JP2554213B2 - Method for producing spherical nickel ultrafine powder - Google Patents

Method for producing spherical nickel ultrafine powder

Info

Publication number
JP2554213B2
JP2554213B2 JP3165255A JP16525591A JP2554213B2 JP 2554213 B2 JP2554213 B2 JP 2554213B2 JP 3165255 A JP3165255 A JP 3165255A JP 16525591 A JP16525591 A JP 16525591A JP 2554213 B2 JP2554213 B2 JP 2554213B2
Authority
JP
Japan
Prior art keywords
nickel
powder
temperature
reaction
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3165255A
Other languages
Japanese (ja)
Other versions
JPH04365806A (en
Inventor
博之 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3165255A priority Critical patent/JP2554213B2/en
Publication of JPH04365806A publication Critical patent/JPH04365806A/en
Application granted granted Critical
Publication of JP2554213B2 publication Critical patent/JP2554213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品等に用いられ
る導電ペーストフィラー等に適した球状ニッケル超微粉
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical nickel ultrafine powder suitable for a conductive paste filler used in electronic parts and the like.

【0002】[0002]

【従来の技術】粒度分布が狭く、平均粒径が 0.1〜数μ
mの範囲にあり、粒子が球状の金属超微粉は、ペースト
性状が良好でかつ電子回路の導体形成に用いたとき、導
体部の微細パターン化あるいは薄層化が可能であること
から、近年このような粉末が益々要望されている。
2. Description of the Related Art The particle size distribution is narrow and the average particle size is 0.1 to several μ.
In the range of m, the ultrafine metal powder having spherical particles has a good paste property, and when used for forming a conductor of an electronic circuit, it is possible to form a fine pattern or a thin layer of the conductor. There is an increasing demand for such powders.

【0003】例えば積層セラミックスコンデンサは、セ
ラミックス誘電体と内部電極とを交互に層状に重ねて圧
着しこれを焼成して一体化させて作られるが、この場合
内部電極の材質として誘電体セラミックスが焼結する温
度で溶融せず、かつ誘電体セラミックスを分解あるいは
還元しない高い酸素分圧の雰囲気で焼成しても酸化され
ないPt、Pdなど高価な貴金属を用いる必要があり、した
がって製造されるコンデンサの大容量化及び低価格化の
妨げになっていた。
For example, a monolithic ceramic capacitor is manufactured by alternately laminating ceramic dielectrics and internal electrodes in layers, press-bonding them and firing them to integrate them. In this case, the dielectric ceramics are fired as the material of the internal electrodes. It is necessary to use expensive noble metals such as Pt and Pd that do not melt at the temperature that binds them and that does not decompose or reduce the dielectric ceramics and that does not oxidize even when fired in an atmosphere with a high oxygen partial pressure. It was an obstacle to capacity reduction and price reduction.

【0004】ところが近年、Ni等の卑金属を内部電極に
用いるべく、低酸素分圧あるいは還元雰囲気で焼成して
も半導体化せず、コンデンサ用の誘電体としても十分な
比抵抗と優れた誘電特性を有するセラミックスが開発さ
れた。しかし、また、一方では部品の小型・大容量化が
進み内部電極の薄層化・低抵抗化の必要が生じてきた。
However, in recent years, in order to use a base metal such as Ni for the internal electrode, it does not become a semiconductor even if it is fired in a low oxygen partial pressure or a reducing atmosphere, and has a sufficient specific resistance and excellent dielectric characteristics as a dielectric for a capacitor. Has been developed. On the other hand, on the other hand, the miniaturization and large capacity of components have advanced, and it has become necessary to reduce the thickness and resistance of internal electrodes.

【0005】ところで内部電極の厚みは用いるペースト
中のフィラーの粒径に制限される。すなわち、粒径より
薄くすることはできない。したがって、粒径の小さなフ
ィラー粉末を使用すればよいが、平均粒径が1μmより
小さな粉末でも、内部電極ペースト印刷時のフィラーの
充填が十分でなく密度が低いため焼成後ボイドが多くな
り、電気抵抗が高くなるという問題があり、また、焼成
時にデラミネーションが発生することが多かった。
By the way, the thickness of the internal electrode is limited by the particle diameter of the filler in the paste used. That is, it cannot be made thinner than the particle size. Therefore, it suffices to use a filler powder with a small particle size, but even with a powder having an average particle size of less than 1 μm, the filler is not sufficiently filled when the internal electrode paste is printed and the density is low, so there are many voids after firing, There is a problem that the resistance becomes high, and delamination often occurs during firing.

【0006】しかし、従来このような厳しい条件に適合
する球状のニッケル超微粉を、安価で大量に製造できな
かった。従来のニッケル超微粉の製造方法としては、特
公昭59−7765号公報に開示されている如く、金属ハロゲ
ン化物蒸気ガス流と還元ガス流とに速度差を与えるとと
もに、ガス間の比重差を利用して界面不安定領域で生ず
る核の成長により、金属の超微粉を製造する方法が知ら
れている。
However, conventionally, it has been impossible to inexpensively manufacture a large amount of spherical nickel ultrafine powder which meets such severe conditions. As a conventional method for producing ultrafine nickel powder, as disclosed in Japanese Patent Publication No. 59-7765, a velocity difference is provided between a metal halide vapor gas flow and a reducing gas flow, and a specific gravity difference between the gases is used. Then, there is known a method of producing ultrafine metal powder by growing nuclei generated in the interface unstable region.

【0007】しかしながら、この場合、ニッケル微粉は
立方体状などの晶癖を有する粒子が生成され、ペースト
フィラーとした時に充填性の問題が生じていた。また他
にニッケル微粉の製造法として、特公平2-49364号公報
に開示されている如く、ニッケルイオンを含有する水溶
液に水素化ホウ素ナトリウム等の還元剤を加え、還元析
出させる方法が知られている。
In this case, however, the fine nickel powder produced particles having a crystal habit such as a cubic shape, and when used as a paste filler, there was a problem of filling property. In addition, as a method for producing fine nickel powder, as disclosed in Japanese Patent Publication No. 2-49364, a method of adding a reducing agent such as sodium borohydride to an aqueous solution containing nickel ions and performing reductive precipitation is known. There is.

【0008】この場合、種々の還元剤が必要であり、操
業条件が複雑化する。また、いわゆる還元析出法はバッ
チ式であり、製造の連続化が困難であった。その他、ニ
ッケル、鉄微粉の製造方法としては、カルボニル法があ
るが、この方法で得られた粉末は粒度が大きく、導体部
の微細パターン化あるいは薄層化の要望を満足できな
い。
In this case, various reducing agents are required, and the operating conditions are complicated. Further, the so-called reduction precipitation method is a batch method, and it is difficult to make the production continuous. In addition, there is a carbonyl method as a method for producing nickel and iron fine powders, but the powder obtained by this method has a large particle size and cannot satisfy the demand for fine patterning or thinning of the conductor portion.

【0009】また最近特開昭62-63604号公報および特開
昭62-188709 号公報に示されている気相化学反応法が開
発された。この方法は、金属ハロゲン化物を気化させ、
これをそれ自身の蒸気圧によるかまたは不活性ガスをキ
ャリアとして反応部に送り、反応部において金属ハロゲ
ン化物蒸気と還元性ガス(水素等)を接触・混合させる
と、ただちに、ガス中に金属粉末が還元・析出し、その
後ガスとともに出口から放出される。従って原料である
金属ハロゲン化物を連続的に供給し、生成粉末は連続的
に回収することができる。
Recently, the gas phase chemical reaction methods disclosed in JP-A-62-63604 and JP-A-62-188709 have been developed. This method vaporizes a metal halide,
When this is sent to the reaction part by its own vapor pressure or by using an inert gas as a carrier and the metal halide vapor and reducing gas (hydrogen etc.) are contacted and mixed in the reaction part, immediately the metal powder in the gas Is reduced / precipitated and then discharged from the outlet together with the gas. Therefore, the raw material metal halide can be continuously supplied, and the produced powder can be continuously recovered.

【0010】しかしながら、特開昭62-63604号公報にお
ける銅粉や、特開昭62−188709号公報における銀粉の場
合と異なり、ニッケル粉の場合には立方体や八面体など
の晶癖を有する粒子が生成し、ペーストフィラーとした
時の充填性等に問題があった。
However, unlike the case of the copper powder in JP-A-62-63604 and the silver powder in JP-A-62-188709, in the case of nickel powder, particles having crystal habits such as cubes and octahedra. Was generated, and there was a problem in the filling property when used as a paste filler.

【0011】[0011]

【発明が解決しようとする課題】上述したような従来技
術に鑑みて、本発明は、平均粒径が 0.2〜1μmの範囲
にある球状のニッケル超微粉の安価な製造方法を提供す
ることを目的とするものである。
In view of the above-mentioned conventional techniques, the present invention aims to provide an inexpensive method for producing spherical nickel ultrafine powder having an average particle size in the range of 0.2 to 1 μm. It is what

【0012】[0012]

【課題を解決するための手段】本発明は、塩化ニッケル
蒸気と水素との化学反応によりニッケル微粉を製造する
方法において、蒸発部での塩化ニッケル蒸気濃度(分
圧)を0.05〜0.3 とし、かつ1004℃(1277K)以上1453
℃(1726K)未満の温度で化学反応させることを特徴と
する球状ニッケル超微粉の製造方法である。
The present invention provides a method for producing fine nickel powder by a chemical reaction between nickel chloride vapor and hydrogen, wherein the vapor concentration (partial pressure) of nickel chloride is 0.05 to 0.3, and 1004 ℃ (1277K) or higher 1453
A method for producing spherical nickel ultrafine powder, characterized by chemically reacting at a temperature lower than ℃ (1726K).

【0013】[0013]

【作 用】本発明は、気相化学反応法を利用したもので
ある。この方法は、図1に示すような反応器1を用い
て、蒸発部2の石英ボート3に原料の塩化ニッケルを入
れた後蒸発させ、アルゴンガス4とともに反応部5へ輸
送し、反応器中央ノズル6から供給される水素7と接触
・混合させて反応を起こさせる。反応部の温度は石英管
で保護された熱電対8によって測定する。そして、発生
したニッケル微粉はガスと共に冷却部9を通過した後、
円筒濾紙で回収される。
[Operation] The present invention utilizes a gas phase chemical reaction method. In this method, using a reactor 1 as shown in FIG. 1, nickel chloride, which is a raw material, is put into a quartz boat 3 of an evaporation section 2 and then evaporated, and the evaporated nickel chloride gas is transported to a reaction section 5 together with an argon gas 4, and the reactor central The hydrogen 7 supplied from the nozzle 6 is brought into contact with and mixed with the hydrogen 7 to cause a reaction. The temperature of the reaction part is measured by a thermocouple 8 protected by a quartz tube. Then, the generated nickel fine powder passes through the cooling unit 9 together with the gas,
Collected with a cylindrical filter paper.

【0014】気相化学反応法における粒子の成長は、次
のように考えられる〔粉体工学会誌Vol. 21, 759−767
(1984)〕。金属ハロゲン化物蒸気と還元ガスとが接触し
た瞬間に金属原子またはクラスターのモノマーが生成
し、モノマーの衝突凝集によって超微粒子が生成され
る。さらに、衝突・合体によって粒子成長が起こる。
The growth of particles in the gas phase chemical reaction method is considered as follows [Journal of Powder Engineering Vol. 21, 759-767].
(1984)]. At the moment when the metal halide vapor and the reducing gas come into contact with each other, a monomer of a metal atom or a cluster is produced, and ultrafine particles are produced by collisional aggregation of the monomer. Further, particle growth occurs due to collision and coalescence.

【0015】超微粒子は一般に球状であるが、ニッケル
の場合は多面体であることが多い。特に粒子が比較的粗
い領域になると表面エネルギーの割合も減少し、晶癖を
有する粉になることが多くなる。特にニッケルでは粒径
が 0.2μm程度より大きくなると立方体、八面体の明瞭
な晶癖粒子になりやすい。そこで、本発明者は、ニッケ
ル微粉の反応生成を詳細に調べた結果、塩化ニッケル蒸
気濃度(水素を除いた供給ガス中の分圧)を0.05以上と
し、かつ反応・粉末生成温度を絶対温度においてニッケ
ル融点(1726K)の0.74倍以上、すなわち1004℃(1277
K)以上にすれば球状粉が得られることを見出し、本発
明に至ったものである。
The ultrafine particles are generally spherical, but nickel is often a polyhedron. In particular, when the particles are in a relatively coarse region, the surface energy ratio also decreases, and the powder often has a crystal habit. In particular, when the particle size of nickel is larger than about 0.2 μm, cubic and octahedral crystal grains having clear crystal habit tend to be formed. Therefore, as a result of detailed investigation of the reaction generation of nickel fine powder, the present inventor set the nickel chloride vapor concentration (partial pressure in the supply gas excluding hydrogen) to 0.05 or more, and the reaction / powder generation temperature in absolute temperature. 0.74 times the melting point of nickel (1726K), that is, 1004 ℃ (1277K)
It was found that a spherical powder can be obtained with the above K) and the present invention has been completed.

【0016】形状の温度依存性は、反応速度すなわち金
属原子またはクラスターのモノマーの生成速度が温度に
影響されることと関連あると推測される。言い換えれ
ば、粒子の成長速度が形状に影響を及ぼしているものと
考えられる。また温度が高いほど粒子の成長に異方性が
なくなるため粒子は球状に成長し易くなると解釈され
る。形状の濃度依存性は、均一核生成速度が濃度に影響
されることと関連あると考えられる。この場合も温度と
同様に粒子の成長速度に依存していると理解される。
It is speculated that the temperature dependence of the shape is related to the reaction rate, that is, the formation rate of the metal atom or the monomer of the cluster, being influenced by the temperature. In other words, it is considered that the growth rate of particles influences the shape. Further, it can be construed that the higher the temperature, the more anisotropic the growth of the particles becomes, so that the particles are likely to grow spherically. It is considered that the concentration dependence of the shape is related to the influence of the uniform nucleation rate on the concentration. In this case as well, it is understood that it depends on the growth rate of the particles as well as the temperature.

【0017】反応を例えば電気炉で加熱した反応管で起
こさせる場合、この反応は発熱反応であるので、その電
気炉設定温度は上記指定温度よりも低くても発熱反応で
補える範囲であれば、球状化の目的を達成することがで
きる。すなわち、気相化学反応法では、反応による金属
のモノマーの形成、衝突・合体による粒子成長が起こる
温度を制御することが重要である。
When the reaction is carried out, for example, in a reaction tube heated in an electric furnace, this reaction is an exothermic reaction. Therefore, if the set temperature of the electric furnace is lower than the above-specified temperature, as long as it can be compensated by the exothermic reaction, The purpose of spheroidization can be achieved. That is, in the vapor phase chemical reaction method, it is important to control the temperature at which the formation of metal monomers by reaction and the particle growth by collision / coalescence occur.

【0018】反応温度の上限はニッケルの融点1453℃
(1726K)未満に限定される。これは融点以上では、生
成粒子が液滴で存在するため、異常に巨大に成長した粒
子が発生することがあり、粒度分布が広がり、また反応
器の壁への付着が増大するからである。また蒸発部での
塩化ニッケル蒸気濃度(分圧)の上限は、 0.3に限定さ
れる。濃度が 0.3超では、粒径が粗大化し、所望の粒径
が得られない。また、粗大化すると晶癖が発生しやすく
なる。
The upper limit of the reaction temperature is the melting point of nickel 1453 ° C.
Limited to less than (1726K). This is because at the melting point or higher, the produced particles are present in the form of droplets, so that particles that grow abnormally huge may be generated, the particle size distribution is broadened, and the adhesion to the wall of the reactor is increased. The upper limit of nickel chloride vapor concentration (partial pressure) in the evaporator is limited to 0.3. If the concentration exceeds 0.3, the particle size becomes coarse and the desired particle size cannot be obtained. Further, if it becomes coarse, crystal habit tends to occur.

【0019】また塩化ニッケル蒸気濃度(分圧)の下限
は、0.05に限定される。濃度が0.05未満では、粒成長が
遅く、晶癖が発生しやすくなる。次に実施例に基づいて
本発明をより詳細に説明する。
The lower limit of the nickel chloride vapor concentration (partial pressure) is limited to 0.05. If the concentration is less than 0.05, grain growth is slow and crystal habit is likely to occur. Next, the present invention will be described in more detail based on examples.

【0020】[0020]

【実施例】【Example】

実施例1 図1に示すような反応器1を用い、蒸発部2の石英ボー
ト3に原料の塩化ニッケルを10g入れ、2l/分のアル
ゴンガス4中に濃度(分圧)が 5.0×10-2になるよう蒸
発させた。この原料混合ガスを1030℃(絶対温度でニッ
ケル融点の 0.755倍)に設定した反応部5へ輸送し、反
応中央ノズル6から1l/分の割合で供給される水素と
接触・混合させ反応を起こさせた。反応部の温度を石英
管で保護された熱電対8によって測定したところ1065℃
(同 0.775倍)まで上昇した。発生したニッケル粉はガ
スと共に冷却部9を通過した後、円筒濾紙で回収した。
この生成粉の比表面積は 3.2m2/gであり、電子顕微鏡
観察によれば、平均粒径0.21μmの球状粉であった。図
2は本実施例により得られたニッケル粉の電子顕微鏡写
真を示す。ニッケル粉の形状が完全に近い球状であるこ
とがわかる。
Example 1 using a reactor 1 as shown in FIG. 1, placed 10g of nickel chloride in the raw material in a quartz boat 3 evaporators 2, 2l / min Concentration argon gas 4 (partial pressure) is 5.0 × 10 - Evaporated to 2 . This raw material mixed gas was transported to the reaction section 5 set at 1030 ° C. (0.755 times the melting point of nickel at absolute temperature) and brought into contact with and mixed with hydrogen supplied from the reaction central nozzle 6 at a rate of 1 l / min to cause a reaction. Let When the temperature of the reaction part was measured by a thermocouple 8 protected by a quartz tube, it was 1065 ° C.
(0.775 times that of the previous year). The generated nickel powder passed through the cooling section 9 together with the gas, and was then collected by a cylindrical filter paper.
The specific surface area of this produced powder was 3.2 m 2 / g, and it was a spherical powder having an average particle size of 0.21 μm as observed by an electron microscope. FIG. 2 shows an electron micrograph of the nickel powder obtained in this example. It can be seen that the nickel powder has a nearly spherical shape.

【0021】実施例2 実施例1において、反応部設定温度を 960℃(絶対温度
でニッケル融点の 0.714倍)とした以外は同じ条件でニ
ッケル粉を製造した。熱電対8によって測定したところ
1004℃(同0.74倍)まで上昇した。発生したニッケル粉
の比表面積は 3.7m2/gであり、電子顕微鏡観察によれ
ば、平均粒径0.18μmの球状粉であった。図3にその電
子顕微鏡写真を示す。
Example 2 Nickel powder was produced under the same conditions as in Example 1, except that the temperature set for the reaction section was 960 ° C. (0.714 times the melting point of nickel at the absolute temperature). When measured with thermocouple 8
It increased to 1004 ℃ (0.74 times). The specific surface area of the generated nickel powder was 3.7 m 2 / g, and it was a spherical powder having an average particle size of 0.18 μm as observed by an electron microscope. The electron micrograph is shown in FIG.

【0022】実施例3 実施例1において、反応部設定温度を 960℃(絶対温度
でニッケル融点の 0.714倍)、濃度(分圧)を 8.0×10
-2とした以外は同じ条件でニッケル粉を製造した。熱電
対8によって測定したところ1006℃(同0.74倍)まで上
昇した。発生したニッケル粉の比表面積は 3.0m2/gで
あり、電子顕微鏡観察によれば、平均粒径0.22μmの球
状粉であった。
Example 3 In Example 1, the reaction part set temperature was 960 ° C. (0.714 times the nickel melting point in absolute temperature) and the concentration (partial pressure) was 8.0 × 10 5.
Nickel powder was produced under the same conditions except that the value was -2 . When measured with a thermocouple 8, the temperature rose to 1006 ° C (0.74 times the same). The specific surface area of the generated nickel powder was 3.0 m 2 / g, and it was a spherical powder having an average particle size of 0.22 μm as observed by an electron microscope.

【0023】実施例4 実施例1において、反応部設定温度を1000℃(絶対温度
でニッケル融点の0.74倍)、濃度(分圧)を 8.5×10-2
とした以外は同じ条件でニッケル粉を製造した。熱電対
8によって測定したところ1053℃(同0.77倍)まで上昇
した。発生したニッケル粉の比表面積は 2.9m2/gであ
り、電子顕微鏡観察によれば、平均粒径0.23μmの球状
粉であった。
Example 4 In Example 1, the reaction part set temperature was 1000 ° C. (0.74 times the nickel melting point in absolute temperature) and the concentration (partial pressure) was 8.5 × 10 −2.
Nickel powder was manufactured under the same conditions except that When measured with a thermocouple 8, the temperature rose to 1053 ° C (0.77 times the same). The specific surface area of the generated nickel powder was 2.9 m 2 / g, and it was a spherical powder having an average particle size of 0.23 μm as observed by an electron microscope.

【0024】実施例5 実施例1において、反応部設定温度を1050℃(絶対温度
でニッケル融点の 0.767倍)、濃度(分圧)を 3.0×10
-1とした以外は同じ条件でニッケル粉を製造した。熱電
対8によって測定したところ1120℃(同0.81倍)まで上
昇した。発生したニッケル粉の比表面積は 0.9m2/gで
あり、電子顕微鏡観察によれば、平均粒径 0.8μmの球
状粉であった。
Example 5 In Example 1, the reaction part set temperature was 1050 ° C. (0.767 times the nickel melting point in absolute temperature), and the concentration (partial pressure) was 3.0 × 10 5.
Nickel powder was produced under the same conditions except that -1 was used. When measured with a thermocouple 8, the temperature rose to 1120 ° C (0.81 times the same). The specific surface area of the generated nickel powder was 0.9 m 2 / g, and it was a spherical powder having an average particle size of 0.8 μm as observed by an electron microscope.

【0025】比較例1 実施例1において、反応部設定温度を 950℃(絶対温度
でニッケル融点の0.71倍)、濃度(分圧) 4.5×10-2
した以外は同じ条件でニッケル粉を製造した。熱電対8
によって測定したところ 995℃(同0.73倍)まで上昇し
た。発生したニッケル粉の比表面積は 3.6m2/gであ
り、電子顕微鏡観察によれば、平均粒径 0.2μmの立方
体、八面体等の晶癖を有する粉末であった。図4にその
電子顕微鏡写真を示す。
Comparative Example 1 Nickel powder was produced under the same conditions as in Example 1 except that the reaction part set temperature was 950 ° C. (0.71 times the nickel melting point in absolute temperature) and the concentration (partial pressure) was 4.5 × 10 −2. did. Thermocouple 8
When measured by, the temperature rose to 995 ℃ (0.73 times higher). The specific surface area of the generated nickel powder was 3.6 m 2 / g, and it was a powder having a crystal habit such as a cube and an octahedron having an average particle size of 0.2 μm as observed by an electron microscope. The electron micrograph is shown in FIG.

【0026】比較例2 実施例1において、反応部設定温度を 950℃(絶対温度
でニッケル融点の0.71倍)、濃度(分圧) 8.0×10-2
した以外は同じ条件でニッケル粉を製造した。熱電対8
によって測定したところ 998℃(同0.78倍)まで上昇し
た。発生したニッケル粉の比表面積は 3.4m2/gであ
り、電子顕微鏡観察によれば、平均粒径 0.2μmの立方
体、八面体等の晶癖を有する粉末であった。
Comparative Example 2 Nickel powder was produced under the same conditions as in Example 1, except that the reaction part set temperature was 950 ° C. (0.71 times the nickel melting point in absolute temperature) and the concentration (partial pressure) was 8.0 × 10 −2. did. Thermocouple 8
When measured by, the temperature rose to 998 ℃ (0.78 times higher). The specific surface area of the generated nickel powder was 3.4 m 2 / g, and it was a powder having a crystal habit such as a cube and an octahedron having an average particle size of 0.2 μm as observed by an electron microscope.

【0027】比較例3 実施例1において、反応部設定温度を1000℃(絶対温度
でニッケル融点の0.74倍)、濃度(分圧) 4.5×10-2
した以外は同じ条件でニッケル粉を製造した。熱電対8
によって測定したところ1042℃(同0.76倍)まで上昇し
た。発生したニッケル粉の比表面積は 3.4m2/gであ
り、電子顕微鏡観察によれば、平均粒径 0.2μmの立方
体、八面体等の晶癖を有する粉末であった。
Comparative Example 3 Nickel powder was produced under the same conditions as in Example 1, except that the reaction part set temperature was 1000 ° C. (0.74 times the nickel melting point in absolute temperature) and the concentration (partial pressure) was 4.5 × 10 −2. did. Thermocouple 8
When measured by, the temperature rose to 1042 ℃ (0.76 times the same). The specific surface area of the generated nickel powder was 3.4 m 2 / g, and it was a powder having a crystal habit such as a cube and an octahedron having an average particle size of 0.2 μm as observed by an electron microscope.

【0028】比較例4 実施例1において、反応部設定温度を1100℃(絶対温度
でニッケル融点の 0.795倍)、濃度(分圧) 3.6×10-1
とした以外は同じ条件でニッケル粉を製造した。熱電対
8によって測定したところ1160℃(同0.83倍)まで上昇
した。発生したニッケル粉の比表面積は 1.0m2/gであ
り、電子顕微鏡観察によれば、平均粒径0.8μmの立方
体、八面体等の晶癖を有する粉末であった。
Comparative Example 4 In Example 1, the reaction part set temperature was 1100 ° C. (0.795 times the melting point of nickel in absolute temperature) and the concentration (partial pressure) was 3.6 × 10 −1.
Nickel powder was manufactured under the same conditions except that When measured with a thermocouple 8, the temperature rose to 1160 ° C (0.83 times the same). The specific surface area of the generated nickel powder was 1.0 m 2 / g, and it was a powder having a crystal habit such as a cube and an octahedron having an average particle diameter of 0.8 μm as observed by an electron microscope.

【0029】[0029]

【発明の効果】本発明によれば、導電ペーストフィラー
として優れた性能を持ち、電子部品の導体部の微細パタ
ーン化、薄層化が可能な球状で粒径の揃った、平均粒径
が0.2〜1μmの範囲のニッケル超微粉を安価に製造す
ることができる。
EFFECTS OF THE INVENTION According to the present invention, it has excellent performance as a conductive paste filler, and can form fine patterns and thin layers of the conductor portion of electronic parts. Ultrafine nickel powder in the range of ˜1 μm can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に好適に用いることのできる反応
器の概略図である。
FIG. 1 is a schematic view of a reactor that can be suitably used for carrying out the present invention.

【図2】実施例1に示す本発明方法により製造したニッ
ケル超微粉の粒子構造を示す顕微鏡写真である。
2 is a micrograph showing a particle structure of nickel ultrafine powder produced by the method of the present invention shown in Example 1. FIG.

【図3】実施例2に示す本発明方法により製造したニッ
ケル超微粉の粒子構造を示す顕微鏡写真である。
3 is a micrograph showing the particle structure of nickel ultrafine powder produced by the method of the present invention shown in Example 2. FIG.

【図4】比較例1により製造したニッケル超微粉の粒子
構造を示す顕微鏡写真である。
FIG. 4 is a micrograph showing a particle structure of nickel ultrafine powder produced in Comparative Example 1.

【図5】各実施例、比較例における、塩化ニッケル蒸発
部における塩化ニッケル蒸気濃度および反応温度とニッ
ケル粒子の形状との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the nickel chloride vapor concentration and reaction temperature in the nickel chloride vaporization section and the shape of nickel particles in each of the examples and comparative examples.

【符号の説明】[Explanation of symbols]

1 反応器 2 蒸発部 3 石英ボート 4 アルゴンガス 5 反応部 6 中央ノズル 7 水素ガス 8 熱電対 9 冷却部 1 Reactor 2 Evaporator 3 Quartz Boat 4 Argon Gas 5 Reaction 6 Central Nozzle 7 Hydrogen Gas 8 Thermocouple 9 Cooling

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩化ニッケル蒸気と水素との化学反応に
よりニッケル微粉を製造する方法において、塩化ニッケ
ル蒸発部での塩化ニッケル蒸気濃度(分圧)を0.05〜0.
3 とし、かつ1004℃(1277 K)以上1453℃(1726K)未
満の温度で化学反応させることを特徴とする球状ニッケ
ル超微粉の製造方法。
1. A method for producing fine nickel powder by a chemical reaction between nickel chloride vapor and hydrogen, wherein the nickel chloride vapor concentration (partial pressure) in the nickel chloride vaporizing section is 0.05 to 0.
3. A method for producing ultrafine spherical nickel powder, which comprises chemically reacting at a temperature of 1004 ° C. (1277 K) or more and less than 1453 ° C. (1726 K).
JP3165255A 1991-06-11 1991-06-11 Method for producing spherical nickel ultrafine powder Expired - Lifetime JP2554213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3165255A JP2554213B2 (en) 1991-06-11 1991-06-11 Method for producing spherical nickel ultrafine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3165255A JP2554213B2 (en) 1991-06-11 1991-06-11 Method for producing spherical nickel ultrafine powder

Publications (2)

Publication Number Publication Date
JPH04365806A JPH04365806A (en) 1992-12-17
JP2554213B2 true JP2554213B2 (en) 1996-11-13

Family

ID=15808846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3165255A Expired - Lifetime JP2554213B2 (en) 1991-06-11 1991-06-11 Method for producing spherical nickel ultrafine powder

Country Status (1)

Country Link
JP (1) JP2554213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163583A (en) * 1996-11-27 1998-06-19 Kyocera Corp Wiring board

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3398291B2 (en) * 1996-11-28 2003-04-21 京セラ株式会社 Wiring board
EP0887133B1 (en) 1996-12-02 2006-01-18 Toho Titanium Co., Ltd. Process for the production of metal powder and equipment therefor
JP4611464B2 (en) 1998-06-12 2011-01-12 東邦チタニウム株式会社 Method for producing metal powder
WO2000003823A1 (en) * 1998-07-15 2000-01-27 Toho Titanium Co., Ltd. Metal powder
US6391084B1 (en) * 1998-07-27 2002-05-21 Toho Titanium Co., Ltd. Metal nickel powder
JP3722275B2 (en) 2000-06-15 2005-11-30 Tdk株式会社 Metal particle-containing composition, conductive paste and method for producing the same
JP3722282B2 (en) 2001-08-21 2005-11-30 Tdk株式会社 Metal particle-containing composition, conductive paste and method for producing the same
CN1684787B (en) 2002-09-30 2010-05-05 东邦钛株式会社 Process for production of metallic powder and producing device thereof
TWI381897B (en) 2004-12-22 2013-01-11 Taiyo Nippon Sanso Corp Process for producing metallic ultra fine powder
JP4978237B2 (en) 2006-04-27 2012-07-18 昭栄化学工業株式会社 Method for producing nickel powder
TW200806408A (en) * 2006-06-27 2008-02-01 Ishihara Sangyo Kaisha Nickel fine particles, method for preparing the same and fluid composition comprising the same
JP5205776B2 (en) 2007-03-12 2013-06-05 Jnc株式会社 Method and apparatus for producing solid product
KR102091143B1 (en) 2015-10-19 2020-03-20 스미토모 긴조쿠 고잔 가부시키가이샤 Method for manufacturing nickel powder
JP6573563B2 (en) 2016-03-18 2019-09-11 住友金属鉱山株式会社 Nickel powder, nickel powder manufacturing method, internal electrode paste using nickel powder, and electronic component
CN110049840B (en) 2016-12-05 2022-06-24 住友金属矿山株式会社 Method for producing nickel powder
US11850665B2 (en) 2019-07-31 2023-12-26 Sumitomo Metal Mining Co., Ltd. Nickel powder and method for producing nickel powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597765A (en) * 1982-07-05 1984-01-14 Nissan Motor Co Ltd Fuel injection-type internal-combustion engine
JPH0623405B2 (en) * 1985-09-17 1994-03-30 川崎製鉄株式会社 Method for producing spherical copper fine powder
JPS62188709A (en) * 1986-02-13 1987-08-18 Kawasaki Steel Corp Production of pulverized spherical silver powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163583A (en) * 1996-11-27 1998-06-19 Kyocera Corp Wiring board

Also Published As

Publication number Publication date
JPH04365806A (en) 1992-12-17

Similar Documents

Publication Publication Date Title
JP2554213B2 (en) Method for producing spherical nickel ultrafine powder
US5429657A (en) Method for making silver-palladium alloy powders by aerosol decomposition
JP2650838B2 (en) Production method of palladium and palladium oxide powder by aerosol decomposition
US5439502A (en) Method for making silver powder by aerosol decomposition
US5853451A (en) Ultrafine spherical nickel powder for use as an electrode of laminated ceramic capacitors
US5616165A (en) Method for making gold powders by aerosol decomposition
US20050268992A1 (en) Metallic nickel powder and process for production thereof
KR100411578B1 (en) Method for producing metal powder
TW506869B (en) Method for preparing metal powder
KR940009339B1 (en) Method of manufacturing nikel powder
JPH0623405B2 (en) Method for producing spherical copper fine powder
JPH1180816A (en) Nickel powder for conductive paste and its production
JPH1180818A (en) Production of metal powder, and metal powder produced by the method
JP3812359B2 (en) Method for producing metal powder
JPH08246010A (en) Production of metal powder
JP4505633B2 (en) Manufacturing method of nickel powder with hcp structure
WO2000074881A1 (en) Method for preparing ultra fine nickel powder
JP2001254109A (en) Method of producing metallic particulate powder
KR100503126B1 (en) A method for producing ultrafine spherical particles of nickel metal using gas-phase synthesis
JP2002294312A (en) Method for manufacturing metal particle powder
JPH06299212A (en) Production of oxidation resistant palladium powder
JP2001254110A (en) Method of producing metallic particulate powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 15