JPH06299212A - Production of oxidation resistant palladium powder - Google Patents

Production of oxidation resistant palladium powder

Info

Publication number
JPH06299212A
JPH06299212A JP5111091A JP11109193A JPH06299212A JP H06299212 A JPH06299212 A JP H06299212A JP 5111091 A JP5111091 A JP 5111091A JP 11109193 A JP11109193 A JP 11109193A JP H06299212 A JPH06299212 A JP H06299212A
Authority
JP
Japan
Prior art keywords
palladium
palladium powder
powder
nonionic surfactant
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5111091A
Other languages
Japanese (ja)
Inventor
Masaharu Ishiwatari
正治 石渡
Hiroaki Otaki
弘明 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5111091A priority Critical patent/JPH06299212A/en
Publication of JPH06299212A publication Critical patent/JPH06299212A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce an oxidation resistant palladium powder by adding a nonionic surfactant at the time of adding the reducing agent in the production of the metallic palladium powder which is performed by reducing palladium ion in its solution. CONSTITUTION:The palladium powder is produced by adding a nonionic surfactant to a solution contg. palladium ion, thereafter adding a reducing agent to precipitate metallic palladium, separating the solid material from the liquid phase, washing the recovered solid material with water and then drying the material to produce the objective palladium powder. The palladium powder thus produced is hardly oxidized and shows only a little volume change even at the time of sintering it at a high temp. Further the palladium powder, the particle size and shape of which are controllable by adding the nonionic surfactant and which has such an extent of oxidation resistance as not to cause breakage of the electrode, etc., at the time of using the palladium powder as the electrode material, can be produced easily and in a high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子回路の膜導体や電
子部品の電極等に利用される耐酸化性に優れた導電性パ
ラジウム粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive palladium powder having excellent oxidation resistance, which is used for a film conductor of an electronic circuit, an electrode of an electronic component and the like.

【0002】[0002]

【従来技術とその課題】積層コンデンサーなどでは、パ
ラジウム粉末の導電性ペーストを用いて内部電極を形成
している。例えば、チタン酸バリウム製積層コンデンサ
ー等は、チタン酸バリウム絶縁層の間にパラジウム粉末
を含む導電性ペーストを介在した積層体を形成し、該積
層体を一体に焼成することにより内部電極を形成したコ
ンデンサーを製造している。従来、このようなパラジウ
ム粉末を製造する方法として、パラジウムイオンを含む
水溶液に水酸化ナトリウムを加えてpHを調整し、ヒド
ラジン、ギ酸、水素化ホウ素ナトリウムなどの還元剤を
添加し、パラジウムイオンを還元して金属パラジウムと
して回収する方法が従来知られているが、この方法で得
られるパラジウム粉末は粒径が不均一であり、また粒子
形状も不規則であるため、この欠点を解消するために、
原料のパラジウムイオン源として、テトラアンミンパラ
ジウム(II)塩を用い、還元剤としてヒドラジン化合物を
用いる製造方法も知られている(特開平3-277706 号公
報)。
2. Description of the Related Art In multilayer capacitors and the like, internal electrodes are formed by using a conductive paste of palladium powder. For example, in a barium titanate multilayer capacitor or the like, a laminated body in which a conductive paste containing palladium powder is interposed between barium titanate insulating layers is formed, and the laminated body is integrally fired to form an internal electrode. Manufactures capacitors. Conventionally, as a method for producing such a palladium powder, sodium hydroxide is added to an aqueous solution containing palladium ions to adjust the pH, and a reducing agent such as hydrazine, formic acid or sodium borohydride is added to reduce the palladium ions. A method of recovering as metallic palladium is conventionally known, but the palladium powder obtained by this method has a non-uniform particle size and an irregular particle shape, in order to eliminate this drawback,
There is also known a production method in which a tetraamminepalladium (II) salt is used as a raw material palladium ion source and a hydrazine compound is used as a reducing agent (JP-A-3-277706).

【0003】[0003]

【発明の解決課題】しかし、上記方法によって製造され
るパラジウム粉末は何れも酸化し易く、コンデンサーの
電極切れや層剥離を生じる問題がある。例えば、チタン
酸バリウム製コンデンサーは、チタン酸バリウムの絶縁
層の間に導電性パラジウムペーストを挟んだ積層体を1
200〜1400℃に焼成して形成されるが、この焼成
時にパラジウム粉末は600℃付近で酸化され酸化パラ
ジウムになり、粒子の体積が約60%程度膨脹する。こ
の酸化パラジウムは焼成温度が850℃以上に上昇する
と熱分解して金属パラジウムに還元され、粒子の体積が
収縮して元の大きさに戻る。焼成時のこのような体積膨
脹と収縮によって電極切れや層間剥離が引き起こされ
る。上記電極切れや層間剥離を防止する方法として、パ
ラジウム粉末の表面を珪素やAl等の酸化物または水酸
化物で被覆することが知られている(特開昭63-216204
号、特開平4-43504 号)が、この方法によっても電極切
れなどを充分に防止できないのが現状である。本発明は
従来の製造方法における上記課題を解決した製造方法を
提供するものであって、本発明によれば耐酸化性に優れ
たパラジウム粉末が得られる。
However, any of the palladium powders produced by the above method is apt to be oxidized, and there is a problem that the electrodes of the capacitor are broken or the layers are separated. For example, a barium titanate capacitor has a laminated body in which a conductive palladium paste is sandwiched between insulating layers of barium titanate.
It is formed by firing at 200 to 1400 ° C. During this firing, the palladium powder is oxidized at around 600 ° C to become palladium oxide, and the volume of the particles expands by about 60%. When the firing temperature rises to 850 ° C. or higher, this palladium oxide is thermally decomposed and reduced to metallic palladium, and the volume of the particles shrinks to return to the original size. Such volume expansion and contraction during firing cause electrode breakage and delamination. As a method for preventing the above electrode breakage and delamination, it is known to coat the surface of palladium powder with an oxide or hydroxide of silicon, Al or the like (Japanese Patent Laid-Open No. 63-216204).
However, the current situation is that even in this method, electrode breakage and the like cannot be sufficiently prevented. The present invention provides a manufacturing method that solves the above problems in the conventional manufacturing method, and according to the present invention, a palladium powder having excellent oxidation resistance can be obtained.

【0004】[0004]

【課題の解決手段】本発明のパラジウム粉末の製造方法
は、溶液中のパラジウムイオンを還元して金属パラジウ
ム粉末を得る方法において、還元剤を添加する際にノニ
オン系界面活性剤を加えることにより耐酸化性パラジウ
ム粉末を得ることを特徴とする。また本発明の製造方法
は、その好適な態様として、パラジウムイオンを含む溶
液にノニオン系界面活性剤添加した後に還元剤を加えて
金属パラジウムを沈殿させ、固液分離後、回収物を水洗
し乾燥することを特徴とする。溶液に界面活性剤を添加
して反応を制御することは常套的な手段であるが、この
界面活性剤の添加によって製造したパラジウム粉末は高
温下で焼成しても酸化され難く、体積変化が少ないこと
は従来全く知られておらず、このような検討は全くなさ
れていない。本発明は、上記電極切れなどを生じない程
度の耐酸化性を有するパラジウム粉末を、ノニオン系界
面活性剤の添加により粒径および粒形を制御することに
より容易に得られるようにしたものであって、実用性の
高い製造方法である。
A method for producing a palladium powder according to the present invention is a method for reducing a palladium ion in a solution to obtain a metal palladium powder, and by adding a nonionic surfactant when adding a reducing agent, acid resistance is improved. It is characterized by obtaining a oxidizable palladium powder. Further, the production method of the present invention, as a preferred embodiment thereof, after adding a nonionic surfactant to a solution containing palladium ions, a reducing agent is added to precipitate metallic palladium, and after solid-liquid separation, the recovered product is washed with water and dried. It is characterized by doing. It is a conventional means to control the reaction by adding a surfactant to the solution, but the palladium powder produced by adding this surfactant is hard to be oxidized even if it is fired at high temperature, and its volume change is small. This has never been known so far, and no such study has been made. The present invention is intended to easily obtain a palladium powder having such oxidation resistance that does not cause electrode breakage by controlling the particle size and particle shape by adding a nonionic surfactant. It is a highly practical manufacturing method.

【0005】[0005]

【発明の具体的な開示】以下に本発明を図示する製造法
のフローシートを参照して詳細に説明する。本発明の方
法では、パラジウム原料として、ジクロロジアミンパラ
ジウム、ジブロムジアミンパラジウムなどのハロゲン化
ジアミンパラジウムに代表されるパラジウムアンミン(I
I)塩化合物などが用いられる。ジクロロジアミンパラジ
ウムPd(NH 32 Cl2 を用いる場合を一例として
本発明を説明すると、ジクロロジアミンパラジウムと塩
化アンモニウムを含む水溶液に、アンモニア水を加えて
溶液のpHを5.5〜9、好ましくは、5.9〜6.2
に調整して、上記パラジウム化合物を溶解する。溶液の
pHが5.5未満以下であるとパラジウムが析出し、p
Hが9を上回ると得られるパラジウム粉末の粒径が1μ
m より大きくなり、電極材料として使用した場合に接触
不良を生じ易いので好ましくない。なお、塩化アンモニ
ウムに代えて硝酸アンモニウムを用いてもよい。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the flow sheet of the manufacturing method shown in the drawings. In the method of the present invention, as the palladium raw material, dichlorodiaminepalladium, palladium ammine (I
I) Salt compounds and the like are used. The present invention will be described by taking the case of using dichlorodiamine palladium Pd (NH 3 ) 2 Cl 2 as an example. To the aqueous solution containing dichlorodiamine palladium and ammonium chloride, ammonia water is added to adjust the pH of the solution to 5.5 to 9, preferably. Is 5.9 to 6.2
And the palladium compound is dissolved. If the pH of the solution is less than 5.5, palladium will precipitate and p
When H exceeds 9, the particle size of the obtained palladium powder is 1μ
Since it becomes larger than m, contact failure tends to occur when used as an electrode material, which is not preferable. Note that ammonium nitrate may be used instead of ammonium chloride.

【0006】上記パラジウム溶液にノニオン系界面活性
剤を加えた後に還元剤を加えてパラジウムイオンを金属
パラジウムに還元する。還元剤を添加した後に上記界面
活性剤を加えても効果はない。該界面活性剤を添加する
ことにより金属パラジウム沈殿の凝集が防止され、粒径
0.1〜1μm の沈殿が得られる。ノニオン系界面活性
剤以外の界面活性剤では沈殿物粒子が凝集し、本発明の
効果を得られない。ノニオン系界面活性剤としてはポリ
オキシエチレンノニルフェニルエーテル等を用いること
ができる。該界面活性剤の添加量は1 g/l〜6 g/lが好
ましい。1 g/l未満の添加量ではパラジウム粒子が凝集
し、また添加量が6 g/lを超えると1μm 以上の粒子に
なる。
After adding a nonionic surfactant to the palladium solution, a reducing agent is added to reduce palladium ions to metallic palladium. There is no effect even if the surfactant is added after adding the reducing agent. By adding the surfactant, aggregation of the metallic palladium precipitate is prevented and a precipitate having a particle size of 0.1 to 1 μm is obtained. With surfactants other than the nonionic surfactant, the precipitate particles aggregate, and the effect of the present invention cannot be obtained. As the nonionic surfactant, polyoxyethylene nonylphenyl ether or the like can be used. The amount of the surfactant added is preferably 1 g / l to 6 g / l. When the amount added is less than 1 g / l, the palladium particles aggregate, and when the amount added exceeds 6 g / l, the particles become 1 μm or more.

【0007】還元剤としてヒドラジン、硫酸ヒドラジン
などのヒドラジン化合物が常用される。ヒドラジン水溶
液はpH=6.5〜7.0が好ましい。該pHが1未満
ではパラジウム粉末の粒径が0.1μm より微細にな
り、またpH7より高いとパラジウム粉末の粒径が1μ
m より大きくなる。ヒドラジンの添加により、金属パラ
ジウムが沈殿するので、これを回収する。上記製造方法
により、平均粒径0.1〜1μm であり、形状が均一な
球状のパラジウム粉末が得られる。
As a reducing agent, hydrazine compounds such as hydrazine and hydrazine sulfate are commonly used. The pH of the hydrazine aqueous solution is preferably 6.5 to 7.0. If the pH is less than 1, the particle size of the palladium powder will be smaller than 0.1 μm, and if it is higher than pH 7, the particle size of the palladium powder will be 1 μm.
Greater than m. The addition of hydrazine precipitates metallic palladium, which is recovered. By the above production method, spherical palladium powder having an average particle diameter of 0.1 to 1 μm and a uniform shape can be obtained.

【0008】[0008]

【実施例1】ジクロロジアミンパラジウム溶液(Pd:20
g/l)に塩化アンモニウム 20 g/lとノニオン系界面活
性剤(ポリオキシエチレンノニルフェニルエーテル)3g
/lを加え1リットルの水溶液とした後、アンモニア水を加え
pH6に調整した。該パラジウム溶液を攪拌しながらp
H7に調整したヒドラジン水溶液を添加して金属パラジ
ウム沈殿を生成させ、固液分離後、洗浄乾燥して平均粒
径 0.8μm の金属パラジウム粉末を得た。このパラジウ
ム粉末を10℃/分の昇温速度で1250℃に加熱したとこ
ろ、800 ℃での酸化による重量増が12.9%であった。一
方、市販のパラジウム粉末を同一条件下で加熱したとこ
ろ、酸化による重量増は14.9%であり、本実施例のパラ
ジウム粉末は従来の粉末に比べて酸化による重量増が約
13%少なかった。
Example 1 Dichlorodiamine palladium solution (Pd: 20
g / l) ammonium chloride 20 g / l and nonionic surfactant (polyoxyethylene nonylphenyl ether) 3 g
After adding / l to make a 1 liter aqueous solution, ammonia water was added to adjust the pH to 6. While stirring the palladium solution, p
A hydrazine aqueous solution adjusted to H7 was added to generate a metal palladium precipitate, which was solid-liquid separated, washed and dried to obtain a metal palladium powder having an average particle diameter of 0.8 μm. When this palladium powder was heated to 1250 ° C. at a heating rate of 10 ° C./min, the weight increase due to oxidation at 800 ° C. was 12.9%. On the other hand, when a commercially available palladium powder was heated under the same conditions, the weight increase due to oxidation was 14.9%, and the palladium powder of this example shows a weight increase due to oxidation of about 14.9% compared to the conventional powder.
13% less.

【0009】[0009]

【発明の効果】本発明の製造方法によれば、耐酸化性に
優れたパラジウム粉末を容易に製造することができる。
また実施例に示す具体的な方法によれば、耐酸化性に優
れると共に電極材料として好適な均一な球形のパラジウ
ム粉末を高収率で得ることができる。
According to the manufacturing method of the present invention, palladium powder having excellent oxidation resistance can be easily manufactured.
Further, according to the specific method shown in the examples, it is possible to obtain a uniform spherical palladium powder which is excellent in oxidation resistance and suitable as an electrode material in a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の製造方法のフローチャート。FIG. 1 is a flowchart of a manufacturing method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶液中のパラジウムイオンを還元して金
属パラジウム粉末を得る方法において、還元剤を添加す
る際にノニオン系界面活性剤を加えて粒径を制御するこ
とにより耐酸化性パラジウム粉末を得ることを特徴とす
るパラジウム粉末の製造方法。
1. A method for obtaining a metal palladium powder by reducing palladium ions in a solution, wherein a nonionic surfactant is added at the time of adding a reducing agent to control the particle size to obtain an oxidation resistant palladium powder. A method for producing a palladium powder, which comprises:
【請求項2】 パラジウムイオンを含む溶液にノニオン
系界面活性剤添加した後に還元剤を加えて金属パラジウ
ムを沈殿させ、固液分離後、回収物を水洗し乾燥する請
求項1の製造方法。
2. The method according to claim 1, wherein a nonionic surfactant is added to a solution containing palladium ions, and then a reducing agent is added to precipitate metallic palladium. After solid-liquid separation, the recovered material is washed with water and dried.
JP5111091A 1993-04-14 1993-04-14 Production of oxidation resistant palladium powder Withdrawn JPH06299212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5111091A JPH06299212A (en) 1993-04-14 1993-04-14 Production of oxidation resistant palladium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5111091A JPH06299212A (en) 1993-04-14 1993-04-14 Production of oxidation resistant palladium powder

Publications (1)

Publication Number Publication Date
JPH06299212A true JPH06299212A (en) 1994-10-25

Family

ID=14552158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5111091A Withdrawn JPH06299212A (en) 1993-04-14 1993-04-14 Production of oxidation resistant palladium powder

Country Status (1)

Country Link
JP (1) JPH06299212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513946A (en) * 2018-10-30 2019-03-26 金川集团股份有限公司 A kind of apparatus and method preparing big partial size palladium powder
CN115889799A (en) * 2022-10-28 2023-04-04 广东微容电子科技有限公司 Preparation method of spherical nano palladium powder for high-end MLCC inner electrode slurry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109513946A (en) * 2018-10-30 2019-03-26 金川集团股份有限公司 A kind of apparatus and method preparing big partial size palladium powder
CN109513946B (en) * 2018-10-30 2020-05-15 金川集团股份有限公司 Device and method for preparing large-particle-size palladium powder
CN115889799A (en) * 2022-10-28 2023-04-04 广东微容电子科技有限公司 Preparation method of spherical nano palladium powder for high-end MLCC inner electrode slurry
CN115889799B (en) * 2022-10-28 2023-10-20 广东微容电子科技有限公司 Preparation method of spherical nano palladium powder for high-end MLCC inner electrode slurry

Similar Documents

Publication Publication Date Title
CN108602129B (en) Nickel powder, method for producing nickel powder, and internal electrode paste and electronic component using nickel powder
US7658995B2 (en) Nickel powder comprising sulfur and carbon, and production method therefor
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
KR20010061982A (en) Copper powder and process for producing copper powder
JP2554213B2 (en) Method for producing spherical nickel ultrafine powder
JPH10330801A (en) Fine copper powder and its production
US5871840A (en) Nickel powder containing a composite oxide of La and Ni and process for preparing the same
US6528166B2 (en) Nickel composite particle and production process therefor
KR0137363B1 (en) Process for producing powder material for lead perovskite ceramic
JPH06299212A (en) Production of oxidation resistant palladium powder
US5741347A (en) Method for producing copper powder
JP2000313906A (en) Nickel fine powder and its production
JPH06145727A (en) Production of spheroidal palladium powder
JPH06299211A (en) Production of oxidation resistant palladium powder
JPH08246010A (en) Production of metal powder
JP4940520B2 (en) Metal powder and manufacturing method thereof, conductive paste and multilayer ceramic electronic component
US3544434A (en) Thick film capactors for miniaturized circuitry
JPH05221637A (en) Production of cuprous oxide powder and copper powder
JP3348705B2 (en) Electrode formation method
JPH05287305A (en) Nickel powder for internal electrode of multilayered ceramic capacitor
TWI241227B (en) Nickel powder coated with titanium compound and conductive paste containing the nickel powder
JPH11263625A (en) Production of anhydrous nickel chloride
JPH04162707A (en) Material of electrode for electrolytic capacitor and manufacture thereof
JP2662003B2 (en) Manufacturing method of multilayer ceramic chip capacitor
JPH03215916A (en) Method for formation of electrode and electronic part using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704