is, 339 ppm steps (33
9,678,1356,1695,2034,2373
ppm), but the area is not divided into seven equal parts.

【0003】ところで、本願出願人は、平成2年10月
13日付けにて、「分光分析における多成分定量方法」
を特許出願している〔特願平2−274204号(特開
平4−148830号)〕。この特許出願は、試料に対
して例えば赤外光を照射したときに得られる赤外線吸収
スペクトルにおいて、複数の成分の吸収に対する局所的
ピークと局所的ベースの周波数点を予め定めておき、そ
れらピーク、ベースの吸光度の差から相対吸光度を求
め、次いで、これらの相対吸光度を加算して得られる相
対吸光度の和を用いて成分スペクトルを求め、この成分
スペクトルと各成分についての参照スペクトルとに基づ
いて、前記複数の成分を個別に分析するようにしたもの
で、この定量方法によれば、ノイズおよび成分どうしの
干渉影響を受けることなく、正確に定量できる。
By the way, the applicant of the present application filed “October 13, 1990,“ Multi-component quantification method in spectroscopic analysis ”.
(Japanese Patent Application No. 2-274204 (JP-A-4-148830)). This patent application, in the infrared absorption spectrum obtained when the sample is irradiated with infrared light, for example, the local peak and the frequency point of the local base for the absorption of a plurality of components are determined in advance, Obtain the relative absorbance from the difference in the absorbance of the base, then determine the component spectrum using the sum of the relative absorbance obtained by adding these relative absorbance, based on this component spectrum and the reference spectrum for each component, The plurality of components are individually analyzed. According to this quantification method, accurate quantification can be performed without being affected by noise and interference between the components.

【0004】ここで、吸光度和とは、例えば図2に示す
ような吸収スペクトルがあった場合、予め定めた複数の
波数点における吸光度の総和をとったものである。すな
わち、スペクトルの各点における値が同図中に示すよう
な場合、このスペクトルのある領域における吸光度は、
1.89(=0.08+0.2+0.4+0.5+0.
39+0.15+0.1+0.07)となるのである。
Here, the sum of absorbances is the sum of the absorbances at a plurality of predetermined wave number points when there is an absorption spectrum as shown in FIG. 2, for example. That is, when the value at each point of the spectrum is as shown in the figure, the absorbance in a certain region of this spectrum is
1.89 (= 0.08 + 0.2 + 0.4 + 0.5 + 0.
39 + 0.15 + 0.1 + 0.07).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記先
願に係る定量方法は、吸収がランバートベールの法則に
従うものとして、つまり、吸光度は濃度に比例すること
を前提としているため、これをそのまま非線型な吸収に
適用すると矛盾を生じ、定量精度が悪くなったり、成分
間の干渉を生じたりすることがある。
However, the quantification method according to the above-mentioned prior application is based on the assumption that the absorption follows Lambert-Beer's law, that is, the absorbance is proportional to the concentration. When applied to various absorptions, a contradiction may occur, resulting in poor quantification accuracy and interference between components.

【0006】これに対し、従来からの主成分分析(Prin
cipal Component Regression、以下、PCRという)や
部分最小二乗法(Partial Least Square、以下、PLS
という)といったアルゴリズムを用い、スペクトルと非
線型な濃度とを関連付けても濃度推定を行うことができ
る。
In contrast, the conventional principal component analysis (Prin
cipal Component Regression (hereinafter referred to as PCR) or Partial Least Square (hereinafter referred to as PLS)
It is also possible to estimate the concentration by associating the spectrum with the non-linear concentration using an algorithm such as ".

【0007】すなわち、図7に示すように、リファレン
ススペクトルと等分割(例えば7分割)の濃度とを、P
CRまたはPLSの手法により校正マトリックスを求
め、濃度未知のサンプルスペクトルに対してこの計算結
果を用いることにより濃度を推定するのである。
That is, as shown in FIG. 7, the reference spectrum and the equally divided (for example, 7 divided) concentration are expressed as P
The calibration matrix is obtained by the CR or PLS method, and the concentration is estimated by using the calculation result for the sample spectrum of unknown concentration.

【0008】しかしながら、この従来の分光分析におけ
る定量方法では、誤差が多く、連続測定時においてはノ
イズが増加するといった欠点がある。
However, this conventional quantitative analysis method has a drawback in that there are many errors and noise increases during continuous measurement.

【0009】つまり、吸光度が濃度に比例しない吸収に
対して、スペクトルと濃度とを用いて校正するといった
従来の定量方法では、吸収が非線型になるにつれて干渉
が増えたり、ノイズが増えたりするといった欠点があっ
たのである。
That is, in the conventional quantification method in which the absorbance is not proportional to the concentration and is calibrated using the spectrum and the concentration, interference increases and noise increases as the absorption becomes nonlinear. There was a flaw.

【0010】本発明は、上述の事柄に留意してなされた
もので、その目的は、吸光度が濃度に比例しない吸収に
対して精度よく定量演算することができる分光分析にお
ける定量方法(以下、単に定量方法という)を提供する
ことにある。
The present invention has been made in view of the above matters, and an object thereof is a quantitative method in a spectroscopic analysis (hereinafter, simply referred to as a quantitative method for quantitatively calculating absorption whose absorbance is not proportional to concentration). Quantitative method).

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る定量方法は、校正用データとして、あ
る成分に関する複数の吸収スペクトル、それらに対応す
る濃度および吸光度和を用意し、前記吸収スペクトルと
吸光度和とを用いて定量用行列を作成する一方、前記吸
光度和と濃度とを非線型カーブフィット処理を行って両
者の関係を求めておき、前記定量用行列と濃度未知スペ
クトルとから測定対象成分の吸光度和を推定し、この推
定によって得られた吸光度和を、前記吸光度和と濃度と
の関係を用いることにより、測定対象成分の濃度を推定
するようにしている。
In order to achieve the above object, the quantification method according to the present invention provides a plurality of absorption spectra for a certain component, the corresponding concentrations and the sum of absorbances as calibration data, and While creating a quantification matrix using the absorption spectrum and the absorbance sum, the relationship between the absorbance sum and the concentration is subjected to a non-linear curve fitting process in advance, from the quantification matrix and the concentration unknown spectrum. The sum of the absorbances of the components to be measured is estimated, and the sum of the absorbances obtained by this estimation is used to estimate the concentration of the components to be measured by using the relationship between the sum of the absorbances and the concentration.

【0012】[0012]

【作用】スペクトルが濃度変化に対して相似形に変化し
ていれば、スペクトルとそれ自身の吸光度和(面積)と
は比例している。従って、前記PCRやPLSの校正段
階に線型な情報が入力できる。例えば前記図6に示した
COのように相似形が無い場合でも、濃度値を用いるよ
り吸光度和を用いた方が線型性ははるかに高くなる。従
って、本発明によれば、吸光度と濃度とが比例しない吸
収に対して精度よく定量演算することができる。
If the spectrum changes in a similar manner to the change in concentration, the spectrum and its own sum of absorbance (area) are proportional. Therefore, linear information can be input at the PCR or PLS calibration stage. For example, even when there is no similar shape like CO shown in FIG. 6, the linearity is much higher when the sum of absorbance is used than when the concentration value is used. Therefore, according to the present invention, it is possible to accurately perform a quantitative calculation for absorption in which the absorbance and the concentration are not proportional.

【0013】[0013]

【実施例】以下、本発明の実施例を、図面を参照しなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明に係る定量方法の一例を示
すフローチャートである。この図1の説明に入る前に、
本発明方法で用いるデータについて説明する。校正用デ
ータとして、図2に示すようなある成分(例えばCO)
に関するリファレンススペクトル(吸収スペクトル)
と、下記表1に示すような等分割された濃度と、下記表
2に示すような吸光度和を用意する。ここで、吸光度和
は、濃度と異なり、非線型である。
FIG. 1 is a flow chart showing an example of the quantification method according to the present invention. Before going into the explanation of FIG.
The data used in the method of the present invention will be described. As a calibration data, a certain component (eg CO) as shown in FIG.
Reference spectrum (absorption spectrum)
Then, the equally divided concentrations shown in Table 1 below and the sum of absorbances shown in Table 2 below are prepared. Here, the sum of absorbance is different from the concentration and is non-linear.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】次に、図1に基づいて本発明に係る定量方
法を説明すると、この図1のフローチャートに示すよう
に、まず、校正段階では、 ステップ1:前記吸収スペクトルと吸光度和を用いて、
PCRまたはPLSの手法により校正マトリックス計算
を行い、定量用行列を作成する。 ステップ2:一方、前記吸光度和と濃度とを非線型カー
ブフィット処理を行って両者の関係を求め、図3に示す
ような吸光度和と濃度との関係曲線を得る。この関係曲
線は、この実施例においては、前記表1および表2に示
すデータから、例えば次のような4次式で表される。す
なわち、濃度(横軸)をy、吸光度和をxとするとき、 y=1.74×10-64 +2.49×102 3 +2.786×103 2 +1.765×102 x ……(1)
Next, the quantification method according to the present invention will be described based on FIG. 1. As shown in the flow chart of FIG. 1, first, in the calibration stage, step 1: using the absorption spectrum and the sum of absorbances,
Calibration matrix calculation is performed by the PCR or PLS method to create a quantification matrix. Step 2: On the other hand, a nonlinear curve fitting process is performed on the sum of absorbance and the concentration to obtain the relationship between the two, and a relationship curve between the sum of absorbance and the concentration as shown in FIG. 3 is obtained. In this embodiment, this relational curve is expressed by the following quartic equation from the data shown in Tables 1 and 2 above. That is, when the concentration (horizontal axis) is y and the total absorbance is x, y = 1.74 × 10 −6 x 4 + 2.49 × 10 2 x 3 + 2.786 × 10 3 x 2 + 1.765 × 10 2 x …… (1)

【0018】次いで、推定段階では、 ステップ3:前記定量用行列と別途求めておいた濃度未
知スペクトルとから測定対象成分の吸光度和を推定す
る。この実施例では、前記推定吸光度和が例えば0.7
とする。 ステップ4:前記推定によって得られた吸光度和、すな
わち、x=0.7を、前記式(1)で表される4次式に
代入することにより、yの値、すなわち、このときの推
定濃度は、1574ppmとなる。
Next, in the estimation step, step 3: the sum of absorbances of the components to be measured is estimated from the quantification matrix and the unknown concentration spectrum obtained separately. In this embodiment, the estimated absorbance sum is, for example, 0.7.
And Step 4: Substituting the sum of absorbances obtained by the above estimation, that is, x = 0.7 into the quartic equation represented by the above equation (1) to obtain the value of y, that is, the estimated concentration at this time. Is 1574 ppm.

【0019】そして、校正段階におけるアルゴリズムと
してPLSを用い、本発明に係る定量方法と図7に示し
た従来の定量方法とにおける濃度推定能力を比較したと
ころ、図4(A)に示す本発明方法の濃度推定能力は、
同図(B)に示す従来方法のそれと殆ど同じで、両方と
も満足できる濃度推定能力があることが判った。
When PLS was used as an algorithm in the calibration stage and the concentration estimation ability of the quantification method according to the present invention and the conventional quantification method shown in FIG. 7 were compared, the method of the present invention shown in FIG. 4 (A). The concentration estimation ability of
It was found that they are almost the same as those of the conventional method shown in FIG. 6B, and both have satisfactory density estimation ability.

【0020】また、100個のN2 (窒素ガス)スペク
トル(吸収は全く無し)を定量したときのゼロノイズに
ついて、本発明に係る定量方法と従来方法とを比べたと
ころ、図5に示すような結果が得られた。すなわち、こ
の図において、曲線Aは本発明方法によるゼロノイズ
を、曲線Bは従来方法によるゼロノイズをそれぞれ示し
ている。それぞれ従来法によるゼロノイズのRMS(実
効値)が9.95ppmであるのに対し、本発明方法の
それは0.29ppmと大きく減少しており、本発明に
よれば偏差が小さいことがとが判る。
As to zero noise when 100 N 2 (nitrogen gas) spectra (absence of absorption at all) were quantified, the quantification method according to the present invention was compared with the conventional method, as shown in FIG. Results were obtained. That is, in this figure, a curve A shows zero noise by the method of the present invention, and a curve B shows zero noise by the conventional method. The RMS (effective value) of zero noise according to the conventional method is 9.95 ppm, respectively, whereas that of the method according to the present invention is greatly reduced to 0.29 ppm, and it can be seen that the deviation is small according to the present invention.

【0021】本発明は、上述の実施例に限られるもので
はなく、前記吸光度和と濃度との関連付けは、上記4次
式などの多項式の他に、例えば指数関数によって表すこ
ともできる。
The present invention is not limited to the above-mentioned embodiments, and the association between the sum of the absorbance and the concentration can be expressed by, for example, an exponential function in addition to the polynomial such as the quartic expression.

【0022】また、本発明方法の前処理として、すでに
説明した「分光分析における多成分定量方法」(特願平
2−274204号)を実施することにより、より精度
の高い吸光度和の相対値を得ることができる。
Further, as a pretreatment of the method of the present invention, the "multi-component quantification method in spectroscopic analysis" (Japanese Patent Application No. 2-274204) described above is carried out to obtain a more accurate relative value of the sum of absorbances. Obtainable.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
吸収がランバートベールの法則に従わない場合に、PC
RやPLSなどのアルゴリズムを適用しても誤差の少な
い定量を行うことができる。また、これらのアルゴリズ
ムの高い干渉補正能力を損なうこともない。特に、分解
能の低いスペクトルにおいては、吸収の非線型性が増加
するので、そのような場合、大きな効果を発揮する。
As described above, according to the present invention,
PC if absorption does not follow Lambert-Beer's law
Even if an algorithm such as R or PLS is applied, quantification with a small error can be performed. Moreover, the high interference correction capability of these algorithms is not impaired. In particular, in a spectrum with low resolution, the nonlinearity of absorption increases, and in such a case, a great effect is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る定量方法の一例を説明するための
フローチャートである。
FIG. 1 is a flow chart for explaining an example of a quantification method according to the present invention.

【図2】吸収スペクトルの一例を示す図である。FIG. 2 is a diagram showing an example of an absorption spectrum.

【図3】吸光度和と濃度との関係を示す図である。FIG. 3 is a diagram showing a relationship between sum of absorbance and concentration.

【図4】本発明に係る定量方法と従来方法とにおける濃
度推定能力を示す図である。
FIG. 4 is a diagram showing the concentration estimation ability in the quantification method according to the present invention and the conventional method.

【図5】本発明に係る定量方法と従来方法とにおけるゼ
ロノイズの大きさを示した図である。
FIG. 5 is a diagram showing the magnitude of zero noise in the quantification method according to the present invention and the conventional method.

【図6】COの吸収スペクトルの一例を示す図である。FIG. 6 is a diagram showing an example of an absorption spectrum of CO.

【図7】従来の定量方法を説明するためのフローチャー
トである。
FIG. 7 is a flowchart for explaining a conventional quantification method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 校正用データとして、ある成分に関する
複数の吸収スペクトル、それらに対応する濃度および吸
光度和を用意し、前記吸収スペクトルと吸光度和とを用
いて定量用行列を作成する一方、前記吸光度和と濃度と
を非線型カーブフィット処理を行って両者の関係を求め
ておき、前記定量用行列と濃度未知スペクトルとから測
定対象成分の吸光度和を推定し、この推定によって得ら
れた吸光度和を、前記吸光度和と濃度との関係を用いる
ことにより、測定対象成分の濃度を推定するようにした
ことを特徴とする分光分析における定量方法。
1. As calibration data, a plurality of absorption spectra for a certain component and the corresponding concentrations and absorbance sums are prepared, and a quantification matrix is created using the absorption spectra and the absorbance sums, while the absorbance The sum and the concentration are subjected to a non-linear curve fitting process to obtain the relationship between them, and the sum of the absorbances of the components to be measured is estimated from the quantification matrix and the concentration unknown spectrum, and the sum of the absorbances obtained by this estimation is calculated. A quantitative method in spectroscopic analysis, characterized in that the concentration of the component to be measured is estimated by using the relationship between the sum of the absorbance and the concentration.
JP11404793A 1993-04-15 1993-04-15 Quantitative method in spectroscopic analysis Expired - Lifetime JP2939848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11404793A JP2939848B2 (en) 1993-04-15 1993-04-15 Quantitative method in spectroscopic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11404793A JP2939848B2 (en) 1993-04-15 1993-04-15 Quantitative method in spectroscopic analysis

Publications (2)

Publication Number Publication Date
JPH06300684A true JPH06300684A (en) 1994-10-28
JP2939848B2 JP2939848B2 (en) 1999-08-25

Family

ID=14627709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11404793A Expired - Lifetime JP2939848B2 (en) 1993-04-15 1993-04-15 Quantitative method in spectroscopic analysis

Country Status (1)

Country Link
JP (1) JP2939848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977194B1 (en) * 2008-07-07 2010-08-20 주식회사 실트론 Method for the analysis of impurities using secondary ion mass spectroscopy
CN103808669A (en) * 2014-01-26 2014-05-21 沈阳农业大学 Rapid nondestructive apple wormhole testing method based on hyperspectral imaging technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977194B1 (en) * 2008-07-07 2010-08-20 주식회사 실트론 Method for the analysis of impurities using secondary ion mass spectroscopy
CN103808669A (en) * 2014-01-26 2014-05-21 沈阳农业大学 Rapid nondestructive apple wormhole testing method based on hyperspectral imaging technology

Also Published As

Publication number Publication date
JP2939848B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US5308982A (en) Method and apparatus for comparing spectra
US5379238A (en) Signal processing method and apparatus
US5459677A (en) Calibration transfer for analytical instruments
Lyulin Determination of spectral line parameters from several absorption spectra with the multispectrum fitting computer code
JPH04230834A (en) Analyzer and calibrating method thereof
JPH0510936A (en) Apparatus for absorption analysis of chromatograph
Mark Application of an improved procedure for testing the linearity of analytical methods to pharmaceutical analysis
US5305076A (en) Quantitative analytical method and apparatus for spectrometric analysis using wave number data points
CN116202975A (en) Water parameter prediction method, storage medium and terminal equipment
CN112255186A (en) Method and system for calculating integral absorbance of non-uniform flow field
JP3762729B2 (en) Multi-component analyzer
JP2939848B2 (en) Quantitative method in spectroscopic analysis
JP3250113B2 (en) How to make a calibration curve in near infrared analysis
JP2018504709A (en) Automatic quantitative regression
JP3461284B2 (en) How to make a calibration curve for an infrared gas analyzer
JP3249253B2 (en) Quantitative calculation method using spectrum and apparatus therefor
JP4233423B2 (en) Quantitative method and spectrum measuring apparatus
JP3004748B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JP2649667B2 (en) Multi-component analysis method in spectroscopic analysis
Zenitani et al. An Analysis of the Iterative Method for Deconvolving Spectroscopic Data Containing a Random Noise
JP2003014628A (en) Calibration method for quantitative analysis
Saitou et al. Data processing in X-ray fluorescence spectroscopy—I. A smoothing method using B-splines
JPH0727703A (en) Quantitative analysis of multiple component substance
No et al. Avoiding some common mistakes in straight line regression. Part 1
JP2003035663A (en) Creation method for working curve of absorption spectrum

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14

EXPY Cancellation because of completion of term