JPH06297369A - Intelligent robot - Google Patents

Intelligent robot

Info

Publication number
JPH06297369A
JPH06297369A JP8040493A JP8040493A JPH06297369A JP H06297369 A JPH06297369 A JP H06297369A JP 8040493 A JP8040493 A JP 8040493A JP 8040493 A JP8040493 A JP 8040493A JP H06297369 A JPH06297369 A JP H06297369A
Authority
JP
Japan
Prior art keywords
work
manipulator mechanism
manipulator
working
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8040493A
Other languages
Japanese (ja)
Inventor
Jiyunichi Gouki
純一 合木
Shoji Mitsui
昭二 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8040493A priority Critical patent/JPH06297369A/en
Publication of JPH06297369A publication Critical patent/JPH06297369A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an intelligent robot which automatically plans the working locus and carries out the aimed work even in the case where the relative position relation between a robot and a working objective article is not constant and differs according to the state. CONSTITUTION:An intelligence robot is equipped with a noncontact type distance sensor 5 which is installed on an end effector 9 at the top edge of a manipulator mechanism 2 and measures the distance Lm up to the point on a working objective surface 1a, kinematics calculator 6 for obtaining the three-dimensional position vector (r) at the point on the working objective surface 1a through the kinematics calculation from the distance Lm, dimension L of the manipulator mechanism 2, each joint displacement vector H of the manipulator mechanism 2, etc., and a joint input calculator 7 which determines the working objective surface 1a from the three-dimensional position vector (r), plans the working locus, carries out the inverted kinematics calculation on the basis of the working locus, obtains each joint displacement vector H of the manipulator mechanism 2 corresponding to the working locus, and outputs these values to a manipulator controller 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、知的ロボットに関し、
特に屋根等の雪降しロボット、高速道路の橋脚やトンネ
ル壁面の清掃ロボット、航空機の各種メンテナンスロボ
ット、船体や車体の塗装・研掃ロボット等、工場内では
なく屋外での作業を行ういわゆる「工場を出るロボッ
ト」全般に適用して有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intelligent robot,
In particular, the so-called "factory" that does not work inside the factory but outdoors, such as snow-covering robots for roofs, cleaning robots for piers and tunnel walls on highways, various maintenance robots for aircraft, painting and blasting robots for hulls and bodies. It is useful when applied to all "robots leaving".

【0002】[0002]

【従来の技術】図3に示すように、工場内での繰り返し
作業を前提とした従来の産業用ロボットは、マニピュレ
ータ機構2、該マニピュレータ機構を制御するマニピュ
レータ制御器3、マニピュレータ機構2をリモコン操作
するためのティーチング・ボックスと呼ばれるリモコン
操作器4、マニピュレータ機構2の関節変位(角度或る
いはアームの長さ)ベクトルを記憶するメモリー(計算
器)8及びマニピュレータ機構の先端部に装着される工
具であるエンド・エフェクター9を有しており、いわゆ
るティーチングプレバック方式が、その作業軌道計画及
びマニピュレータ制御の基本となっている。
2. Description of the Related Art As shown in FIG. 3, a conventional industrial robot, which is premised on repetitive work in a factory, operates a manipulator mechanism 2, a manipulator controller 3 for controlling the manipulator mechanism, and a manipulator mechanism 2 by remote control. A remote control device 4 called a teaching box, a memory (calculator) 8 for storing a joint displacement (angle or arm length) vector of the manipulator mechanism 2, and a tool attached to the tip of the manipulator mechanism. The so-called teaching pre-back method is the basis of the work trajectory planning and manipulator control.

【0003】この場合、ベクトルHからベクトルrを求
めるキネマティクス演算や、逆にrからベクトルHを求
める逆キネマティクス演算は行わない。 但し、ベクトルH:マニピュレータ機構2の関節変位
(角度或るいはアームの長さ)ベクトル ベクトルr:マニピュレータ機構2の先端或るいはエン
ド・エフェクター9の位置・姿勢ベクトルであり、通
常、位置の3成分と回転の3成分とから成る。
In this case, the kinematics calculation for obtaining the vector r from the vector H and the inverse kinematics calculation for obtaining the vector H from r are not performed. However, vector H: joint displacement (angle or arm length) of the manipulator mechanism 2 vector r: position / orientation vector of the tip or end effector 9 of the manipulator mechanism 2, usually 3 It consists of a component and three components of rotation.

【0004】前記ティーチング・プレイバック方式で
は、図3(A)に示すようにマニピュレータ機構2の位
置・姿勢教示時には、作業対象物1に対してとるべきマ
ニピュレータ機構2の位置や姿勢を、直接、人がマニピ
ュレータ機構2を持って、或るいはリモコン操作器4に
よるリモコン操作で、次々に教示してゆき、各々の位置
や姿勢に対応するベクトルHを順次メモリー(計算器)
8に記憶してゆく。次に、図3(B)に示すように作業
時には、前記ベクトルHを記憶順に適当な速さでメモリ
ー(計算器)8からマニピュレータ制御器3へ入力して
ゆく。これによりマニピュレータ機構2の先端部のエン
ド・エフェクター9が教示された作業軌道を再現し、そ
の結果、所定の作業が行われる。従って作業対象物1を
同一条件でセットしさえすれば、前記作業を繰り返し行
うことができる。
In the teaching / playback system, as shown in FIG. 3A, when teaching the position / orientation of the manipulator mechanism 2, the position or orientation of the manipulator mechanism 2 to be taken with respect to the work object 1 is directly set. A person holds the manipulator mechanism 2 or teaches one after another by remote control operation by the remote control operator 4, and sequentially stores a vector H corresponding to each position and posture (calculator).
Remember in 8. Next, as shown in FIG. 3B, at the time of work, the vector H is input from the memory (calculator) 8 to the manipulator controller 3 at an appropriate speed in the order of storage. As a result, the end effector 9 at the tip of the manipulator mechanism 2 reproduces the taught work trajectory, and as a result, a predetermined work is performed. Therefore, as long as the work target 1 is set under the same conditions, the work can be repeated.

【0005】[0005]

【発明が解決しようとする課題】しかしながらいわゆる
「工場を出るロボット」に上述の如き従来技術を適用す
る場合、以下に記す課題がある。 (1) 一般には、その場その場でロボットと作業対象
物との相対位置関係が変わる為、同一の相対位置関係で
の繰り返し作業を前提とした従来技術に係るティーチン
グ・プレイバック方式では、目的の作業を行うことが困
難である。 (2) 繰り返し作業ではなく1回だけの作業であって
も従来技術に係るティーチング・プレイバック方式で
は、一般に教示点が多く、作業対象物が平面のように簡
単な形状の場合でも、その認識がない(ベクトルHだけ
を使いベクトルrは使わない)為、ティーチングには多
大の労力と長時間を要することになる。 (3) 教示後、この教示した作業軌道よりも例えば更
に一律10cm手前に作業軌道を修正して作業させたいよ
うな時でも、もう一度新たな作業軌道を教示し直す必要
がある。 (4) 作業軌道を教示する際、その作業軌道が作業対
象物に近い場合には、ロボットが前記作業対象物に接触
し、作業対象物やロボットにキズをつけたり、故障更に
は破損の虞がある。
However, when the above-mentioned conventional technique is applied to a so-called "robot leaving the factory", there are the following problems. (1) Generally, since the relative positional relationship between the robot and the work object changes on the spot, the teaching / playback method according to the related art, which is premised on repetitive work with the same relative positional relationship, has a purpose. Is difficult to do. (2) The teaching / playback method according to the related art generally has many teaching points even if the work is a single work rather than a repetitive work, and even if the work object has a simple shape such as a plane, the recognition is performed. Since there is no such information (only the vector H is used and the vector r is not used), teaching requires a great deal of labor and a long time. (3) After teaching, even when it is desired to correct the work trajectory even further by 10 cm before the taught work trajectory, for example, it is necessary to teach a new work trajectory again. (4) When teaching the work trajectory, if the work trajectory is close to the work target, the robot may come into contact with the work target, scratch the work target or the robot, or cause a failure or damage. is there.

【0006】本発明は、上記従来技術に鑑み、ロボット
と作業対象物との相対位置関係が一定ではなくその場に
応じて異なる場合でも、自動的に作業軌道を計画し、目
的の作業を行うことのできる知的ロボットを提供するこ
とを目的とする。
In view of the above-mentioned conventional technique, the present invention automatically plans a work trajectory and performs a desired work even when the relative positional relationship between the robot and the work object is not constant but different depending on the situation. The purpose is to provide an intelligent robot capable of performing.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の構成は、マニピュレータ機構と、該マニピュレータ
機構を制御するマニピュレータ制御器と、前記マニピュ
レータ機構の先端部に設けられ、該先端部から作業対象
面上の点までの距離を計測する距離センサと、該距離セ
ンサの計測値、前記マニピュレータ機構の諸元及び前記
マニピュレータ機構の各関節の角度やアームの長さの計
測値などから、キネマティクス演算をして、ロボット座
標からみた時の前記作業対象面上の点の3次元位置ベク
トルを求めるキネマティクス計算器と、該キネマティク
ス計算器で求めた前記作業対象面上の点の3次元位置ベ
クトルから前記作業対象面を同定し、作業軌道を計画す
るとともに、これに基づき逆キネマティクス演算を行
い、前記作業軌道に対応するマニピュレータ機構の各関
節の角度やアームの長さを求め、これらを前記マニピュ
レータ制御器へ出力する関節入力計算器とを有すること
を特徴とする。
Means for Solving the Problems The structure of the present invention that achieves the above object is provided in a manipulator mechanism, a manipulator controller for controlling the manipulator mechanism, and a tip portion of the manipulator mechanism. From a distance sensor that measures the distance to a point on the target surface, the measured value of the distance sensor, the specifications of the manipulator mechanism and the measured values of the angle of each joint of the manipulator mechanism and the arm length, and the like, kinematics A kinematics calculator for calculating a three-dimensional position vector of a point on the work target surface when viewed from robot coordinates, and a three-dimensional position of the point on the work target surface calculated by the kinematics calculator The work surface is identified from the vector, the work trajectory is planned, and the inverse kinematics operation is performed based on this to determine the work trajectory. Calculated the angle and length of the arm of each joint of the response to the manipulator mechanism, and having a joint input calculator for outputting them to the manipulator controller.

【0008】[0008]

【作用】上記構成の本発明によれば、まず距離センサに
よって作業対象面上の点までの距離が計測される。次に
キネマティクス計算器において、前記距離センサの計測
値、マニピュレータ機構の諸元及び前記マニピュレータ
機構の各関節の角度やアームの長さの計測値などから、
キネマティクス演算によりロボット座標から見た時の前
記作業対象面上の点の3次元位置ベクトルが求められ
る。最後に関節入力計算器において、前記作業対象面上
の点の3次元位置ベクトルから前記作業対象面が同定さ
れ、作業軌道が計画されるとともに、これに基づき逆キ
ネマティクス演算を行い、前記作業軌道に対応するマニ
ピュレータ機構の各関節の角度やアームの長さが求めら
れ、これらがマニピュレータ制御器へ出力される。
According to the present invention having the above structure, the distance sensor first measures the distance to the point on the work surface. Next, in the kinematics calculator, from the measured value of the distance sensor, the specifications of the manipulator mechanism and the measured values of the angles of the joints and the arm length of the manipulator mechanism,
The three-dimensional position vector of the point on the work surface viewed from the robot coordinates is obtained by kinematics calculation. Finally, in the joint input calculator, the work target surface is identified from the three-dimensional position vector of the point on the work target surface, the work trajectory is planned, and the inverse kinematics calculation is performed based on this to calculate the work trajectory. The angle of each joint and the arm length of the manipulator mechanism corresponding to are calculated, and these are output to the manipulator controller.

【0009】かくして前記マニピュレータ機構の先端部
が前記作業軌道に沿って動作するよう制御され、その結
果知的ロボットは、目的の作業を行う。
Thus, the tip end portion of the manipulator mechanism is controlled so as to move along the work trajectory, and as a result, the intelligent robot performs the intended work.

【0010】[0010]

【実施例】以下本発明の実施例を図面に基づき詳細に説
明する。なお従来技術と同様の部分には同一の符号を付
して重複する説明は省略する。
Embodiments of the present invention will now be described in detail with reference to the drawings. The same parts as those in the prior art are designated by the same reference numerals and the duplicated description will be omitted.

【0011】図1は、本発明の実施例に係る知的ロボッ
トの構成を示す図である。同図に示すように本実施例に
係る知的ロボットは、マニピュレータ機構2、マニピュ
レータ制御器3、リモコン操作器4、非接触距離センサ
5、キネマティクス計算器6、関節入力計算器7及びエ
ンド・エフェクター9を有する。
FIG. 1 is a diagram showing a configuration of an intelligent robot according to an embodiment of the present invention. As shown in the figure, the intelligent robot according to this embodiment includes a manipulator mechanism 2, a manipulator controller 3, a remote controller 4, a non-contact distance sensor 5, a kinematics calculator 6, a joint input calculator 7, and an end controller. It has an effector 9.

【0012】これらのうち非接触距離センサ5は、エン
ド・エフェクター9の先端部に設けられ、作業対象物1
の作業対象面1a上の点までの距離Lmを計測する。図
2は、非接触距離センサ5の設置例を示す図である。同
図に示すように非接触距離センサ5は、エンド・エフェ
クター9の一例であるスプレー塗装作業用のスプレーガ
ンの先端部に設けられている。
Of these, the non-contact distance sensor 5 is provided at the tip of the end effector 9, and the work object 1
The distance Lm to the point on the work surface 1a is measured. FIG. 2 is a diagram showing an installation example of the non-contact distance sensor 5. As shown in the figure, the non-contact distance sensor 5 is provided at the tip of a spray gun for spray painting, which is an example of the end effector 9.

【0013】キネマティクス計算器6は、図1(A)に
示すように、前記作業対象面1a上の点までの距離L
m、マニピュレータ機構2の諸元(定数)L及びマニピ
ュレータ機構2の各関節の角度やアームの長さの計測
値、すなわち各関節変位(角度或るいはアームの長さ)
ベクトルHなどからキネマティクス演算fにより、ロボ
ット座標からみた時の前記作業対象面1a上の点の3次
元位置ベクトルrを求める。なお前記アームの長さと
は、関節2aから先端までの長さL3 と前記距離Lmと
から求められる長さであり、前記作業対象面1a上の点
をアームの仮想の先端とした時のアームの長さである。
As shown in FIG. 1 (A), the kinematics calculator 6 has a distance L to a point on the work surface 1a.
m, specifications (constant) L of the manipulator mechanism 2, and measured values of angles of joints and arm lengths of the manipulator mechanism 2, that is, displacements of joints (angles or arm lengths).
A kinematics calculation f is performed from the vector H to obtain a three-dimensional position vector r of the point on the work surface 1a as viewed from the robot coordinates. The length of the arm is a length obtained from the length L 3 from the joint 2a to the tip and the distance Lm, and the arm when the point on the work surface 1a is the virtual tip of the arm Is the length of.

【0014】関節入力計算器7は、キネマティクス計算
器6で求められた前記作業対象面1a上の点の3次元位
置ベクトルrに基づき、平面や2次曲面、更にはより適
当な解析曲面等で近似することにより前記作業対象面1
aを同定するとともに、スプレー塗装作業等における一
定間隔位置制御やブラシ洗浄作業等における一定押付力
制御等の作業条件とエンド・エフェクター9(具体的に
はスプレーガン、清掃ブラシ等)の機構とを考え合わせ
て、目的の作業を行うためのエンド・エフェクター9の
3次元位置・姿勢の作業軌道を自動的に計画する。
The joint input calculator 7 is based on the three-dimensional position vector r of the point on the work surface 1a obtained by the kinematics calculator 6 and is a plane, a quadric surface, or a more suitable analysis curved surface. The work surface 1 is approximated by
In addition to identifying a, work conditions such as constant interval position control in spray painting work and constant pressing force control in brush cleaning work and the mechanism of the end effector 9 (specifically, spray gun, cleaning brush, etc.) In consideration, the work trajectory of the three-dimensional position / posture of the end effector 9 for performing the desired work is automatically planned.

【0015】その後関数入力計算器7は、今度は逆に図
1(B)に示すように、3次元位置ベクトルr、パラメ
ータLc及びマニピュレータ機構の諸元(定数)Lから
逆キネマティクス演算f-1により、マニピュレータ機構
2の各関節の角度やアームの長さ、すなわち各関節変位
(角度或るいはアームの長さ)ベクトルHを求め、これ
らをマニピュレータ制御器3へ出力する。
[0015] Then the function input calculator 7, as shown now back to FIG. 1 (B), 3-dimensional position vector r, parameters Lc and specifications (constant) from L inverse kinematics calculation f manipulator mechanism - the 1, each joint angle and length of the arm of the manipulator mechanism 2, i.e. each joint displacement (angle one Rui length of the arm) obtains a vector H, and outputs them to the manipulator control device 3.

【0016】なおここでの3次元位置ベクトルrは、非
接触距離センサ5軸の3次元位置・姿勢の作業対象面1
a内の前記作業軌道上の各点での値であり、またパラメ
ータLcは、作業条件に応じて設定するパラメータ(通
常は定数)である。例えばスプレー塗装作業のように作
業対象面1aとエンド・エフェクター9とが一定間隔を
有するような作業を行う場合には、Lcを適当な正の定
数とし、エンド・エフェクター9が作業対象面1aに接
触するような作業を行う場合には、Lcを0とする。ま
たブラシ洗浄作業のように作業対象面1aに対し、エン
ド・エフェクター9が一定押付力を有するような作業を
行う場合には、エンド・エフェクター9に適当なバネ機
構を設けたうえで、Lcを適当な負の定数とする。
The three-dimensional position vector r here is the work surface 1 of the three-dimensional position / orientation of the five axes of the non-contact distance sensor.
It is a value at each point on the work trajectory in a, and the parameter Lc is a parameter (usually a constant) set according to the work condition. For example, when performing a work such as a spray painting work in which the work target surface 1a and the end effector 9 have a constant distance, Lc is set to an appropriate positive constant and the end effector 9 is set to the work target surface 1a. Lc is set to 0 when performing work such that they come into contact with each other. When performing a work such as a brush cleaning work in which the end effector 9 has a constant pressing force against the work surface 1a, an appropriate spring mechanism is provided on the end effector 9 and then Lc is set. Use an appropriate negative constant.

【0017】上記実施例によれば、図1(A)に示すよ
うに、まず知的ロボットを作業対象物1に近づけて、又
は作業対象物1を知的ロボットに近づけて両者の相対位
置を固定する。この状態で作業対象面1aを同定するの
に適当な作業対象面1a上の点を定める。このとき必要
であれば作業対象面1a上にマーク等をつける。次にリ
モコン操作器4によりマニピュレータ機構2を操作し、
非接触距離センサ5が許容範囲内の精度で前記作業対象
面1a上の点までの距離Lmを計測できる位置にくるま
で、非接触距離センサ5を作業対象面1aに近づける。
なお非接触距離センサ5軸と可視レーザ光発射器等の軸
とが同軸、或るいは平行になるよう設定しておくと、そ
の確認に便利である。また非接触距離センサ5軸が作業
対象面1aに対し法線方法である必要はない。
According to the above embodiment, as shown in FIG. 1 (A), first, the intelligent robot is brought close to the work object 1, or the work object 1 is brought close to the intelligent robot, and the relative positions of the two are determined. Fix it. In this state, a point on the work surface 1a suitable for identifying the work surface 1a is determined. At this time, if necessary, a mark or the like is attached on the work surface 1a. Next, operate the manipulator mechanism 2 with the remote controller 4,
The non-contact distance sensor 5 is brought close to the work surface 1a until the non-contact distance sensor 5 reaches a position where the distance Lm to the point on the work surface 1a can be measured with an accuracy within the allowable range.
It should be noted that it is convenient to confirm that the five axes of the non-contact distance sensor and the axis of the visible laser light emitter are set to be coaxial or parallel to each other. Further, the five axes of the non-contact distance sensor need not be the normal method to the work surface 1a.

【0018】このようにして順次、作業対象面1a上の
点までの距離Lmを計測する。なおいま、作業対象面1
aが単なる平面だとすると、作業対象面1a上の3点の
3次元位置ベクトルrによってこの平面、すなわち作業
対象面1aを同定することができる。従ってここでは作
業対象面1a上の3点の距離Lmを各々計測する。
In this manner, the distance Lm to the point on the work surface 1a is sequentially measured. Work surface 1 now
If a is a simple plane, this plane, that is, the work surface 1a can be identified by the three-dimensional position vector r of three points on the work surface 1a. Therefore, here, the distances Lm at three points on the work surface 1a are measured.

【0019】次にキネマティクス計算器6において、前
記作業対象面1a上の3点の各々の距離Lm、マニピュ
レータ機構2の諸元(定数)L及びマニピュレータ機構
2の各関節変位(角度或るいはアームの長さ)ベクトル
Hなどからキネマティクス演算fにより前記作業対象面
1a上の3点の3次元位置ベクトルrが求められる。な
お、この3次元位置ベクトルrは、前記作業対象面1a
上の3点の3次元位置ベクトルであるが、この3点が非
接触距離センサ5軸との交点とも一致することから、通
常、位置の3成分と非接触距離センサ5軸の回転の3成
分とから成るが、この場合、前記回転の3成分は不要で
ある。
Next, in the kinematics calculator 6, the distance Lm of each of the three points on the work surface 1a, the specifications (constant) L of the manipulator mechanism 2 and each joint displacement (angle or angle) of the manipulator mechanism 2 are calculated. A three-dimensional position vector r of three points on the work surface 1a is obtained by kinematics calculation f from the (arm length) vector H and the like. The three-dimensional position vector r is the work surface 1a.
It is a three-dimensional position vector of the above three points, but since these three points also coincide with the intersection with the non-contact distance sensor 5 axis, there are usually 3 components of the position and 3 components of rotation of the non-contact distance sensor 5 axis. In this case, the three components of the rotation are unnecessary.

【0020】続いて関節入力計算器7において、前記作
業対象面1a上の3点の3次元位置ベクトルrに基づ
き、作業対象面1a(平面)が同定されるとともに、目
的の作業を行うための作業軌道が自動的に計画される。
その後関節入力計算器7において、今度は逆に図1
(B)に示すように、非接触距離センサ5軸の3次元位
置・姿勢の作業対象面1a内の前記作業軌道上の各点で
の値である3次元位置ベクトルr、パラメータLc及び
マニピュレータ機構2の諸元(定数)Lとから逆キネマ
ティクス演算f-1により、マニピュレータ機構2の各関
節変位(角度或るいはアームの長さ)ベクトルHが求め
られ、これらがマニピュレータ制御器3へ出力される。
Subsequently, in the joint input calculator 7, the work surface 1a (plane) is identified based on the three-dimensional position vector r of the three points on the work surface 1a, and the desired work is performed. Work trajectories are automatically planned.
After that, in the joint input calculator 7, conversely, in FIG.
As shown in (B), the three-dimensional position vector r, the parameter Lc, and the manipulator mechanism, which are the values at each point on the work trajectory in the work target surface 1a with the three-dimensional position / orientation of the five axes of the non-contact distance sensor. The joint displacement (angle or arm length) vector H of the manipulator mechanism 2 is obtained by the inverse kinematics calculation f −1 from the specifications (constant) L of 2 and these are output to the manipulator controller 3. To be done.

【0021】このためマニピュレータ制御器3が前記マ
ニピュレータ機構2の各関節変位(角度或るいはアーム
の長さ)ベクトルHに基づき、マニピュレータ機構2を
制御し、その結果エンド・エフェクター9が前記作業軌
道に沿って動作する。かくして上記実施例に係る知的ロ
ボットは、目的の作業を行う。
Therefore, the manipulator controller 3 controls the manipulator mechanism 2 based on each joint displacement (angle or arm length) vector H of the manipulator mechanism 2, and as a result, the end effector 9 causes the work trajectory. Work along. Thus, the intelligent robot according to the above embodiment performs the intended work.

【0022】なお3次元位置ベクトルrのうち、姿勢デ
ータは、作業対象面1aに対し法線方向という条件が付
けられるのが普通であるが、作業対象面1aを適当な解
析曲面で近似し、同定することができれば、この法線方
向を求めることは容易である。
Of the three-dimensional position vector r, the posture data is usually given a condition that it is the normal direction to the work surface 1a, but the work surface 1a is approximated by an appropriate analysis curved surface, If it can be identified, it is easy to find this normal direction.

【0023】[0023]

【発明の効果】以上実施例とともに具体的に説明したよ
うに、本発明によれば、知的ロボットと作業対象物との
相対位置関係が一定ではなく、その場に応じて異なる場
合でも、作業軌道を自動的に計画し、容易に目的の作業
を行うことができる。
As described above in detail with the embodiments, according to the present invention, even if the relative positional relationship between the intelligent robot and the work object is not constant and varies depending on the situation, the work can be performed. The trajectory can be automatically planned, and the desired work can be easily performed.

【0024】また従来技術に係る産業用ロボットに対
し、僅かな改良を加えるだけで本発明に係る知的ロボッ
トを実現できる。また距離センサを用いているため、作
業対象面の同定時に知的ロボットが作業対象物に接触し
て破損する等の虞がなく、このため安全性が向上し、そ
の上前記作業対象面の同定が早く簡単にできる。
Further, the intelligent robot according to the present invention can be realized by adding a slight improvement to the industrial robot according to the prior art. In addition, since the distance sensor is used, there is no risk that the intelligent robot will contact the work object and be damaged when the work surface is identified. Therefore, the safety is improved and the work surface is identified. Can be quick and easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る知的ロボットの構成を示
す図である。
FIG. 1 is a diagram showing a configuration of an intelligent robot according to an embodiment of the present invention.

【図2】非接触距離センサ5の設置例を示す図である。FIG. 2 is a diagram showing an installation example of a non-contact distance sensor 5.

【図3】従来技術に係る産業用ロボットの構成を示す図
である。
FIG. 3 is a diagram showing a configuration of an industrial robot according to a conventional technique.

【符号の説明】[Explanation of symbols]

2 マニピュレータ機構 3 マニピュレータ制御器 5 非接触距離センサ 6 キネマティクス計算器 7 関数入力計算器 2 Manipulator mechanism 3 Manipulator controller 5 Non-contact distance sensor 6 Kinematics calculator 7 Function input calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マニピュレータ機構と、 該マニピュレータ機構を制御するマニピュレータ制御器
と、 前記マニピュレータ機構の先端部に設けられ、該先端部
から作業対象面上の点までの距離を計測する距離センサ
と、 該距離センサの計測値、前記マニピュレータ機構の諸元
及び前記マニピュレータ機構の各関節の角度やアームの
長さの計測値などから、キネマティクス演算をして、ロ
ボット座標からみた時の前記作業対象面上の点の3次元
位置ベクトルを求めるキネマティクス計算器と、 該キネマティクス計算器で求めた前記作業対象面上の点
の3次元位置ベクトルから前記作業対象面を同定し、作
業軌道を計画するとともに、これに基づき逆キネマティ
クス演算を行い、前記作業軌道に対応するマニピュレー
タ機構の各関節の角度やアームの長さを求め、これらを
前記マニピュレータ制御器へ出力する関節入力計算器と
を有することを特徴とする知的ロボット。
1. A manipulator mechanism, a manipulator controller for controlling the manipulator mechanism, a distance sensor provided at a tip end portion of the manipulator mechanism, for measuring a distance from the tip end portion to a point on a work target surface, Kinematics calculation is performed from the measured value of the distance sensor, the specifications of the manipulator mechanism, the measured values of the angles of the joints and the arm length of the manipulator mechanism, and the work surface when viewed from the robot coordinates. A kinematics calculator that determines the three-dimensional position vector of the upper point, and the work target surface is identified from the three-dimensional position vector of the point on the work target surface that is calculated by the kinematics calculator, and a work trajectory is planned. At the same time, inverse kinematics calculation is performed based on this, and the angle and arm of each joint of the manipulator mechanism corresponding to the work trajectory is The seek length, intelligent robot and having an articulation input calculator for outputting them to the manipulator controller.
JP8040493A 1993-04-07 1993-04-07 Intelligent robot Withdrawn JPH06297369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040493A JPH06297369A (en) 1993-04-07 1993-04-07 Intelligent robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040493A JPH06297369A (en) 1993-04-07 1993-04-07 Intelligent robot

Publications (1)

Publication Number Publication Date
JPH06297369A true JPH06297369A (en) 1994-10-25

Family

ID=13717359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040493A Withdrawn JPH06297369A (en) 1993-04-07 1993-04-07 Intelligent robot

Country Status (1)

Country Link
JP (1) JPH06297369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323731B2 (en) 2003-12-12 2008-01-29 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system
JP2016078140A (en) * 2014-10-14 2016-05-16 蛇の目ミシン工業株式会社 robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323731B2 (en) 2003-12-12 2008-01-29 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system
US7473948B2 (en) 2003-12-12 2009-01-06 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system
US7679116B2 (en) 2003-12-12 2010-03-16 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system
US7928486B2 (en) 2003-12-12 2011-04-19 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system
JP2016078140A (en) * 2014-10-14 2016-05-16 蛇の目ミシン工業株式会社 robot

Similar Documents

Publication Publication Date Title
Baeten et al. Hybrid vision/force control at corners in planar robotic-contour following
KR100311663B1 (en) Apparatus and method for tracking the appearance of an object using a spare shaft
JP3207728B2 (en) Control method of redundant manipulator
US6845295B2 (en) Method of controlling a robot through a singularity
Sharma et al. Motion perceptibility and its application to active vision-based servo control
US20080027580A1 (en) Robot programming method and apparatus with both vision and force
JPS59708A (en) Path motion manipulator performing adaptive speed control
KR100253898B1 (en) Trajectory control apparatus and trajectory control method for intra-planar multifreedom scara type of robot, and computer-readable recording medium with trajectory control program for intra-planar multifreedom scara type of robot stored therein
Lippiello et al. A position-based visual impedance control for robot manipulators
JPH06131032A (en) Robot device and teaching method for robot device
WO1994000269A1 (en) Robot for welding
CN111515928B (en) Mechanical arm motion control system
Cong Combination of two visual servoing techniques in contour following task
JPH06297369A (en) Intelligent robot
JPH09314487A (en) Method for controlling manipulator having redundant axis
JP2020171989A (en) Robot teaching system
Yavuz et al. Design of a string encoder-and-IMU-based 6D pose measurement system for a teaching tool and its application in teleoperation of a robot manipulator
JPS60127987A (en) Method and device for controlling profiling
JP2000039911A (en) Robot controller
JPS62199383A (en) Control system of robot
KR100859335B1 (en) Tracking method for welding start-point using lvs and visual servoing
JPH0146275B2 (en)
JPH11226886A (en) Correcting method for robot track
KR0176540B1 (en) Position correction device of mobile robot
JPS61253510A (en) Method for confirming robot control data

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704