JPH11263625A - Production of anhydrous nickel chloride - Google Patents

Production of anhydrous nickel chloride

Info

Publication number
JPH11263625A
JPH11263625A JP10069895A JP6989598A JPH11263625A JP H11263625 A JPH11263625 A JP H11263625A JP 10069895 A JP10069895 A JP 10069895A JP 6989598 A JP6989598 A JP 6989598A JP H11263625 A JPH11263625 A JP H11263625A
Authority
JP
Japan
Prior art keywords
nickel chloride
nio
water
nickel
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10069895A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tsugita
泰裕 次田
Naoki Ishiyama
直希 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10069895A priority Critical patent/JPH11263625A/en
Publication of JPH11263625A publication Critical patent/JPH11263625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing anhydrous nickel chloride appropriate as the raw material to produce a metallic nickel fine powder for electronic material by chemical vapor deposition(CVD) for reducing the vapor of a nickel salt with hydrogen gas. SOLUTION: The crystal of nickel chloride hexahydrate is heat-treated at a temp. of 160-200 deg.C. In this case, the NiO content is effectively reduced by performing the heat treatment under reduced pressure. Further, in this method, the temp. increasing rate is effectively controlled so that the water of crystallization in the nickel chloride crystal is not dissociated as water but removed as vapor. By using this means, the anhydrous nickel chloride contg. 0.1-1% NiO is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】CVD法により電子材料用の
微細なニッケル金属粉末を製造する原料に適した無水の
塩化ニッケルの製造方法に関する。
The present invention relates to a method for producing anhydrous nickel chloride suitable as a raw material for producing fine nickel metal powder for electronic materials by a CVD method.

【0002】[0002]

【従来の技術】微細なニッケル粉末の製造方法は、乾式
法と湿式法に大別される。乾式法により得られる微細な
ニッケル粉末の特徴は、結晶性が高く、比較的高温での
焼結に適しており、焼結時での収縮が少ない。他方、湿
式法によるニッケル粉末は、比較的低温で焼結が開始
し、焼結時での収縮が比較的大きいことが挙げられる。
2. Description of the Related Art Methods for producing fine nickel powder are roughly classified into a dry method and a wet method. The characteristics of the fine nickel powder obtained by the dry method are high crystallinity, suitable for sintering at a relatively high temperature, and small in shrinkage during sintering. On the other hand, sintering of the nickel powder by the wet method starts at a relatively low temperature, and shrinkage during sintering is relatively large.

【0003】乾式法の1種である塩化ニッケル蒸気を水
素還元するCVD法によるニッケル粉末は、積層セラミ
ックコンデンサー用の内部電極用に好適であり使用され
ている。積層セラミックコンデンサーは、微細ニッケル
粉末をペースト状にし、グリーンシートとして多層積層
され、高温度で焼結される。このとき雰囲気としては、
脱バインダーのために弱酸化性雰囲気が使用されてい
る。
[0003] Nickel powder obtained by CVD, which is a kind of dry method, in which nickel chloride vapor is reduced by hydrogen, is suitable and used for internal electrodes of multilayer ceramic capacitors. The multilayer ceramic capacitor is formed by laminating a fine nickel powder into a paste, multi-layered as a green sheet, and sintered at a high temperature. At this time,
A weakly oxidizing atmosphere is used for debinding.

【0004】セラミックコンデンサーの小型化と高積層
化においては、電極材料としてのニッケル粉末の要求特
性が益々厳しくなっている。特に、セラミックコンデン
サーの製造過程において、誘電体と電極材料であるニッ
ケル粉末含有ペーストを積層し、焼結する際に、粒形、
粒径、粒度分布、分散性、充填性、結晶性が焼結特性に
影響し、結果的にコンデンサーの製品歩留まりに大きく
影響することが判明している。特に、前述の製品歩留ま
りには、ニッケル粉中の異常な粗大粒子の存在が影響し
ていることが明らかなりつつある。
[0004] In the miniaturization and high lamination of ceramic capacitors, the required characteristics of nickel powder as an electrode material are becoming increasingly severe. Particularly, in the process of manufacturing a ceramic capacitor, when a dielectric and a nickel powder-containing paste that is an electrode material are laminated and sintered, the particle shape,
It has been found that the particle size, particle size distribution, dispersibility, fillability, and crystallinity affect the sintering characteristics and consequently greatly affect the product yield of the capacitor. In particular, it is becoming clear that the above-mentioned product yield is affected by the presence of abnormal coarse particles in the nickel powder.

【0005】とりわけ、発明者らは、無水の塩化ニッケ
ル蒸気を水素還元するCVD法においては、無水の塩化
ニッケル中に含有するNiOのニッケル粉中への混入
が、粗大粒子の主原因であることをSEMおよびTEM
観察により着目した。よって、このCVD法による微細
なニッケル金属粉末の製造には、原料として用いられる
無水の塩化ニッケル中のNiOの含有量を制御すること
が必要である。しかし、従来から行われている無水塩化
ニッケルの製造方法、すなわち塩化ニッケルの6水塩を
乾燥させる方法では、塩化ニッケル結晶を乾燥させる際
に塩化ニッケルが加水分解を起こし、得られた塩化ニッ
ケル中にはNiOが約4から5%以上含有されることと
なり、前述の粗大粒子の発生原因、さらには、製品歩留
まりの低下の原因となっていた。
[0005] In particular, the inventors have found that in the CVD method for reducing hydrogen of anhydrous nickel chloride by hydrogen, the incorporation of NiO contained in anhydrous nickel chloride into nickel powder is the main cause of coarse particles. SEM and TEM
Observed by observation. Therefore, to produce fine nickel metal powder by the CVD method, it is necessary to control the content of NiO in anhydrous nickel chloride used as a raw material. However, in the conventional method for producing anhydrous nickel chloride, that is, the method for drying hexahydrate of nickel chloride, nickel chloride is hydrolyzed when the nickel chloride crystal is dried, and the obtained nickel chloride Contains about 4 to 5% or more of NiO, which causes the above-described generation of coarse particles and further causes a reduction in product yield.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑み、CVD法による微細なニッケル金属粉末を製造
する際の原料に適した無水の塩化ニッケルの製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a method for producing anhydrous nickel chloride suitable as a raw material when producing fine nickel metal powder by a CVD method. I do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、塩化ニッケルの6水塩の結晶を大気圧下で、
160℃以上200℃以下の温度に加熱処理することを
特徴とする、NiOの含有率が0.1%以上1%以下で
ある無水塩化ニッケルの製造方法である。
In order to achieve the above-mentioned object, the present invention provides a method for producing hexachloride crystals of nickel chloride under atmospheric pressure.
A method for producing anhydrous nickel chloride having a NiO content of 0.1% or more and 1% or less, characterized by performing a heat treatment at a temperature of 160 ° C or more and 200 ° C or less.

【0008】さらに前記方法において、気圧を減圧して
加熱処理することによって、よりNiOの含有率を効果
的に低減できる。また、前記方法において、塩化ニッケ
ル結晶中の結晶水が水として解離しないで、蒸気として
除去される昇温速度に制御することが有効である。前記
の手段を用いることによりNiO含有率が0.1%以上
1%以下である無水塩化ニッケルを製造することができ
る。
Further, in the above method, the NiO content can be more effectively reduced by performing the heat treatment at a reduced pressure. Further, in the above method, it is effective to control the heating rate so that the water of crystallization in the nickel chloride crystal is not dissociated as water but is removed as vapor. By using the above means, it is possible to produce anhydrous nickel chloride having a NiO content of 0.1% or more and 1% or less.

【0009】[0009]

【発明の実施の形態】異常な粗大粒子の原因をSEMお
よびTEMにて調査したところ、異常な粗大粒子の大部
分は、NiOであることが判明した。したがって、異常
な粗大粒子を含まないニッケル粉を製造するためにはC
VD法において、NiOの含有率の低い無水塩化ニッケ
ルを用いることが必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The cause of abnormal coarse particles was investigated by SEM and TEM, and it was found that most of the abnormal coarse particles were NiO. Therefore, in order to produce nickel powder that does not contain abnormal coarse particles,
In the VD method, it is necessary to use anhydrous nickel chloride having a low NiO content.

【0010】積層セラミックコンデンサーは前述微細ニ
ッケル粉末をペースト状にして多層に積層して用いられ
る。このコンデンサーの積層数が200層以上の高積層
領域では、誘電体の厚みが1から2ミクロン程度とな
り、1ミクロン以上の粗大粒子が200個に1個以上の
割合で存在すると焼結時に誘電体層を粗大粒子が突き抜
けて電極間の短絡の原因となる。
The multilayer ceramic capacitor is used by laminating the above-mentioned fine nickel powder in the form of paste into a multilayer. In the high lamination region where the number of laminated layers of this capacitor is 200 or more, the thickness of the dielectric is about 1 to 2 microns, and if there is one or more coarse particles of 1 micron or more in 200, the dielectric is not sintered. Coarse particles penetrate the layer and cause a short circuit between the electrodes.

【0011】よって、粗大粒子の混入率を1/200以
下とすれば、積層セラミックコンデンサーの製造歩留ま
りを向上させることができる。また、粗大粒子の混入率
は少ない方がより好ましいが、1/400以下まで低下
させることは、現状の用途から経済的な方法ではない。
前記の目的を達成するためには、NiOの含有量を1%
以下である無水塩化ニッケルを用いることが有効である
ことが判明した。
Therefore, when the mixing ratio of the coarse particles is 1/200 or less, the production yield of the multilayer ceramic capacitor can be improved. It is more preferable that the mixing ratio of the coarse particles is small, but reducing the mixing ratio to 1/400 or less is not an economical method from the present application.
To achieve the above object, the content of NiO should be 1%
It has been found effective to use the following anhydrous nickel chloride.

【0012】このため、無水塩化ニッケルを製造する方
法において、大気圧下で160℃以上200℃以下の温
度に加熱処理すれば、無水塩化ニッケル中のNiO含有
量を1%以下とできることを見出した。さらには、加熱
処理時に減圧し、たとえば、100torrに減圧下
で、160℃以上200℃以下の温度で加熱処理するれ
ば、大気圧時の加熱に比べさらに効果的で、NiO含有
量を0.5%まで半減できることを見出した。
[0012] Therefore, it has been found that, in the method for producing anhydrous nickel chloride, the NiO content in anhydrous nickel chloride can be reduced to 1% or less by heat treatment under atmospheric pressure to a temperature of 160 ° C to 200 ° C. . Furthermore, if the pressure is reduced during the heat treatment, for example, a heat treatment at a temperature of 160 ° C. or more and 200 ° C. or less under reduced pressure of 100 torr is more effective than heating at atmospheric pressure, and the NiO content is reduced to 0.1. It was found that it could be halved to 5%.

【0013】さらには、塩化ニッケル結晶中の結晶水が
水として解離しないで、蒸気として除去される昇温速
度、具体的には、1℃/分〜20℃/分に昇温速度を制
御する方法が有効であることを見出した。たとえば、3
0℃/分以上の昇温速度とすると、結晶水が水として分
離し、極端な場合には、蒸発熱により局部的に氷を発生
する場合もあり、好ましくない。また、160℃以下の
加熱処理温度では、塩化ニッケル6水塩の結晶水の除去
は困難であり、結晶水が残留することとなる。また、2
00℃に加熱した場合には、塩化ニッケル結晶の塩化ニ
ッケルと水分が加水分解反応を起こし、NiOが生成す
ることとなる。
Further, the heating rate is controlled to a rate at which the water of crystallization in the nickel chloride crystal is removed as steam without dissociating as water, specifically, at a rate of 1 ° C./min to 20 ° C./min. The method was found to be effective. For example, 3
If the heating rate is 0 ° C./min or more, water of crystallization separates as water, and in extreme cases, ice may be locally generated by heat of evaporation, which is not preferable. At a heat treatment temperature of 160 ° C. or lower, it is difficult to remove water of crystallization of nickel chloride hexahydrate, and water of crystallization remains. Also, 2
When heated to 00 ° C., nickel chloride in the nickel chloride crystal and water cause a hydrolysis reaction to generate NiO.

【0014】NiO含有量が1%以下であれば、粗大粒
子の混入率を目標である1/200以下を達成できる。
また、NiO含有量は0.1%でほぼ粗大粒子の混入率
を1/400とすることができる。NiO含有量は、さ
らに低くなることが好ましいが、工業的には、本方法に
より経済的に最小1/400程度とすることが可能であ
る。
If the NiO content is 1% or less, the mixing ratio of coarse particles can be reduced to the target of 1/200 or less.
In addition, the NiO content is 0.1%, and the mixing ratio of substantially coarse particles can be reduced to 1/400. Although it is preferable that the NiO content be further reduced, industrially, the method can be economically reduced to about 1/400 by this method.

【0015】[0015]

【実施例】(実施例1)塩化ニッケル結晶を、大気圧下
で180の温度に加熱処理し、結晶水を除去したところ
無水塩化ニッケル中のNiO品位は、1%であった。こ
の無水塩化ニッケルを用いてCVD法により微細ニッケ
ル粉を製造したところ、SEM観察による、粒径が1μ
m以上の異常な粗大粒子の混入率は、1/200であっ
た。
EXAMPLES (Example 1) A nickel chloride crystal was heated at a temperature of 180 under atmospheric pressure to remove water of crystallization. As a result, the quality of NiO in anhydrous nickel chloride was 1%. When fine nickel powder was produced by a CVD method using this anhydrous nickel chloride, the particle size was found to be 1 μm by SEM observation.
The mixing ratio of abnormal coarse particles of m or more was 1/200.

【0016】(実施例2)塩化ニッケル結晶を、100
torrの真空下で、180℃以下の温度で加熱処理し
結晶水を除去したところ無水塩化ニッケル中のNiO品
位は、0.5%であった。この無水塩化ニッケルを用い
てCVD法により微細ニッケル粉を製造したところ、S
EM観察による、粒径が1μm以上の異常な粗大粒子の
混入率は、1/300であった。 (実施例3)実施例2において、さらに昇温速度を5℃
/分に制御し、真空度が100torr以上にならない
ように加熱したところ、得られた無水塩化ニッケル中の
NiO品位は、0.1%であった。この無水塩化ニッケ
ルを用いてCVD法により微細ニッケル粉を製造したと
ころ、SEM観察による、粒径が1μm以上の異常な粗
大粒子の混入率は、1/400であった。 (比較例1)塩化ニッケル結晶を、大気圧下で250℃
の温度に加熱処理し、結晶水を除去したところ無水塩化
ニッケル中のNiO品位は、5%であった。この無水塩
化ニッケルを用いてCVD法により微細ニッケル粉を製
造したところ、SEM観察による、粒径が1μm以上の
異常な粗大粒子の混入率は、1/100であった。
Example 2 Nickel chloride crystals were
Heat treatment was performed at a temperature of 180 ° C. or less under a vacuum of torr to remove water of crystallization. As a result, the quality of NiO in anhydrous nickel chloride was 0.5%. Fine nickel powder was produced by CVD using this anhydrous nickel chloride.
According to EM observation, the mixing ratio of abnormal coarse particles having a particle size of 1 μm or more was 1/300. (Example 3) In Example 2, the heating rate was further increased by 5 ° C.
/ Min, and heating was performed so that the degree of vacuum did not become 100 torr or more. As a result, the quality of NiO in the obtained anhydrous nickel chloride was 0.1%. When fine nickel powder was produced by CVD using this anhydrous nickel chloride, the mixing ratio of abnormal coarse particles having a particle diameter of 1 μm or more as observed by SEM was 1/400. (Comparative Example 1) A nickel chloride crystal was heated at 250 ° C under atmospheric pressure.
When the water of crystallization was removed by heating at a temperature of 5%, the NiO grade in anhydrous nickel chloride was 5%. When fine nickel powder was produced by CVD using this anhydrous nickel chloride, the mixing ratio of abnormal coarse particles having a particle size of 1 μm or more was 1/100 as observed by SEM.

【0017】(比較例2)塩化ニッケル結晶を、大気圧
下で150℃の温度に加熱処理し、結晶水を除去したと
ころ無水塩化ニッケル中のNiO品位は、0.5%であ
ったが、結晶水が一部残り、水分が4%であった。この
塩化ニッケルを用いてCVD法により微細ニッケル粉を
製造したところ、SEM観察による、粒径が1μm以上
の異常な粗大粒子の混入率は、1/150であった。
(Comparative Example 2) A nickel chloride crystal was heated at a temperature of 150 ° C. under atmospheric pressure to remove water of crystallization. As a result, the NiO quality in anhydrous nickel chloride was 0.5%. Part of the water of crystallization remained, and the water content was 4%. When fine nickel powder was produced by a CVD method using this nickel chloride, the mixing ratio of abnormally large particles having a particle diameter of 1 μm or more as observed by SEM was 1/150.

【0018】[0018]

【発明の効果】本発明の方法により、CVD法によるニ
ッケル粉末の原料として適した無水塩化ニッケルを製造
することができる。
According to the method of the present invention, anhydrous nickel chloride suitable as a raw material for nickel powder by a CVD method can be produced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩化ニッケル結晶を大気圧下で、160
℃以上200℃以下の温度に加熱処理することを特徴と
する、NiOの含有率が0.1%以上1%以下である無
水塩化ニッケルの製造方法。
1. The method of claim 1, wherein the nickel chloride crystals are heated at atmospheric pressure to 160
A method for producing anhydrous nickel chloride having a NiO content of 0.1% or more and 1% or less, characterized by performing a heat treatment at a temperature of from 200C to 200C.
【請求項2】 塩化ニッケル結晶を大気圧より減圧し、
160℃以上200℃以下の温度に加熱処理することを
特徴とする、NiOの含有率が0.1%以上1%以下で
ある無水塩化ニッケルの製造方法。
2. The pressure of nickel chloride crystal is reduced from atmospheric pressure.
A method for producing anhydrous nickel chloride having a NiO content of 0.1% or more and 1% or less, characterized by performing a heat treatment at a temperature of 160 ° C or more and 200 ° C or less.
【請求項3】 塩化ニッケル結晶中の結晶水が水として
解離しないで、蒸気として除去される昇温速度に制御す
る請求項1または2に記載のNiOの含有率が0.1%
以上1%以下である無水塩化ニッケルの製造方法。
3. The NiO content according to claim 1 or 2, wherein the temperature of the NiO crystal is controlled to a rate at which the water of crystallization in the nickel chloride crystal is not dissociated as water but removed as vapor.
A method for producing anhydrous nickel chloride of at least 1%.
JP10069895A 1998-03-19 1998-03-19 Production of anhydrous nickel chloride Pending JPH11263625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10069895A JPH11263625A (en) 1998-03-19 1998-03-19 Production of anhydrous nickel chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10069895A JPH11263625A (en) 1998-03-19 1998-03-19 Production of anhydrous nickel chloride

Publications (1)

Publication Number Publication Date
JPH11263625A true JPH11263625A (en) 1999-09-28

Family

ID=13415909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10069895A Pending JPH11263625A (en) 1998-03-19 1998-03-19 Production of anhydrous nickel chloride

Country Status (1)

Country Link
JP (1) JPH11263625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274854A (en) * 2001-03-22 2002-09-25 Kawatetsu Mining Co Ltd Method of preparing anhydrous nickel chloride
WO2003045555A3 (en) * 2001-11-26 2003-11-06 Du Pont Process for the preparation of a nickel/phosphorus ligand catalyst for olefin hydrocyanation
WO2017126442A1 (en) 2016-01-21 2017-07-27 Jx金属株式会社 Anhydrous nickel chloride and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274854A (en) * 2001-03-22 2002-09-25 Kawatetsu Mining Co Ltd Method of preparing anhydrous nickel chloride
WO2003045555A3 (en) * 2001-11-26 2003-11-06 Du Pont Process for the preparation of a nickel/phosphorus ligand catalyst for olefin hydrocyanation
US6893996B2 (en) 2001-11-26 2005-05-17 Invista North America S.A.R.L. Process for the preparation of a nickel/phosphorous ligand catalyst for olefin hydrocyanation
EP1604954A1 (en) * 2001-11-26 2005-12-14 E.I. du Pont de Nemours and Company Process for the production of anhydrous nickel chloride
CN1293944C (en) * 2001-11-26 2007-01-10 因维斯塔技术有限公司 Process for the preparation of a nickel/phosphorous ligand catalyst for olefin hydrocyanation
CN100445210C (en) * 2001-11-26 2008-12-24 因维斯塔技术有限公司 Process for the preparation of a nickel/phosphorus ligand catalyst for olefin hydrocyanation
JP2009035482A (en) * 2001-11-26 2009-02-19 Invista Technologies Sarl Process for preparation of nickel/phosphorus ligand catalyst for olefin hydrocyanation
WO2017126442A1 (en) 2016-01-21 2017-07-27 Jx金属株式会社 Anhydrous nickel chloride and method for producing same
KR20170134618A (en) 2016-01-21 2017-12-06 제이엑스금속주식회사 Anhydrous nickel chloride and method for producing same
US10882757B2 (en) 2016-01-21 2021-01-05 Jx Nippon Mining & Metals Corporation Anhydrous nickel chloride and method for producing the same

Similar Documents

Publication Publication Date Title
KR101085265B1 (en) Nickel powder and manufacturing method thereof
JP4286220B2 (en) Metallic nickel powder and method for producing the same
KR101301663B1 (en) Fine nickel powder and process for producing the same
TWI716526B (en) Nickel powder
WO2015156080A1 (en) Nickel powder
Oh et al. Fabrication and evaluation of lead-free piezoelectric ceramic LF4 thick film deposited by aerosol deposition method
TWI632005B (en) Method for producing nickel powder
KR100415491B1 (en) Nickel fine powder and process for producing the same
JPH11263625A (en) Production of anhydrous nickel chloride
JPH08246010A (en) Production of metal powder
JP2004244654A (en) Nickel powder with excellent sinterability, and its production method
Tan et al. Growth and dielectric properties of BaTiO3 thin films prepared by the microwave-hydrothermal method
JP2004161533A (en) Method for producing barium titanate particle powder
Oh et al. Formation characteristics of an aluminum hydroxide fiber by a hydrolysis of aluminum nano powder
WO2004067211A1 (en) Fine metal powder, process for producing the same, and conductive paste containing the fine metal powder
JP4394535B2 (en) Method for producing nickel powder
JP4276031B2 (en) Titanium compound-coated nickel powder and conductive paste using the same
JP2006327833A (en) Ceramic powder and method for manufacturing the same
JPH11228145A (en) Production of nickel chloride and production of nickel powder using the same
JP2001073001A (en) Production of nickel powder and nickel powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040308

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040322

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040712

A521 Written amendment

Effective date: 20040806

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041118

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees