JPH06297647A - Continuous fiber-reinforced composite material - Google Patents

Continuous fiber-reinforced composite material

Info

Publication number
JPH06297647A
JPH06297647A JP9150793A JP9150793A JPH06297647A JP H06297647 A JPH06297647 A JP H06297647A JP 9150793 A JP9150793 A JP 9150793A JP 9150793 A JP9150793 A JP 9150793A JP H06297647 A JPH06297647 A JP H06297647A
Authority
JP
Japan
Prior art keywords
composite material
resin
layer
fiber
layer containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9150793A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakamura
勤 中村
Shigekazu Kimura
繁和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP9150793A priority Critical patent/JPH06297647A/en
Publication of JPH06297647A publication Critical patent/JPH06297647A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a continuous fiber-reinforced thermoplastic composite material having both excellent mechanical properties and surface functionality. CONSTITUTION:The continuous fiber-reinforced composite material uses a continuous fiber fabric as a reinforcing material and a thermoplastic resin as a matrix. The composite material has a layer which does not contain a reinforcing fiber and consist of a different resin from the resin of the reinforced matrix sayer on one surface or both surfaces of the layer containing the reinforcing fiber. In addition, the matrix resin of the layer which contains a reinforcing fiber is preferably polycarbonate or nylon 6, and a layer which does not contain a reinforcing fiber is preferably ABS.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な熱可塑性複合材
料に関する。更に詳しくは、連続繊維で強化された熱可
塑性複合材料において、優れた力学特性と表面機能性と
を併せ持つ連続繊維強化熱可塑性複合材料に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a novel thermoplastic composite material. More specifically, the present invention relates to a continuous fiber-reinforced thermoplastic composite material which has both excellent mechanical properties and surface functionality.

【0002】[0002]

【従来の技術】従来、テーブルの天板表面や、木材表面
に、アクリル系或いはポリエステル系の表面硬度アップ
用塗料を塗布したり、フィルムを接着した広義の複合材
料が用いられる。また、最近ではゴルフ部材に複合材料
が用いられつつある。即ち、ゴルフ部材、特にゴルフク
ラブのヘッド部において、従来の金属材料にかえて最近
はスイートスポットの広幅化、飛距離アップの効果が得
られる等の理由から、フェイス面に複合材料が用いられ
るようになってきている。現在のところ、このフェイス
面用の複合材料としては、熱硬化性樹脂を使用した連続
繊維強化複合材料が用いられている。
2. Description of the Related Art Conventionally, a composite material in a broad sense has been used in which an acrylic or polyester-based paint for increasing the surface hardness or a film is adhered to the top plate surface of a table or the wood surface. Recently, composite materials are being used for golf members. That is, in a golf member, especially in the head portion of a golf club, a composite material is used for the face surface because of the effect of broadening the sweet spot and increasing the flight distance recently, instead of the conventional metal material. Is becoming. At present, a continuous fiber reinforced composite material using a thermosetting resin is used as the composite material for the face surface.

【0003】[0003]

【発明が解決しようとする課題】連続繊維強化熱硬化性
複合材料は、先端複合材料として航空、宇宙用に開発さ
れてきた歴史があり、未硬化の樹脂粘度が低いために強
化繊維構造物中に樹脂を含浸させることが容易であり、
優れた静的機械特性を持つと言う利点を有する。また、
熱硬化性樹脂は一般に表面機能性に富み塗装や接着がし
易いという利点も有する。しかしながら、熱硬化性樹脂
では硬化反応後の樹脂が硬く脆くなるため、得られる熱
硬化性複合材料の衝撃特性や疲労特性などの動的機械特
性が不十分であると言う欠点を持つ。さらに、熱硬化性
複合材料は機械加工においても注意と労力が必要であ
る。即ち、フェース形状に連続繊維強化熱硬化性複合材
料を切り出す際に亀裂が発生し易く、切削によって表面
が荒れるため、材料の表面仕上げにも手数がかかると言
う問題がある。
The continuous fiber reinforced thermosetting composite material has a history of being developed as an advanced composite material for aviation and space, and has a low viscosity of uncured resin, and therefore has a high viscosity. It is easy to impregnate the
It has the advantage of having excellent static mechanical properties. Also,
Thermosetting resins are generally rich in surface functionality and have an advantage that they can be easily coated and adhered. However, the thermosetting resin has a drawback that the resulting thermosetting composite material has insufficient dynamic mechanical properties such as impact properties and fatigue properties, because the resin after the curing reaction becomes hard and brittle. Further, thermosetting composite materials require care and labor also in machining. That is, when the continuous fiber reinforced thermosetting composite material is cut into a face shape, cracks are likely to occur, and the surface is roughened by cutting, so that there is a problem that it takes time to finish the surface of the material.

【0004】これに対し、複合材料の分野でマトリック
ス樹脂として熱硬化性樹脂に代えて靭性の高い熱可塑性
樹脂を用いる試みもなされている。この場合、機械加工
性や動的機械特性は向上するものの熱可塑性樹脂の溶融
粘度が高いため強化繊維構造物中への含浸が難しく、限
られた熱可塑性樹脂を用いた場合のみ優れた力学特性の
連続繊維強化熱可塑性複合材料を得ることができるのが
現状である。即ち、表面機能性に優れた熱可塑性樹脂と
して知られているABS樹脂等をマトリックスとする場
合は、優れた力学特性を得ることができず、従来の連続
繊維強化熱可塑性複合材料では力学特性と表面機能性と
を両立させた材料は知られていない。
On the other hand, in the field of composite materials, attempts have been made to use a thermoplastic resin having high toughness as the matrix resin instead of the thermosetting resin. In this case, although machinability and dynamic mechanical properties are improved, impregnation into the reinforced fiber structure is difficult due to the high melt viscosity of the thermoplastic resin, and excellent mechanical properties are achieved only when a limited thermoplastic resin is used. At present, it is possible to obtain the continuous fiber-reinforced thermoplastic composite material. That is, when an ABS resin or the like, which is known as a thermoplastic resin having excellent surface functionality, is used as a matrix, excellent mechanical properties cannot be obtained, and conventional continuous fiber reinforced thermoplastic composite materials have mechanical properties There is no known material that has both surface functionality.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記欠点
を解決すべく鋭意研究を重ねた結果、複合材料を特殊な
二層(または多層)構造とすることによってその目的を
達成し得ることを見出し本発明に到達した。
DISCLOSURE OF THE INVENTION As a result of intensive studies to solve the above-mentioned drawbacks, the present inventors can achieve the object by forming a composite material into a special two-layer (or multi-layer) structure. The inventors have found that and reached the present invention.

【0006】即ち、本発明は、連続繊維を強化繊維とし
熱可塑性樹脂をマトリックスとする熱可塑性複合材料で
あって、強化繊維を含有する層と強化繊維を含有しない
層とよりなり、強化繊維を含有しない層と強化繊維を含
有する層におけるマトリックス樹脂が異なることを特徴
とする、優れた力学特性と表面機能性とを併せ持つ二層
(または多層)構造の複合材料である。
That is, the present invention is a thermoplastic composite material comprising continuous fibers as reinforcing fibers and a thermoplastic resin as a matrix, comprising a layer containing reinforcing fibers and a layer not containing reinforcing fibers. A composite material having a two-layer (or multi-layer) structure having excellent mechanical properties and surface functionality, characterized in that the matrix resin in the layer not containing it and the layer containing the reinforcing fiber are different.

【0007】本発明の複合材料において、強化繊維を含
有しない層は、強化繊維を含有する層の外側に設置させ
ることが好ましい。強化繊維を含有しない層は実質的に
樹脂のみから構成されるが、複合材料の表面機能性を向
上させる役割を担うため、それに適した樹脂を選定する
必要がある。それと同時に強化繊維を含有する層と強固
な接合を形成する必要がある。従って、本発明では強化
繊維を含有する層を形成する熱可塑性樹脂と強化繊維を
含有しない層を形成する熱可塑性樹脂の最適な組み合わ
せの選択が重要である。
In the composite material of the present invention, the layer containing no reinforcing fiber is preferably placed outside the layer containing the reinforcing fiber. Although the layer containing no reinforcing fiber is substantially composed of only the resin, it plays a role of improving the surface functionality of the composite material, and therefore it is necessary to select a resin suitable for it. At the same time, it is necessary to form a strong bond with the layer containing the reinforcing fibers. Therefore, in the present invention, it is important to select the optimum combination of the thermoplastic resin forming the layer containing the reinforcing fibers and the thermoplastic resin forming the layer not containing the reinforcing fibers.

【0008】本発明において強化繊維を含有しない層に
使用する樹脂としてはABS樹脂が好ましい。このAB
S樹脂は優れた表面機能性を持つ材料である。しかも、
適度な弾力性を持つため、ゴルフヘッドの製造において
はバックアップ樹脂として最もよく使用されている。
ABS resin is preferable as the resin used in the layer containing no reinforcing fiber in the present invention. This AB
S resin is a material having excellent surface functionality. Moreover,
Because of its moderate elasticity, it is most often used as a backup resin in the manufacture of golf heads.

【0009】一方、本発明において、強化繊維を含有す
る層を形成するマトリックス樹脂としてはナイロン6ま
たはポリカーボネートが好ましい。
On the other hand, in the present invention, nylon 6 or polycarbonate is preferable as the matrix resin forming the layer containing the reinforcing fibers.

【0010】ABS樹脂とナイロン6またはポリカーボ
ネートとの相溶性は必ずしも優れたものではない。しか
るに本発明者らの研究によれば、驚くべきことに、連続
繊維で強化されたナイロン6またはポリカーボネートと
未強化のABS樹脂とが強固な接合を形成する事実が見
いだされた。これらが良好な接合を形成する理由は定か
ではないが、本発明に従って得られた熱可塑性複合材料
の断面には界面らしきものが認められるものの、その接
着性は極めて強く、繰り返しの曲げを加えても剥離は生
じない。
The compatibility between ABS resin and nylon 6 or polycarbonate is not always excellent. However, our studies have surprisingly found the fact that nylon 6 or polycarbonate reinforced with continuous fibers and unreinforced ABS resin form a strong bond. Although the reason why they form a good bond is not clear, although the interface of the thermoplastic composite material obtained according to the present invention seems to be an interface, its adhesiveness is extremely strong, and repeated bending is applied. However, peeling does not occur.

【0011】本発明において、強化繊維を含有しない層
の厚みは0.05〜1mmの範囲にあることが好まし
い。この厚みが1mmを超えると強化繊維を含有する層
と含有しない層の線膨張率差や外力が加わった場合の歪
差によって剥離が生じ易くなり好ましくない。しかも、
厚みが過大になると複合材料としての力学特性も低下す
る。一方、厚みが0.05mmより小さくなると両者の
熱接合の際に繊維を含有しない層に欠陥が発生し易くな
り、好ましくない。
In the present invention, the thickness of the layer containing no reinforcing fiber is preferably in the range of 0.05 to 1 mm. If this thickness exceeds 1 mm, peeling easily occurs due to the difference in linear expansion coefficient between the layer containing the reinforcing fiber and the layer not containing the reinforcing fiber and the strain difference when an external force is applied, which is not preferable. Moreover,
If the thickness is too large, the mechanical properties of the composite material will also deteriorate. On the other hand, if the thickness is less than 0.05 mm, defects are likely to occur in the fiber-free layer during thermal bonding of both, which is not preferable.

【0012】本発明において、強化繊維を含有する層の
体積基準繊維含有率(Vf)は30〜60%が好まし
い。Vfが60%を超えると繊維を含有する層の含浸が
悪化し好ましくない。一方、Vfが30%未満になると
複合材料の強度が低下するので好ましくない。
In the present invention, the volume-based fiber content (Vf) of the layer containing reinforcing fibers is preferably 30 to 60%. When Vf exceeds 60%, impregnation of the layer containing fibers is deteriorated, which is not preferable. On the other hand, if Vf is less than 30%, the strength of the composite material decreases, which is not preferable.

【0013】本発明に使用する連続強化繊維としては、
ナイロン6やポリカーボネートの溶融温度に於いて充分
な耐熱性を有する繊維であればどのような種類の繊維を
用いても良く、例えば、炭素繊維、ガラス繊維、炭化珪
素繊維、アルミナ繊維等の無機繊維、アラミド繊維等の
有機繊維をあげることができる。使用する連続強化繊維
の形態としては、特に制限はないが、平織り、朱子織
り、綾織り等の織物が一般に使用される。
The continuous reinforcing fibers used in the present invention include:
Any type of fiber may be used as long as it has sufficient heat resistance at the melting temperature of nylon 6 or polycarbonate. For example, inorganic fibers such as carbon fiber, glass fiber, silicon carbide fiber and alumina fiber. And organic fibers such as aramid fibers. The form of the continuous reinforcing fiber used is not particularly limited, but a woven fabric such as plain weave, satin weave, and twill weave is generally used.

【0014】本発明の熱可塑性複合材料を製造する方法
としては、既知の方法により予めナイロン6又はポリカ
ーボネートをマトリックス樹脂とする連続繊維強化複合
材料シートを準備し、この両面又は片面にABS樹脂フ
ィルムを積層して熱的に接合させる方法が好ましい。こ
のとき、接着層は用いても良いが、必ずしも必要とはし
ない。熱的接合に使用する条件は、温度としては200
℃以上250℃未満、好ましくは210℃以上230℃
以下が用いられる。圧力としては5〜50kg/c
2 、好ましくは5〜15kg/cm2 が用いられる。
接合に使用する設備としては上記の条件での接合が実施
できる設備であれば特に制限はなく、例えば熱圧プレス
等が好ましく使用できる。
As a method for producing the thermoplastic composite material of the present invention, a continuous fiber-reinforced composite material sheet having nylon 6 or polycarbonate as a matrix resin is prepared in advance by a known method, and an ABS resin film is provided on both sides or one side thereof. A method of laminating and thermally bonding is preferable. At this time, the adhesive layer may be used, but it is not always necessary. The conditions used for thermal bonding are 200 at a temperature.
℃ or more and less than 250 ℃, preferably 210 ℃ or more 230 ℃
The following is used: 5-50kg / c as pressure
m 2, preferably 5~15kg / cm 2 is used.
The equipment used for joining is not particularly limited as long as the equipment can perform the joining under the above-mentioned conditions, and for example, a hot press or the like can be preferably used.

【0015】本発明の複合材料の製造において、必要に
応じ、複合材料シートの表面に積層・接合するフィルム
として2種以上のフィルムを用いることもできる。例え
ば、ナイロン6をマトリックス樹脂とする複合材料の表
面にポリカーボネートフィルムを重ね、更にその上にA
BS樹脂フィルムを積層して熱圧プレス処理することも
できる。更に、後述の実施例にも示す如く本発明により
得られた複合材料の表面に表層部の樹脂と同じ樹脂をイ
ンジェクション等により融着させることもできる。
In the production of the composite material of the present invention, two or more kinds of films may be used as a film to be laminated / bonded on the surface of the composite material sheet, if necessary. For example, a polycarbonate film is laid on the surface of a composite material using nylon 6 as a matrix resin, and A
A BS resin film may be laminated and subjected to a hot press treatment. Further, as shown in the examples described later, the same resin as the surface layer resin can be fused to the surface of the composite material obtained by the present invention by injection or the like.

【0016】[0016]

【発明の効果】上述の如き本発明の熱可塑性複合材料
は、表面機能性と力学特性とを併せ持つ材料であり、特
にゴルフクラブヘッドのフェース材料として使用した場
合、力学特性の他にバックアップ樹脂との接合性、機械
加工性、仕上げ性等の諸特性も優れており、有用であ
る。
The thermoplastic composite material of the present invention as described above is a material having both surface functionality and mechanical properties, and when used as a face material of a golf club head, it has a backup resin in addition to the mechanical properties. It is useful because it has excellent properties such as bondability, machinability, and finishability.

【0017】[0017]

【実施例】次に、本発明の実施例と比較例を詳述する
が、本発明はこれらの例により限定されるものではな
い。なお、これらの実施例において「CFクロス」は東
レ(株)製の炭素繊維平織クロス(3K;CO5343
B,6K:CO6644B)を意味する。
EXAMPLES Next, examples of the present invention and comparative examples will be described in detail, but the present invention is not limited to these examples. In these examples, "CF cloth" means carbon fiber plain weave cloth (3K; CO5343) manufactured by Toray Industries, Inc.
B, 6K: CO6644B).

【0018】[0018]

【比較例1】本例は、従来公知の連続繊維強化熱可塑性
複合材料の1例を比較例として示すものである。
COMPARATIVE EXAMPLE 1 This example shows one example of a conventionally known continuous fiber-reinforced thermoplastic composite material as a comparative example.

【0019】上記CFクロス(3K及び6K品)とポリ
カーボネートフィルム(厚さ130μm)をそれぞれ4
層と5層交互に積層し、積層物を平板金型にセットし、
熱圧プレスを用いて、温度290℃、圧力30kg/c
2 の条件下で30分間加熱加圧し樹脂の含浸を行っ
た。その後、80℃まで冷却し、厚み1.2mmの連続
繊維強化熱可塑性複合材料成形板(Vf=49%)を得
た。この成形板の表面をアセトンやメチレンクロライド
で洗浄したところ、溶解および白濁が生じ、耐薬品性は
不良であった。
The CF cloth (3K and 6K products) and the polycarbonate film (thickness 130 μm) are each formed into 4 pieces.
Layers and 5 layers are laminated alternately and the laminate is set in a flat plate mold,
Using a hot press, temperature 290 ℃, pressure 30kg / c
The resin was impregnated by heating and pressing for 30 minutes under the condition of m 2 . Then, it cooled to 80 degreeC and obtained the 1.2-mm-thick continuous fiber reinforced thermoplastic composite material shaping | molding board (Vf = 49%). When the surface of this molded plate was washed with acetone or methylene chloride, dissolution and white turbidity occurred, and the chemical resistance was poor.

【0020】また、この板の表面にインジェクション成
形法にてABS樹脂を融着しようと試みた。即ち、この
成形板を接着金型にセットし、130℃に予熱した状態
で220℃に溶融したABS樹脂を注入した。その結
果、充分な接着板は得られなかった。
An attempt was made to fuse the ABS resin to the surface of this plate by injection molding. That is, this molded plate was set in an adhesive mold, and ABS resin melted to 220 ° C. was injected while preheated to 130 ° C. As a result, a sufficient adhesive plate could not be obtained.

【0021】[0021]

【実施例1】上記比較例1と同様のCFクロス/ポリカ
ーボネート複合材料成形板の両面に、ABS樹脂フィル
ム(厚さ200μm)をそれぞれ1枚のせ、平板金型に
セットし、熱圧プレスを使用して、温度230℃、圧力
10kg/cm2 の条件下で融着させ、80℃迄冷却し
取り出して、表面のみ異質の樹脂層(該層の厚み0.1
5mm)を持つ全体の厚みが1.5mmの連続繊維強化
熱硬化性複合材料成形板(全体としてのVf=40%)
を得た。
Example 1 One ABS resin film (thickness: 200 μm) was put on each side of a CF cloth / polycarbonate composite material molding plate similar to that of Comparative Example 1, set in a flat plate mold, and a hot press was used. Then, they are fused at a temperature of 230 ° C. and a pressure of 10 kg / cm 2 , cooled to 80 ° C. and taken out.
5 mm) with a total thickness of 1.5 mm and continuous fiber reinforced thermosetting composite material molded plate (Vf = 40% as a whole)
Got

【0022】ここで得られた成形板を断面観察した結
果、マトリックス(ABS樹脂/ポリカーボネート樹
脂)間の境界は見られるものの、繰り返し曲げ疲労を加
えても、層間剥離は認められなかった。
As a result of observing the cross section of the molded plate obtained here, the boundary between the matrix (ABS resin / polycarbonate resin) was observed, but delamination was not observed even after repeated bending fatigue.

【0023】この異種マトリックス成形板を用いて比較
例1と同様の溶媒で表面を洗浄したが、溶解や白濁は見
られず、耐薬品性の改善された成形板であることが確認
された。また、さらにこの成形板の表面へABS樹脂の
インジェクションによる融着を上記比較例1と同様の条
件で行った。その結果は非常に強固な融着物が得られ
た。
The surface of this different matrix molded plate was washed with the same solvent as in Comparative Example 1, but no dissolution or white turbidity was observed, and it was confirmed that the molded plate had improved chemical resistance. Further, fusion bonding of ABS resin to the surface of this molded plate was performed under the same conditions as in Comparative Example 1 above. As a result, a very strong fused material was obtained.

【0024】[0024]

【比較例2】本例は、マトリックス樹脂がナイロン6
で、接着性にやや難のある複合材料について改善を試み
た比較例である。
Comparative Example 2 In this example, the matrix resin is nylon 6
This is a comparative example in which improvement was attempted for a composite material having a slightly difficult adhesive property.

【0025】比較例1のポリカーボネートフィルムをナ
イロン6フイルムと置き換え、その他の繊維構成、積層
状態および成形条件は上述の比較例1と同様にして成形
した。得られた成形品(Vf=54%)を用いて、AB
S樹脂のインジェクションによるABS樹脂との接着性
を、上記比較例1と同様の条件で行った。その結果、接
着性の良いものは得られなかった。
The polycarbonate film of Comparative Example 1 was replaced with Nylon 6 film, and the other fiber structure, laminated state and molding conditions were the same as those of Comparative Example 1 described above. Using the obtained molded product (Vf = 54%), AB
Adhesion of the S resin to the ABS resin by injection was performed under the same conditions as in Comparative Example 1 above. As a result, a product with good adhesiveness was not obtained.

【0026】[0026]

【実施例2】上記の比較例2による成形板の両面にAB
S樹脂フィルム(厚さ200μm)を積層し、平板金型
にセットした。これを熱圧プレスを用いて、実施例1と
同様の条件にて成形し、両表面に厚み0.15mmのA
BS樹脂層をもつ複合材料成形板(全体としてのVf=
44%)を得た。
Example 2 AB was formed on both sides of the molded plate according to Comparative Example 2 above.
S resin films (thickness 200 μm) were laminated and set in a flat plate mold. This was molded using a hot press under the same conditions as in Example 1, and A having a thickness of 0.15 mm was formed on both surfaces.
Composite material molded plate having BS resin layer (Vf =
44%).

【0027】この成形板について断面観察した結果、マ
トリックス(ABS樹脂/ナイロン6)間の境界は見ら
れるものの、繰り返し曲げ疲労を加えても、層間剥離は
認められなかった。また、この異種マトリックス成形板
を用いて実施例1と同様のABS樹脂のインジェクショ
ンによる接着を試みた。その結果は良好で、ABS樹脂
を成形板に直接インジェクション接着することができ
た。
As a result of observing the cross section of this molded plate, although a boundary between the matrix (ABS resin / nylon 6) was observed, delamination was not observed even after repeated bending fatigue. Further, using this different matrix molded plate, an attempt was made to bond the same ABS resin as in Example 1 by injection. The result was good, and the ABS resin could be directly injection-bonded to the molded plate.

【0028】[0028]

【比較例3】上記実施例1および実施例2と同一の効果
を得る目的で、複合材料のマトリックスをABS樹脂と
して成形した。積層構成は比較例1の構成のうちポリカ
ーボネートフィルムの代わりにABS樹脂フィルム(厚
さ200μm)を用いるほか比較例1と同じとした。成
形条件は、熱圧プレスを使用し、温度320℃、圧力3
0kg/cm2 の条件下で30分間加熱加圧して含浸
後、80℃迄冷却し金型より取り出した。得られた成形
板(Vf=60%)は、断面観察の結果、CFクロスへ
のABS樹脂の含浸が必ずしも充分でなく、繊維束にひ
び割れが見られた。また、この成形板を、手にて繰り返
し曲げを行うと音を発して層間剥離を生じた。即ち、A
BS樹脂単体での連続繊維複合材料成形は困難であっ
た。
Comparative Example 3 For the purpose of obtaining the same effects as in Examples 1 and 2, the matrix of the composite material was molded as an ABS resin. The laminated structure was the same as that of Comparative Example 1 except that an ABS resin film (thickness 200 μm) was used instead of the polycarbonate film in the structure of Comparative Example 1. The molding conditions are hot pressing, temperature 320 ° C, pressure 3
After heating and pressurizing for 30 minutes under the condition of 0 kg / cm 2, the solution was impregnated, cooled to 80 ° C., and taken out from the mold. As a result of cross-section observation, the obtained molded plate (Vf = 60%) was not necessarily sufficiently impregnated with ABS resin into the CF cloth, and cracks were found in the fiber bundle. When this molded plate was repeatedly bent by hand, a sound was emitted and delamination occurred. That is, A
It was difficult to mold the continuous fiber composite material with the BS resin alone.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 連続繊維を強化繊維とし熱可塑性樹脂を
マトリックスとする熱可塑性複合材料であって、強化繊
維を含有する層と強化繊維を含有しない層とよりなり、
強化繊維を含有しない層と強化繊維を含有する層におけ
るマトリックス樹脂が互いに異なることを特徴とする複
合材料。
1. A thermoplastic composite material comprising continuous fibers as reinforcing fibers and a thermoplastic resin as a matrix, comprising a layer containing reinforcing fibers and a layer not containing reinforcing fibers,
A composite material, wherein the matrix resin in the layer containing no reinforcing fiber and the matrix resin in the layer containing reinforcing fiber are different from each other.
【請求項2】 強化繊維を含有しない層の熱可塑性樹脂
が、ABS樹脂である請求項1記載の複合材料。
2. The composite material according to claim 1, wherein the thermoplastic resin of the layer containing no reinforcing fiber is an ABS resin.
【請求項3】 強化繊維を含有する層の熱可塑性樹脂
が、ナイロン6およびポリカーボネートより選ばれた少
なくとも一種を含む樹脂である請求項1または2項記載
の複合材料。
3. The composite material according to claim 1, wherein the thermoplastic resin of the layer containing the reinforcing fiber is a resin containing at least one selected from nylon 6 and polycarbonate.
【請求項4】 強化繊維を含まない層の厚みが、0.0
5〜1mmである請求項1,2または3記載の複合材
料。
4. The thickness of the layer containing no reinforcing fiber is 0.0
The composite material according to claim 1, 2 or 3, which has a thickness of 5 to 1 mm.
【請求項5】 強化繊維を含有する層のVf(体積基準
繊維含有率)が、30〜60%である請求項1〜4のい
ずれかに記載の複合材料
5. The composite material according to claim 1, wherein the layer containing the reinforcing fibers has a Vf (volume-based fiber content) of 30 to 60%.
【請求項6】 強化繊維を含有する層と強化繊維を含有
しない層を予め準備し、これを接着層の介在または非介
在下に熱的に接合して得られる請求項1〜5のいずれか
に記載の複合材料。
6. The method according to claim 1, wherein a layer containing reinforcing fibers and a layer not containing reinforcing fibers are prepared in advance, and the layers are thermally bonded with or without an adhesive layer. 7. The composite material described in.
JP9150793A 1993-04-19 1993-04-19 Continuous fiber-reinforced composite material Pending JPH06297647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9150793A JPH06297647A (en) 1993-04-19 1993-04-19 Continuous fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9150793A JPH06297647A (en) 1993-04-19 1993-04-19 Continuous fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JPH06297647A true JPH06297647A (en) 1994-10-25

Family

ID=14028329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9150793A Pending JPH06297647A (en) 1993-04-19 1993-04-19 Continuous fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH06297647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514051A (en) * 2011-12-21 2012-06-27 北京林业大学 Basalt continuous fiber reinforced bamboo-wood composite material and method for manufacturing same
CN103770390A (en) * 2014-01-09 2014-05-07 广州金发碳纤维新材料发展有限公司 Continuous fiber ultrathin composite material sheet with different surface patterns and preparation method and application of sheet
WO2017110602A1 (en) * 2015-12-25 2017-06-29 東レ株式会社 Composite molded article and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514051A (en) * 2011-12-21 2012-06-27 北京林业大学 Basalt continuous fiber reinforced bamboo-wood composite material and method for manufacturing same
CN103770390A (en) * 2014-01-09 2014-05-07 广州金发碳纤维新材料发展有限公司 Continuous fiber ultrathin composite material sheet with different surface patterns and preparation method and application of sheet
WO2017110602A1 (en) * 2015-12-25 2017-06-29 東レ株式会社 Composite molded article and method for manufacturing same
JPWO2017110602A1 (en) * 2015-12-25 2018-10-18 東レ株式会社 Composite molded body and method for producing the same
US10919271B2 (en) 2015-12-25 2021-02-16 Toray Industries, Inc. Composite molded article and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP5054258B2 (en) Molding material
AU609550B2 (en) Fibre reinforced thermoplastic composite structures
EP0269148B1 (en) A method of making a shaped article from a sandwich construction
JP2543743B2 (en) Method of making a molded article using a sandwich structure
CN107531926B (en) Polyester-based tape composite for wood reinforcement
EP0366979A2 (en) Improved interleaf layer in fiber reinforced resin laminate composites
US11926111B2 (en) Manufacturing method for fiber-reinforced plastic composite
JPH04231084A (en) Ski plate and its production
JP3751023B2 (en) Laminated members with different elasticity in the edge area
EP0327142B1 (en) Resin matrix composites
JPH06165842A (en) Golf club head
JPH06297647A (en) Continuous fiber-reinforced composite material
JP2003200833A (en) Steering wheel and its manufacturing method
JP3127947B2 (en) Composite molding
JPH0583072B2 (en)
JPS595429B2 (en) Laminated composite material consisting of high molecular weight polyethylene and phenolic resin and method for producing the same
JP2000038139A (en) Steering wheel and its manufacture
US20120121848A1 (en) Composite materials for sports articles and method of manufacturing the composite materials
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JPH025979A (en) Golf club
EP0632087A4 (en) Prepreg, method of manufacturing the same, and laminated composite.
TWM479216U (en) Multi-layer composite material
JPH10158417A (en) Prepreg
JPH11286076A (en) Rubber composite material and its production
JP2531326B2 (en) Sheet material for molding fiber reinforced polyamide resin