JPH0629866B2 - Microwave moisture analyzer - Google Patents
Microwave moisture analyzerInfo
- Publication number
- JPH0629866B2 JPH0629866B2 JP63167786A JP16778688A JPH0629866B2 JP H0629866 B2 JPH0629866 B2 JP H0629866B2 JP 63167786 A JP63167786 A JP 63167786A JP 16778688 A JP16778688 A JP 16778688A JP H0629866 B2 JPH0629866 B2 JP H0629866B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- microwave
- traveling wave
- horn
- absorber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 この発明は、試料によるマイクロ波エネルギーの減衰量
を検出して試料の水分を測定する装置に関する。TECHNICAL FIELD The present invention relates to a device for measuring the moisture content of a sample by detecting the amount of attenuation of microwave energy by the sample.
従来技術 試料によるマイクロ波エネルギーの減衰量を検出し、試
料の水分を測定する装置は多数存在する。このうち発信
側アンテナと受信側アンテナ間のマイクロ波伝播路に試
料を配置し、マイクロ波が試料を透過する構造のもの
は、特開昭55−42096号公報、同56−9243
5号公報、同59−197842号公報、あるいは同6
0−135752号公報などに開示されている。2. Description of the Related Art There are many devices that detect the amount of attenuation of microwave energy by a sample and measure the water content of the sample. Among them, the structure in which the sample is arranged in the microwave propagation path between the transmitting side antenna and the receiving side antenna and the microwave transmits the sample is disclosed in JP-A-55-42096 and JP-A-56-9243.
5, gazette 59-197842 gazette, or gazette 6
No. 0-135752 and the like are disclosed.
この構造の水分測定装置において、より正確な測定結果
を得るには、測定時におけるマイクロ波の反射の処理が
重要である。すなわち、発信アンテナから投射された進
行マイクロ波(一次進行波)は大部分が試料を透過して
受信アンテナに到達するものの、一部は試料や試料を配
置するための部材(試料配置部)および受信側機器によ
り反射波とされ、この反射波がさらに前記の試料配置部
および発信側機器により反射されて二次進行波となって
一次進行波に干渉し、受信アンテナによる受信マイクロ
波エネルギーの検出値を攪乱する。In order to obtain a more accurate measurement result in the moisture measuring device having this structure, it is important to treat the microwave reflection during the measurement. That is, most of the traveling microwave (primary traveling wave) projected from the transmitting antenna reaches the receiving antenna after passing through the sample, but a part of the traveling microwave (primary traveling wave) reaches the receiving antenna (sample placement unit) and The reflected wave is reflected by the device on the receiving side, and this reflected wave is further reflected by the sample placement unit and the device on the transmitting side to become a secondary traveling wave, which interferes with the primary traveling wave, and the reception microwave energy is detected by the receiving antenna. Disturb the value.
そして、この攪乱の程度は一次進行波に対する二次進行
波の干渉によるものであるから、マイクロ波伝播路にお
ける試料の位置と試料の厚さの変化(試料配置部の変
化)に影響される。Since the degree of this disturbance is due to the interference of the secondary traveling wave with the primary traveling wave, it is affected by the change of the position of the sample and the thickness of the sample (change of the sample arrangement part) in the microwave propagation path.
実際、第2図のように発信アンテナとしての発信ホーン
1と受信アンテナとしての受信ホーン2を距離L(=1
61mm)だけ離して対向させて伝播路を形成し、この伝
播路の主要部をほぼ横断するようにしてアクリル板3
(200×200×5mm)をマイクロ波の進行方向と直
交するように配置した実験装置を作り、9.4GHz(λ
=32mm)を投射しつつ、受信ホーン2とアクリル板3
間の距離lを2mm間隔で移動すると第3図の表における
欄のデータ(数値は受信ホーン2における受信電圧値
である)を得る。Actually, as shown in FIG. 2, the transmission horn 1 as a transmission antenna and the reception horn 2 as a reception antenna are separated by a distance L (= 1.
61 mm) facing each other to form a propagation path, and the acrylic plate 3 so as to substantially cross the main part of the propagation path.
We made an experimental device in which (200 × 200 × 5 mm) was arranged so as to be orthogonal to the traveling direction of the microwave, and 9.4 GHz (λ
= 32 mm) while projecting the reception horn 2 and the acrylic plate 3
When the distance l is moved at intervals of 2 mm, the data in the column in the table of FIG. 3 (numerical values are received voltage values at the receiving horn 2) are obtained.
なお、アクリル板3を挿入する前の受信電圧は図示して
いない減衰器により1.35V(基準電圧)とし、受信
電圧検出のための回路はマイクロ波エネルギーの減衰量
が大きい程、出力される受信電圧が大きくなるよう構成
している。The reception voltage before inserting the acrylic plate 3 is set to 1.35 V (reference voltage) by an attenuator (not shown), and the circuit for detecting the reception voltage outputs as the microwave energy attenuation increases. The receiving voltage is configured to be large.
第3図の表中、数値が基準電圧を下回るところがある
が、これは反射波による二次進行波の干渉が一次進行波
をアクリル板による減衰以上に増幅する方向に作用した
ものと考えられる。In the table of FIG. 3, there are some places where the numerical values are below the reference voltage, but it is considered that this is because the interference of the secondary traveling wave due to the reflected wave acts in such a direction that the primary traveling wave is amplified more than the attenuation due to the acrylic plate.
また、発信ホーン1および受信ホーン2の反射係数、ア
クリル板の反射係数は第4図の表とに示す値であっ
た。この表における数値は周知の定在波測定法によるも
ので電圧定在波比(VSWR)から算出している。The reflection coefficients of the transmitting horn 1 and the receiving horn 2 and the reflection coefficient of the acrylic plate were the values shown in the table of FIG. The values in this table are based on the well-known standing wave measurement method, and are calculated from the voltage standing wave ratio (VSWR).
前記第3図のデータを縦軸に電圧、横軸に前記の距離l
を取ってグラフにすると、第5図(イ)のように受信電
圧が距離lの変化にともなって、約16mm周期のほぼサ
インカーブを示している。The vertical axis of the data in FIG. 3 is the voltage, and the horizontal axis is the distance l.
Taking this as a graph, as shown in FIG. 5A, the received voltage shows a substantially sine curve with a period of about 16 mm as the distance 1 changes.
したがって、この実験結果は、前記のアクリル板3を試
料配置部として想定すると、この試料配置部が設定した
基準の位置から上下に8mm幅で移動した場合に、試料が
同じ水分でありながら受信電圧に約0.47Vの範囲で
のバラツキが出ることを意味している。また、これは前
記アクリル板を試料として想定し、該試料の厚さに平均
厚さを基準として上下に8mm幅の変化が生じる場合にも
受信電圧に大きなバラつきが生じることを意味する。さ
らに、実際の測定では試料の位置変化と試料の厚さ変化
の双方が複合した結果となるのであるが、試料の位置や
試料厚さを一定に維持するのは困難なことが多い。Therefore, assuming that the acrylic plate 3 is used as the sample placement part, this experimental result shows that when the sample placement part moves up and down by 8 mm in width from the reference position set, the received voltage is the same even though the sample has the same water content. It means that there is a variation in the range of about 0.47V. Further, this means that even if the acrylic plate is assumed as a sample, and the thickness of the sample changes vertically by 8 mm with respect to the average thickness, a large variation occurs in the received voltage. Further, in actual measurement, both the change in the position of the sample and the change in the thickness of the sample are combined, but it is often difficult to maintain the position of the sample and the sample thickness constant.
前記した特開昭59−197842号公報が開示するマ
イクロ波水分計は、被測定物からの反射による測定誤差
に着目しているが、その解決手段は、第1送・受信ホー
ンの間隔をl1とし、第2送・受信ホーンの間隔をl2
とし、 l1−l2≠nλ+1/4λ が成立するように第1および第2の送・受信ホーンを配
置し、第1受信ホーンが検出する電圧振幅値と第2受信
ホーンが検出する電圧振幅値の相加平均を検出値として
採用するものである。The microwave moisture meter disclosed in Japanese Patent Laid-Open No. 59-197842 focuses on the measurement error due to the reflection from the object to be measured, and the means for solving the problem is to set the interval between the first transmitting and receiving horns to l1. And the interval between the second transmitting and receiving horns is l2
The first and second transmission / reception horns are arranged so that l1-l2 ≠ nλ + 1 / 4λ, and the voltage amplitude value detected by the first reception horn and the voltage amplitude value detected by the second reception horn are The arithmetic mean is adopted as the detection value.
このため、この水分計は送信ホーンと受信ホーンからな
る検出部を少なくとも2個所必要とし、水分計の占有ス
ペースが大きくなったり、構造が複雑になる欠点を有し
ている。また、発信マイクロ波の反射は試料だけに限ら
ない。For this reason, this moisture meter requires at least two detecting portions each consisting of a transmitting horn and a receiving horn, and has the drawback that the occupied space of the moisture meter becomes large and the structure becomes complicated. Further, the reflection of the transmitted microwave is not limited to the sample.
発明が解決しようとする課題 この発明は、マイクロ波の発信アンテナと受信アンテナ
間のマイクロ波の伝播路に試料配置部を設けた構成を備
え、伝播路に発生する発信側機器、受信側機器、試料配
置部からの反射マイクロ波による二次進行波が検出値へ
与える影響を抑制し、より正確な測定結果を得ることが
できるマイクロ波による水分測定装置の提供を課題とす
る。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has a configuration in which a sample placement portion is provided in a microwave propagation path between a microwave transmission antenna and a reception antenna, and a transmission side device, a reception side device generated in the propagation path, An object of the present invention is to provide a moisture measuring device using microwaves, which suppresses the influence of secondary traveling waves caused by the reflected microwaves from the sample placement part on the detected value and can obtain more accurate measurement results.
課題を解決するための手段 マイクロ波の発信アンテナと受信アンテナ間のマイクロ
波伝播路に試料配置部を設け、受信アンテナと試料配置
部の間、あるいは発信アンテナと試料配置部の間にマイ
クロ波吸収体を配置する。Means for Solving the Problems A sample placement part is provided in a microwave propagation path between a microwave transmission antenna and a reception antenna, and microwave absorption is performed between the reception antenna and the sample placement part or between the transmission antenna and the sample placement part. Position your body.
前記吸収体は、低い反射係数を持つ面を試料側として配
置される。The absorber is arranged with the surface having a low reflection coefficient as the sample side.
作用 吸収体は一次進行波の反射波、および反射波による二次
進行波のエネルギーを吸収して減衰させる。Action The absorber absorbs and attenuates the reflected wave of the primary traveling wave and the energy of the secondary traveling wave due to the reflected wave.
実施例 第6図はマイクロ波の発信アンテナとしての発信ホーン
1と受信アンテナとしての受信ホーン2、これらの間に
位置した試料配置部となるアクリル板3を備えた、前記
第2図に示した水分測定装置の受信側ホーン2とアクリ
ル板3との間にマイクロ波の吸収体4を配置して構成し
た実施例を示している。Embodiment FIG. 6 is shown in FIG. 2 which is provided with a transmission horn 1 as a microwave transmission antenna, a reception horn 2 as a reception antenna, and an acrylic plate 3 as a sample placement portion located between them. An embodiment is shown in which a microwave absorber 4 is arranged between the receiving horn 2 and the acrylic plate 3 of the moisture measuring device.
発信ホーン1と受信ホーン2は対向して配置され、その
間がマイクロ波の伝播路5に形成されている。発信ホー
ン1は電源部6に接続されたガンダイオードを主体とす
るマイクロ波発振部7を備え、マイクロ波は減衰器8を
へてホーンから発信される。ガンダイオードの発振周波
数は9.4GHz、減衰器8は伝播路5に何も無い状態で
受信ホーン2における受信電圧を1.350Vに調整す
る能力を持つものである。The transmitting horn 1 and the receiving horn 2 are arranged to face each other, and a microwave propagation path 5 is formed between them. The transmission horn 1 includes a microwave oscillating unit 7 mainly composed of a Gunn diode connected to a power supply unit 6, and a microwave is transmitted from the horn through an attenuator 8. The oscillation frequency of the Gunn diode is 9.4 GHz, and the attenuator 8 has the ability to adjust the reception voltage at the reception horn 2 to 1.350 V when there is nothing in the propagation path 5.
受信ホーン2は検出ダイオードを主体とした受信部9を
備え、その受信電圧すなわち検出値は検出値処理部10
に伝達される。The reception horn 2 is provided with a reception unit 9 mainly composed of a detection diode, and the reception voltage, that is, the detection value, is a detection value processing unit 10.
Be transmitted to.
吸収体4は吸収体シート(ECCOSORB…商品名、
グレースジャパン(株))を切取ったもので、これは表
裏で反射係数が異なり、反射係数の低い面を試料側面と
して受信ホーン2の切口を覆って取りつけられている。
吸収体4の表裏に関する反射係数の値は第4図の表
に示す通りである。また、この吸収体4を取り付けた状
態での受信ホーン2の反射係数は同表に示す通りで
ある(測定方法は前記に同じ)。The absorber 4 is an absorber sheet (ECCOSORB ... product name,
Grace Japan Co., Ltd. is cut out, and the reflection coefficient is different between the front and back, and the cut surface of the receiving horn 2 is attached with the surface having a low reflection coefficient as the sample side surface.
The values of the reflection coefficient for the front and back of the absorber 4 are as shown in the table of FIG. Further, the reflection coefficient of the receiving horn 2 with the absorber 4 attached is as shown in the same table (the measuring method is the same as above).
アクリル板3に水分を測定すべき試料を載置して発信ホ
ーン1からマイクロ波を投射すると、マイクロ波は進行
波(一次進行波)となって試料およびアクリル板を透過
し、吸収体4を通過して受信ホーン2に到達する。この
間、一次進行波は試料、アクリル板3、吸収体4による
吸収およびこれらと受信ホーン2による反射による減
衰、前記の反射波がさらに反射することによって生じた
二次的な進行波(二次進行波)との干渉による影響を受
ける。When a sample whose water content is to be measured is placed on the acrylic plate 3 and a microwave is projected from the transmission horn 1, the microwave becomes a traveling wave (primary traveling wave) and passes through the sample and the acrylic plate, so that the absorber 4 It passes and reaches the reception horn 2. During this time, the primary traveling wave is absorbed by the sample, the acrylic plate 3, and the absorber 4 and attenuated by the reflection by these and the receiving horn 2, and a secondary traveling wave (secondary traveling wave) generated by further reflection of the reflected wave is generated. Wave) affected by interference with.
受信されたマイクロ波のエネルギーは検出ダイオードに
より、受信電圧として検出され、検出値処理部10はそ
の検出値をもとに、既知の「水分とマイクロ波エネルギ
ーの減衰量との相関関係」などから試料の水分値を算出
し、出力する。The received microwave energy is detected as a received voltage by the detection diode, and the detection value processing unit 10 uses the detected value as a basis for a known "correlation between moisture and the attenuation amount of microwave energy" and the like. Calculate and output the water content of the sample.
この場合に、試料配置部と受信ホーン2の間に吸収体4
を配置したことで、反射波によって生じた二次進行波の
主たる部分が、吸収体4を少なくとも2度(往復)通過
し、そのエネルギーが大きく減殺されるので、一次進行
波に対する影響は大きく抑制される。In this case, the absorber 4 is placed between the sample placement section and the receiving horn 2.
By arranging, the main part of the secondary traveling wave generated by the reflected wave passes through the absorber 4 at least twice (reciprocating) and its energy is greatly reduced, so the influence on the primary traveling wave is greatly suppressed. To be done.
さらに、吸収体はマイクロ波反射係数の低い側の面が試
料側として配置されていることにより、反射波の当初エ
ネルギー自体が小さくされており、反射波によって生じ
る二次進行波の影響がこれによっても抑制されている。Furthermore, since the absorber has the surface with the lower microwave reflection coefficient arranged as the sample side, the initial energy itself of the reflected wave is reduced, and the effect of the secondary traveling wave generated by the reflected wave is thereby reduced. Is also suppressed.
以下、第1図(イ)(ロ)を用いてこの点を説明する。
第1図(イ)は吸収体4を配置しない場合であり、第1
図(ロ)は吸収体4を配置した本発明の実施例による場
合である。Hereinafter, this point will be described with reference to FIGS.
FIG. 1A shows the case where the absorber 4 is not arranged.
FIG. 6B shows a case according to the embodiment of the present invention in which the absorber 4 is arranged.
なお、 試料のマイクロ波反射係数……a1 吸収体4の透過率(透過量/投射量) 試料側面→受信ホーン側面……b1 試料側面←受信ホーン側面……b2 受信ホーンの反射係数……a2 とする。Microwave reflection coefficient of the sample ... a1 Transmittance of the absorber 4 (transmitted amount / projected amount) Sample side surface → reception horn side surface …… b1 Sample side surface ← reception horn side surface …… b2 Reception horn reflection coefficient …… a2 And
まず、第1図(イ)において、発信ホーン1より発信さ
れ試料配置部を透過した一次進行波M0の一部は受信ホ
ーン2により反射されて反射波R1となり、この反射波
R1はさらに反射されて二次進行波Kとなる。この二次
進行波Kが一次進行波M0に干渉する。First, in FIG. 1 (a), a part of the primary traveling wave M0 transmitted from the transmitting horn 1 and transmitted through the sample placement portion is reflected by the receiving horn 2 to become a reflected wave R1, and this reflected wave R1 is further reflected. Becomes a secondary traveling wave K. This secondary traveling wave K interferes with the primary traveling wave M0.
このとき、一次進行波M0のエネルギーをm0とする
と、 反射R1 エネルギー……〔a2×m0〕 二次進行波Kのエネルギー……〔a1×a2×m0〕 となり、一次進行波M0と二次進行波Kのエネルギーの
比は: 1:〔a1×a2〕……(イ) となる。At this time, assuming that the energy of the primary traveling wave M0 is m0, the reflected R1 energy becomes [a2 × m0] and the energy of the secondary traveling wave K becomes [a1 × a2 × m0], and the primary traveling wave M0 and the secondary traveling wave The energy ratio of the wave K is: 1: [a1 × a2] ... (A).
そして、前記干渉の度合は試料配置部の位置により異な
るため、検出値をバラつかせ、測定精度を落す原因とな
る。Since the degree of the interference varies depending on the position of the sample placement portion, it causes variations in the detected value and causes a decrease in measurement accuracy.
これに対し、第1図(ロ)の場合では、発信ホーン1よ
り発信され試料配置部を透過した一次進行波M0は、吸
収体4により一部反射、吸収されつつ透過して、透過一
次進行波M1となり、この進行波M1の一部は受信ホー
ン2により反射されて反射波R2となり、この反射波R
2は吸収体4により一部反射吸収されつつ透過反射波R
3となり、この反射波R3はさらに試料配置部により反
射されて、二次進行波Sとなり、二次進行波Sは吸収体
4により一部反射吸収されつつ透過して透過二次進行波
Kとなる。そして、一次進行波M0を二次進行波Sが干
渉し、透過一次進行波M1を透過二次進行波Kが干渉す
る。On the other hand, in the case of FIG. 1B, the primary traveling wave M0 transmitted from the transmission horn 1 and transmitted through the sample placement portion is partially reflected by the absorber 4 and transmitted while being absorbed, and transmitted primary traveling. The wave M1 is generated, and a part of the traveling wave M1 is reflected by the reception horn 2 to be a reflected wave R2.
Reference numeral 2 denotes a transmitted reflected wave R while being partially reflected and absorbed by the absorber 4.
3, the reflected wave R3 is further reflected by the sample disposition portion to become a secondary traveling wave S, and the secondary traveling wave S is partially reflected and absorbed by the absorber 4 and is transmitted to form a transmitted secondary traveling wave K. Become. Then, the secondary traveling wave S interferes with the primary traveling wave M0, and the transmitted secondary traveling wave K interferes with the transmitted primary traveling wave M1.
このとき、一次進行波M0のエネルギーをm0とする
と、 透過進行波M1のエネルギー……〔b1×m0〕 反射波R2のエネルギー……〔a2×b1×m0〕 反射波R3のエネルギー……〔a2×b1×b2×m
0〕 二次進行波Sのエネルギー……〔a1×a2×b1×b
2×m0〕 透過二次進行波Kのエネルギー……〔a1×a2×b1
×b1×b2×m0〕 となる。At this time, assuming that the energy of the primary traveling wave M0 is m0, the energy of the transmitted traveling wave M1 ... [b1 × m0] the energy of the reflected wave R2 ... [a2 × b1 × m0] the energy of the reflected wave R3 ... [a2 Xb1 xb2 xm
0] Energy of secondary traveling wave S ... [a1 × a2 × b1 × b
2 × m0] Energy of transmitted secondary traveling wave K ... [a1 × a2 × b1
Xb1xb2xm0].
よって、一次進行波M0と二次進行波Sのエネルギーの
比、透過進行波M1と透過二次進行波Kのエネルギーの
比は共に、 1:〔a1×a2×b1×b2〕……(ロ) となり、前記の(イ)と比較すると一次進行波に干渉す
る二次進行波(S、K)のエネルギーが〔b1×b2〕
倍だけ低下しており、、それだけ干渉による影響が低減
している。Therefore, the ratio of the energies of the primary traveling wave M0 and the secondary traveling wave S and the ratio of the energies of the transmitted traveling wave M1 and the transmitted secondary traveling wave K are both 1: [a1 × a2 × b1 × b2]. ), The energy of the secondary traveling wave (S, K) that interferes with the primary traveling wave is [b1 × b2] as compared with (a) above.
It is reduced by a factor of two, and the influence of interference is reduced accordingly.
一次進行波に干渉する波は前記以外にも存在するが、こ
れらは測定精度に影響を及ぼさない。例えば、図中反射
波R2′が吸収体4に反射されてできる二次進行波S1
は透過進行波M1に干渉するが、吸収体4と受信ホーン
2との間隔は常に一定であるから、干渉度合も一定であ
り、測定結果をバラつかせる原因とはならない。また、
進行波M0が吸収体4によって反射され、さらに試料配
置部によって反射されてできる二次進行波S2は一次進
行波M0に干渉するが、吸収体4の試料側への反射係数
は低いから、吸収体4が無い場合に比べれば干渉は少な
い。There are other waves that interfere with the primary traveling wave, but these do not affect the measurement accuracy. For example, the secondary traveling wave S1 formed by the reflected wave R2 'in the figure being reflected by the absorber 4
Interferes with the transmitted traveling wave M1, but since the distance between the absorber 4 and the receiving horn 2 is always constant, the degree of interference is also constant, which does not cause variations in measurement results. Also,
The traveling wave M0 is reflected by the absorber 4, and the secondary traveling wave S2 formed by being reflected by the sample disposing portion interferes with the primary traveling wave M0, but since the reflection coefficient of the absorber 4 toward the sample side is low, Interference is less than when there is no body 4.
第7図(イ)(ロ)は他の構成例として発信側ホーン1
と試料配置部の間に吸収体4を配置しない場合と配置し
た場合を比較し、説明するためのもので、この場合前記
の一次進行波M0は試料配置部を透過していないマイク
ロ波であるが、前記と同様の過程および理由により、全
く同じ結果を得ることができる。7 (a) and 7 (b) show another configuration example of the transmitting side horn 1.
And the case where the absorber 4 is not arranged between the sample placement section and the sample placement section, for the purpose of comparison and description. In this case, the primary traveling wave M0 is a microwave that does not pass through the sample placement section. However, the same result can be obtained by the process and the reason similar to the above.
また、さらに他の構成例として、受信ホーン2と試料の
間および発信ホーン1と試料の間の双方に吸収体4を挿
入すれば、前記それぞれの場合の相乗効果を得ることが
できる。Further, as still another configuration example, if the absorber 4 is inserted both between the receiving horn 2 and the sample and between the transmitting horn 1 and the sample, the synergistic effect in each of the above cases can be obtained.
干渉による影響の低減を数値として把握するために前記
第2図に関すると同様の実験を第1図(ロ)、第7図
(ロ)における試料配置部を移動することにより行なっ
た。この場合の前記基準電圧1.350Vは吸収体4を
配置し、試料配置部を除去した状態で定められた。その
結果を表にすると第3図となる。これをグラフ化し
たものが第5図(ロ)(ハ)である。In order to grasp the reduction of the influence of interference as a numerical value, the same experiment as in FIG. 2 was conducted by moving the sample placement part in FIG. 1 (b) and FIG. 7 (b). The reference voltage of 1.350 V in this case was determined with the absorber 4 arranged and the sample arrangement part removed. The results are tabulated in FIG. A graph of this is shown in FIGS. 5B and 5C.
これによると、試料配置部と受信ホーン2の間あるいは
試料配置部と発信ホーン1の間に吸収体4が配置されて
も、試料配置部の位置変化(試料厚さの変化を含む)に
よって受信電圧が変化する周期はいずれも該吸収体4を
配置しない場合と同じであるが、その振幅は試料と受信
ホーン2の間に吸収体4を配置した場合に約0.21V
で吸収体4を配置しない場合の1/2以下であり、また
試料と発信ホーン1の間に吸収体4を配置した場合には
約0.32Vで吸収体4を配置しない場合の約2/3に
低減していることが明らかである。According to this, even if the absorber 4 is arranged between the sample disposition unit and the reception horn 2 or between the sample disposition unit and the transmission horn 1, the position change of the sample disposition unit (including the change of the sample thickness) causes reception. The period in which the voltage changes is the same as when the absorber 4 is not arranged, but the amplitude is about 0.21 V when the absorber 4 is arranged between the sample and the receiving horn 2.
Is 1/2 or less of that when the absorber 4 is not arranged, and when the absorber 4 is arranged between the sample and the transmission horn 1, it is about 0.32 V and about 2 / when the absorber 4 is not arranged. It is clear that the number is reduced to 3.
この結果、一次進行波に対する二次進行波すなわち反射
波の影響が抑制される。As a result, the influence of the secondary traveling wave, that is, the reflected wave on the primary traveling wave is suppressed.
なお、前記発信・受信ホーン1,2は一般的には発信・
受信アンテナであり、また、反射波は、図においては省
略されているこれらの固定部など、マイクロ波の伝播路
において試料側に面した発信側機器、受信側機器の部分
で生じるので、一般に吸収体は試料配置部と前記の機器
間に配置される。The transmitting / receiving horns 1 and 2 are generally transmitting / receiving.
It is a receiving antenna, and the reflected wave is generally generated by absorption at the fixed side parts (not shown in the figure) such as those on the transmitting side device and receiving side device facing the sample side in the microwave propagation path. The body is placed between the sample placement part and the device.
さらに、この水分測定装置は茶製造装置の中揉機に設置
できる可能性を持つもので、第4図表のには中揉機に
おける茶葉の反射率を呈示している。Further, this moisture measuring device has a possibility of being installed in the tea kneading machine, and the reflectance of tea leaves in the tea kneading machine is shown in FIG.
茶葉の中揉は蒸熱後の茶葉を粗揉した次に、ドラムに投
入した茶葉を回転させつつ揉みながら熱風にさらし、一
定の水分値となるまで乾燥させる工程であり、処理中の
茶葉の水分状態を常時監視し、熱風の温度、風量を制御
する必要がある。Middle-rubbing of tea leaves is a process in which the tea leaves after steaming are roughly rubbed, then the tea leaves put into the drum are exposed to hot air while being rubbed while being rotated, and dried until a certain moisture value is reached. It is necessary to constantly monitor the condition and control the temperature and volume of hot air.
そして、水分測定時にドラムから茶葉のサンプルが取り
だされ、振動コンベアなどで連続的に水分測定装置の試
料配置部に供給されるのであるが、茶葉特有の偏平な形
状やいまだ多量に含有する水分のために団塊状となり、
供給時の厚さを均一にするのが困難な面を持っている。Then, the tea leaf sample is taken out from the drum at the time of measuring the water content and continuously supplied to the sample placement section of the water content measuring device by a vibration conveyor or the like, but the flat shape peculiar to the tea leaf and the water content still contained in a large amount. Becomes a nodule for
It is difficult to make the thickness uniform during supply.
発明の効果 受信アンテナにおける受信電圧、すなわち、検出値のバ
ラつきが小さく、試料における水分をより正確に測定す
ことができる。Effect of the Invention The received voltage at the receiving antenna, that is, the variation in the detected value is small, and the water content in the sample can be measured more accurately.
第1図(イ)(ロ)は説明のために示す正面図、第2図
は実験装置を示す正面図、第3図は実験結果を示す表、
第4図は各部材の反射係数を示す表、第5図(イ)
(ロ)(ハ)は第3図の表をグラフ化したもの、第6図
は本発明による水分測定装置の正面図、第7図(イ)
(ロ)は他の構成例を説明するための正面図。 1…受信ホーン、2…受信ホーン、3…アクリル板、4
…吸収体、5…伝播路、6…電源部、7…マイクロ波発
振部、8…減衰器、9…受信部、10…検出値処理部。 M0…一次進行波、M1…透過進行波、R2…反射波、
R3…透過反射波、S…二次進行波、K…透過二次進行
波。1 (a) and (b) are front views shown for explanation, FIG. 2 is a front view showing an experimental apparatus, FIG. 3 is a table showing experimental results,
FIG. 4 is a table showing the reflection coefficient of each member, and FIG. 5 (a).
(B) and (c) are graphs of the table of FIG. 3, FIG. 6 is a front view of the moisture measuring apparatus according to the present invention, and FIG. 7 (a).
(B) is a front view for explaining another configuration example. 1 ... reception horn, 2 ... reception horn, 3 ... acrylic plate, 4
... Absorber, 5 ... Propagation path, 6 ... Power supply section, 7 ... Microwave oscillation section, 8 ... Attenuator, 9 ... Reception section, 10 ... Detected value processing section. M0 ... primary traveling wave, M1 ... transmitted traveling wave, R2 ... reflected wave,
R3: transmitted reflected wave, S: secondary traveling wave, K: transmitted secondary traveling wave.
Claims (2)
を対向させてマイクロ波の伝播路を構成し、該伝播路に
試料配置部を設けると共に、受信アンテナと試料配置部
の間にマイクロ波吸収体を、マイクロ波反射係数が低い
側の面を試料側として配置してあることを特徴としたマ
イクロ波による水分測定装置。1. A microwave propagation path is formed by opposing a microwave transmission antenna and a reception antenna, and a sample placement section is provided on the propagation path, and a microwave absorber is provided between the reception antenna and the sample placement section. The microwave moisture measuring device is characterized in that the surface having a low microwave reflection coefficient is arranged as the sample side.
を対向させてマイクロ波の伝播路を構成し、該伝播路に
試料配置部を設けると共に、発信アンテナと試料配置部
の間にマイクロ波吸収体を、マイクロ波反射係数が低い
側の面を試料側として配置してあることを特徴としたマ
イクロ波による水分測定装置。2. A microwave propagation path is formed by facing a microwave transmission antenna and a reception antenna, a sample placement section is provided on the propagation path, and a microwave absorber is provided between the transmission antenna and the sample placement section. The microwave moisture measuring device is characterized in that the surface having a low microwave reflection coefficient is arranged as the sample side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63167786A JPH0629866B2 (en) | 1988-07-07 | 1988-07-07 | Microwave moisture analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63167786A JPH0629866B2 (en) | 1988-07-07 | 1988-07-07 | Microwave moisture analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0219750A JPH0219750A (en) | 1990-01-23 |
JPH0629866B2 true JPH0629866B2 (en) | 1994-04-20 |
Family
ID=15856084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63167786A Expired - Fee Related JPH0629866B2 (en) | 1988-07-07 | 1988-07-07 | Microwave moisture analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629866B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59197843A (en) * | 1983-04-26 | 1984-11-09 | Yokogawa Hokushin Electric Corp | Microwave moisture meter |
JPS60106153U (en) * | 1983-12-23 | 1985-07-19 | 横河電機株式会社 | microwave moisture meter |
-
1988
- 1988-07-07 JP JP63167786A patent/JPH0629866B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0219750A (en) | 1990-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2298197C2 (en) | Device and method of measuring of at least one physical parameter of material by means of microwaves | |
US4675595A (en) | Method for measuring the moisture ratio of organic material, and apparatus herefor | |
US4674325A (en) | Microwave moisture sensor | |
US4788853A (en) | Moisture meter | |
US4500835A (en) | Method and apparatus for detecting grain direction in wood, particularly in lumber | |
US4620146A (en) | Microwave moisture sensor | |
US20070069740A1 (en) | Analysis of Variable-Depth Sample Using a Sweeping Microwave Signal | |
EP0120886A4 (en) | Measurement of ultrasound velocity in tissue. | |
US3913012A (en) | Microwave moisture measuring system with reflection suppressing means | |
James et al. | A microwave method for measuring moisture content, density, and grain angle of wood | |
JPS58115349A (en) | Measuring device for water content | |
JPH02248846A (en) | Method and instrument for measuring humidity of product | |
US5361638A (en) | Arrangement for measuring mechanical properties of a foil material through use of an excitation unit that includes a laser | |
US8188751B2 (en) | Method and measuring instrument for measuring water content | |
JPH0629866B2 (en) | Microwave moisture analyzer | |
KR20220137677A (en) | Apparatus and method for measuring transmittance of reflected microwaves | |
King et al. | Measurement of basis weight and moisture content of composite boards using microwaves | |
JPS6342357Y2 (en) | ||
JPH0245740A (en) | Water measuring instrument using microwave | |
RU2377584C1 (en) | Device for measuring coefficient of reflection of electromagnetic waves | |
JPS57187609A (en) | Measuring device for decrease in wall thickness | |
JPH0136898B2 (en) | ||
JP2000275190A (en) | Microwave moisture measuring apparatus | |
JPH0136897B2 (en) | ||
JPS5618717A (en) | Method of measuring relative position of body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080420 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |