JPH06297179A - Three dimensional offset type cnc laser beam machine - Google Patents

Three dimensional offset type cnc laser beam machine

Info

Publication number
JPH06297179A
JPH06297179A JP5086607A JP8660793A JPH06297179A JP H06297179 A JPH06297179 A JP H06297179A JP 5086607 A JP5086607 A JP 5086607A JP 8660793 A JP8660793 A JP 8660793A JP H06297179 A JPH06297179 A JP H06297179A
Authority
JP
Japan
Prior art keywords
axis
nozzle head
offset type
correction
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5086607A
Other languages
Japanese (ja)
Other versions
JP3267734B2 (en
Inventor
Teruo Baida
照生 倍田
Hitoshi Matsuura
仁 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP08660793A priority Critical patent/JP3267734B2/en
Priority to PCT/JP1994/000555 priority patent/WO1994023885A1/en
Publication of JPH06297179A publication Critical patent/JPH06297179A/en
Application granted granted Critical
Publication of JP3267734B2 publication Critical patent/JP3267734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots

Abstract

PURPOSE:To provide a three-dimensional offset type CNC laser beam machine for dealing with automatic programming in which an operation for fixing a top end is performed without changing a parameter nor returning again to the origin by a manual intervention at the time of exchanging a head in the course of machining. CONSTITUTION:The machine is constituted of a command part 11 for commanding a three-dimensional tool length compensation at the time of exchanging a nozzle head, a first compensation means 13 by which a compensation is performed for moving the top end position of the nozzle head, a machining program point, to a program point prior to the exchange in response to the command for a tool length compensation, and a second compensating means 14 by which the changed portion is compensated of the three orthogonal axes changing in accordance with the change in a rotary angle because of the movement of the top end position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3次元オフセットタイプ
CNCレーザ加工機に関し、特にレーザ加工機のヘッド
を交換した場合に先端固定の動作が行える工具長補正機
能を備えた3次元オフセットタイプCNCレーザ加工機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional offset type CNC laser processing machine, and more particularly to a three-dimensional offset type CNC laser having a tool length correcting function capable of fixing the tip when the head of the laser processing machine is replaced. Regarding processing machines.

【0002】[0002]

【従来の技術】ワークの加工を非接触で高速に行うこと
のできるレーザ加工機と複雑な輪郭制御の可能な数値制
御装置(CNC)とを組み合わせたCNCレーザ加工機
が広く使用されるようになり、3次元加工のできるCN
Cレーザ加工機も一般化されつつある。
2. Description of the Related Art A CNC laser beam machine, which is a combination of a laser beam machine capable of non-contact and high-speed machining of a workpiece and a numerical controller (CNC) capable of complex contour control, is widely used. Becomes a CN capable of three-dimensional processing
C laser processing machines are also becoming popular.

【0003】CNCレーザ加工機で3次元加工を行うに
は、X軸、Y軸及びZ軸の直交3軸の他、加工ヘッドの
姿勢制御を行うC軸及びA軸を加えた5軸の数値制御を
行う必要があり、このため、数値制御装置は一般にX
軸、Y軸及びZ軸を直角座標系で制御する制御手段と、
Z軸に一致するC軸を回転軸としてノズルヘッドを回転
制御するC軸制御手段と、Z軸に対して直角なA軸を回
転軸としてノズルヘッドを回転制御するA軸制御手段
と、X軸、Y軸、Z軸、C軸及びA軸を同時に補間する
補間手段とを備えている。
In order to perform three-dimensional processing with a CNC laser processing machine, in addition to the three orthogonal axes of the X-axis, Y-axis and Z-axis, numerical values of five axes including the C-axis and A-axis for controlling the attitude of the processing head are added. It is necessary to perform control, and as a result, numerical control devices generally use X
Control means for controlling the axes, the Y-axis and the Z-axis in a rectangular coordinate system,
C axis control means for controlling the rotation of the nozzle head with the C axis coinciding with the Z axis as the rotation axis, A axis control means for controlling the rotation of the nozzle head with the A axis perpendicular to the Z axis as the rotation axis, and the X axis. , Y-axis, Z-axis, C-axis and A-axis are simultaneously interpolated.

【0004】図2はオフセットタイプの、すなわちC軸
をZ軸に対する回転軸とし、A軸を軸に直角な回転軸と
したタイプの従来のレーザ加工機のヘッド機構の一例を
示した部分構成図である。この図において、符号1はC
軸を駆動するC軸用サーボモータ、2はA軸を駆動する
A軸用サーボモータである。3はレーザビームであり、
図示されていないレーザ発振器から反射ミラーなどの光
伝送部を通ってノズルの先端まで導かれ、ワーク表面に
照射される。
FIG. 2 is a partial configuration diagram showing an example of a head mechanism of a conventional laser processing machine of an offset type, that is, a type in which a C axis is a rotation axis with respect to a Z axis and an A axis is a rotation axis perpendicular to the axis. Is. In this figure, reference numeral 1 is C
The C-axis servo motor 2 drives the axis, and 2 is the A-axis servo motor that drives the A axis. 3 is a laser beam,
A laser oscillator (not shown) is guided to the tip of the nozzle through an optical transmission unit such as a reflection mirror and is irradiated on the surface of the work.

【0005】C軸用サーボモータ1はギア4a及び4b
を介して部材5を駆動することにより、部材5をC軸を
中心として回転制御する。A軸用サーボモータ2はギア
6a及び6bを介して軸7を回転させ、傘歯車8a、8
bによって軸9を回転させてノズルヘッド10をA軸を
中心として回転制御する。
The C-axis servomotor 1 includes gears 4a and 4b.
By driving the member 5 via the, the rotation of the member 5 about the C axis is controlled. The A-axis servomotor 2 rotates the shaft 7 via the gears 6a and 6b to rotate the bevel gears 8a, 8b.
The shaft 9 is rotated by b to control the rotation of the nozzle head 10 about the A axis.

【0006】ここで、Z軸の中心から照射ビームの中心
までを第1アームの長さH1、A軸の中心からノズルヘ
ッド10までを第2アームの長さH2、ノズルヘッド1
0の装着部から照射ビームのワーク上の焦点すなわちプ
ログラム点までの長さをDとする。
Here, the length H1 of the first arm from the center of the Z axis to the center of the irradiation beam, the length H2 of the second arm from the center of the A axis to the nozzle head 10, and the nozzle head 1
Let D be the length from the mounting portion of 0 to the focus of the irradiation beam on the work, that is, the program point.

【0007】ワークを3次元加工するには、第1及び第
2アームの長さH1、H2をパラメータとして予め設定
し、加工目的に合わせて装着されるノズルヘッド10の
長さDを設定し、原点復帰をかけて基準点を確立した後
で行うことになる。
To three-dimensionally machine a workpiece, the lengths H1 and H2 of the first and second arms are preset as parameters, and the length D of the nozzle head 10 to be mounted is set according to the machining purpose. This will be done after the reference point has been established by performing homing.

【0008】[0008]

【発明が解決しようとする課題】ところで、ワークを加
工する一連の操作の中で、焦点距離を変更したい、ある
いはワークの板厚が途中で変化するというような時、ノ
ズルヘッドを交換したいという要求がある。ノズルヘッ
ドを交換すれば、その長さも変わり、図のプログラム点
までの長さDも変化してしまうことになる。そこで、ヘ
ッドを交換したならば、そこで必ずオペレータが介在
し、パラメータを入れ直して再度原点復帰をしなければ
ならない。
By the way, in a series of operations for machining a work, there is a demand for changing the focal length or for replacing the nozzle head when the plate thickness of the work changes midway. There is. If the nozzle head is replaced, its length also changes and the length D up to the program point in the figure also changes. Therefore, if the head is replaced, the operator must always intervene there, and the parameters must be reset and the home position must be restored again.

【0009】これは、長さDが異なった状態で交換前と
同じ先端固定の動作を行った場合、先端位置が動いてし
まい、プログラムした制御点と一致しなくなるので、パ
ラメータの入れ換えと新たな原点復帰が必要となるから
である。
This is because when the same tip fixing operation as before replacement is performed with different lengths D, the tip position moves and does not match the programmed control point. This is because the return to origin is required.

【0010】このように、ヘッド交換が必要な場合に、
従来では、オペレータの介在により作業が中断してしま
うばかりでなく、それに伴う作業が煩雑になり、誤操作
を招く可能性がある、という問題点があった。
In this way, when the head needs to be replaced,
Conventionally, there has been a problem that not only the work is interrupted by the intervention of the operator, but also the work associated therewith is complicated, which may cause an erroneous operation.

【0011】本発明はこのような点に鑑みてなされたも
のであり、加工の途中でヘッドを交換した時に手動介入
によるパラメータ変更や再度の原点復帰を行うことなく
先端固定の動作を行うことができる自動プログラミング
に対応した、3次元オフセットタイプCNCレーザ加工
機を提供することを目的とする。
The present invention has been made in view of the above point, and when the head is replaced during the machining, the operation of fixing the tip can be performed without changing the parameter by manual intervention or returning to the origin again. It is an object of the present invention to provide a three-dimensional offset type CNC laser processing machine that is compatible with automatic programming.

【0012】[0012]

【課題を解決するための手段】本発明では上記課題を解
決するために、3次元加工を行うオフセットタイプのノ
ズルを有する3次元オフセットタイプCNCレーザ加工
機において、X軸、Y軸及びZ軸を直角座標系で制御す
る制御手段と、前記ノズルヘッドをC軸回転制御するC
軸制御手段と、前記ノズルヘッドをA軸回転制御するA
軸制御手段と、前記X軸、Y軸、Z軸、C軸及びA軸を
同時に補間する補間手段と、ノズルヘッドの長さをプロ
グラマブルに変更でき、前記X軸、Y軸及びZ軸に関し
てノズルヘッドを変更したことによるそれらのプログラ
ム点との差分及び回転角度の変化に対応する前記X軸、
Y軸及びZ軸の変化量を補正する補正手段と、を具備す
ることを特徴とする3次元オフセットタイプCNCレー
ザ加工機が提供される。
In order to solve the above problems, in the present invention, in a three-dimensional offset type CNC laser beam machine having an offset type nozzle for performing three-dimensional machining, the X-axis, Y-axis and Z-axis are changed. Control means for controlling in a Cartesian coordinate system and C for controlling the C-axis rotation of the nozzle head
Axis control means and A for controlling the A-axis rotation of the nozzle head
The axis control means, the interpolation means for simultaneously interpolating the X-axis, Y-axis, Z-axis, C-axis, and A-axis, and the length of the nozzle head can be changed programmably, and the nozzles can be changed with respect to the X-axis, Y-axis, and Z-axis. The X-axis corresponding to the difference between those program points and the change of the rotation angle due to the change of the head,
A three-dimensional offset type CNC laser processing machine is provided, which comprises: a correction unit that corrects the amount of change in the Y axis and the Z axis.

【0013】[0013]

【作用】上述の手段によれば、補正手段において、3次
元工具長補正のGコードとノズルヘッドの長さとを読み
取り、パラメータに設定されているアームの長さとノズ
ルヘッドの長さと回転角度とからノズルヘッドの先端の
位置を割り出し、ヘッドの長さが変化したことによる
X、Y及びZ軸方向の移動量を算出してその差分を一時
的に軸移動又は座標変化させ、そしてパラメータに設定
されているアームの長さとノズルヘッドの長さと回転角
度の変化分とからX、Y及びZ軸の変化分を実時間で算
出して各軸の補間値に加える。
According to the above means, the correcting means reads the G code for three-dimensional tool length correction and the length of the nozzle head, and based on the arm length, the nozzle head length and the rotation angle set in the parameters. The position of the tip of the nozzle head is calculated, the amount of movement in the X, Y, and Z axis directions due to the change in the length of the head is calculated, the difference is temporarily moved in the axial direction or the coordinate is changed, and the parameter is set. The change amount of the X, Y, and Z axes is calculated in real time from the length of the rotating arm, the length of the nozzle head, and the change amount of the rotation angle, and is added to the interpolation value of each axis.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明による3次元オフセットタイプC
NCレーザ加工機の数値制御装置内における工具長補正
に係る部分のブロック図である。図において、11は3
次元工具長補正指令部であり、たとえばノズルヘッドの
交換時に対応する工具番号が自動的に入力され、新しい
ノズルヘッドの長さが認識される。12は補間器であ
り、制御点の軌跡を指示する指令X、Y、Z及びノズル
ヘッドの姿勢を指示する指令α、βを受けてX、Y及び
Z軸の変化分ΔX、ΔY、ΔZとC軸及びA軸を中心と
する回転角度α、βの変化分Δα、Δβとを出力する。
13は3次元工具長補正指令があったときノズルヘッド
の先端位置をプログラム点に移動させるための差分を演
算する第1補正手段で、14は回転角度がΔα、Δβだ
け変化したときに先端固定とするための演算を行う第2
補正手段である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a three-dimensional offset type C according to the present invention.
It is a block diagram of a part related to tool length correction in a numerical controller of an NC laser beam machine. In the figure, 11 is 3
This is a three-dimensional tool length correction command unit, for example, when the nozzle head is replaced, the corresponding tool number is automatically input and the new nozzle head length is recognized. An interpolator 12 receives commands X, Y, Z for instructing the locus of control points and commands α, β for instructing the attitude of the nozzle head, and changes ΔX, ΔY, ΔZ in the X, Y and Z axes. The changes Δα and Δβ of the rotation angles α and β about the C axis and the A axis are output.
Reference numeral 13 is a first correcting means for calculating a difference for moving the tip position of the nozzle head to a program point when there is a three-dimensional tool length correction command, and 14 is fixed when the rotation angle changes by Δα and Δβ. The second to perform the calculation to
It is a correction means.

【0015】図1において、3次元工具長補正指令部1
1では、3次元工具長補正のGコード(工具位置オフセ
ット指令)に応答してノズルヘッドの長さを読み取り、
第1補正手段13に対し補正演算を指令する。
In FIG. 1, a three-dimensional tool length correction command unit 1
In 1, the nozzle head length is read in response to the G code (tool position offset command) for three-dimensional tool length correction,
A correction calculation is instructed to the first correction means 13.

【0016】第1補正手段13では、ノズルヘッドを交
換してもその先端位置(プログラム点)が変わらないよ
うにするため、パラメータに設定されているノズルヘッ
ドの長さとその姿勢を表す回転角度とからノズルヘッド
の先端位置を割り出し、ヘッド交換前のプログラム点に
移動させるための演算を行う。ここで、ノズルヘッドの
長さDがD1からD2に変わったとすると、直交3軸の
変更前との差分を求める演算式は
In the first correction means 13, in order to prevent the tip position (program point) of the nozzle head from changing even when the nozzle head is replaced, the length of the nozzle head set in the parameters and the rotation angle representing the posture thereof are set. From this, the tip position of the nozzle head is calculated, and calculation for moving to the program point before head replacement is performed. Here, if the length D of the nozzle head is changed from D1 to D2, the arithmetic expression for obtaining the difference from the value before the change of the three orthogonal axes is

【0017】[0017]

【数3】 Δx1=−(D2−D1)sinβsinα Δy1=(D2−D1)sinβcosα Δz1=−(D2−D1)cosβ であり、これらはノズルヘッド交換時に一度だけ演算さ
れ、補間器12からの出力に加算される。
Δx1 =-(D2-D1) sinβsinα Δy1 = (D2-D1) sinβcosα Δz1 =-(D2-D1) cosβ, which are calculated only once when the nozzle head is replaced, and output from the interpolator 12. Is added to.

【0018】ノズルヘッドの先端位置をヘッド交換前の
プログラム点に移動させる方法としては、プログラム点
の座標系を差分だけ変化させるか又はX軸、Y軸及びZ
軸を差分だけ軸移動させるようにする。座標を変化させ
るか軸を移動させるかは相対的なものなので、何れを採
用してもよい。
As a method for moving the tip position of the nozzle head to the program point before the head replacement, the coordinate system of the program point is changed by a difference or the X axis, Y axis and Z axis are changed.
Move the axis by the difference. Either the coordinate is changed or the axis is moved is relative, so any one may be adopted.

【0019】一方、先端位置の補正後において、ノズル
ヘッドの姿勢が変化した時に実時間で先端固定にする場
合の演算式は以下のようになる。
On the other hand, after the correction of the tip position, when the posture of the nozzle head changes, the equation for fixing the tip in real time is as follows.

【0020】[0020]

【数4】 Δx2=H1(cos(α+Δα)−cosα)−(H2+D2) ×(sin(β+Δβ)sin(α+Δα)−sinβsinα) Δy2=H1(sin(α+Δα)−sinα)+(H2+D2) ×(sin(β+Δβ)cos(α+Δα)−sinβcosα) Δz2=−(H2+D2)(cos(β+Δβ)−cosβ) ここに、H1をA軸方向のアームの長さ、H2をC軸に
平行なアームの長さ、D2をプログラム点までのノズル
ヘッドの変更後の長さ、αをC軸を中心とする回転角、
βをA軸を中心とする回転角としてある。
Δx2 = H1 (cos (α + Δα) -cosα)-(H2 + D2) × (sin (β + Δβ) sin (α + Δα) -sinβsinα) Δy2 = H1 (sin (α + Δα) -sinα) + (H2 + D2) × (sin) (Β + Δβ) cos (α + Δα) -sin β cosα) Δz2 =-(H2 + D2) (cos (β + Δβ) -cosβ) where H1 is the length of the arm in the A-axis direction, H2 is the length of the arm parallel to the C-axis, D2 is the changed length of the nozzle head up to the program point, α is the rotation angle about the C axis,
β is the rotation angle about the A axis.

【0021】[0021]

【発明の効果】以上説明したように本発明では、ノズル
ヘッドの長さをプログラマブルに変更でき、X軸、Y軸
及びZ軸に関してノズルヘッドを変更したことによるそ
れらのプログラム点との差分及び回転角度の変化に対応
するX軸、Y軸及びZ軸の変化量を補正する補正手段を
備えているので、数値制御文からのGコード指令によ
り、ノズルヘッドの長さすなわち工具長を変更すること
ができ、ヘッド交換、プログラム修正が容易になり、ヘ
ッド交換の自動化及び自動プログラミング装置でのヘッ
ド交換を含む工程管理が可能となる。
As described above, according to the present invention, the length of the nozzle head can be changed in a programmable manner, and the difference with respect to those program points and the rotation due to the change of the nozzle head with respect to the X axis, the Y axis and the Z axis. Since the correction means for correcting the amount of change in the X-axis, Y-axis, and Z-axis corresponding to the change in the angle is provided, the length of the nozzle head, that is, the tool length is changed by the G code command from the numerical control statement. Therefore, the head replacement and the program modification are facilitated, and the process management including the automation of the head replacement and the head replacement by the automatic programming device becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による3次元オフセットタイプCNCレ
ーザ加工機の数値制御装置内における工具長補正に係る
部分のブロック図である。
FIG. 1 is a block diagram of a part related to a tool length correction in a numerical control device of a three-dimensional offset type CNC laser beam machine according to the present invention.

【図2】オフセットタイプの従来のレーザ加工機のヘッ
ド機構の一例を示した部分構成図である。
FIG. 2 is a partial configuration diagram showing an example of a head mechanism of a conventional offset type laser processing machine.

【符号の説明】[Explanation of symbols]

1 C軸用サーボモータ 2 A軸用サーボモータ 3 レーザビーム 10 ノズルヘッド 11 3次元工具長補正指令部 12 補間器 13 第1補正手段 14 第2補正手段 1 C-axis servo motor 2 A-axis servo motor 3 Laser beam 10 Nozzle head 11 Three-dimensional tool length correction command section 12 Interpolator 13 First correction means 14 Second correction means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 3次元加工を行うオフセットタイプのノ
ズルを有する3次元オフセットタイプCNCレーザ加工
機において、 X軸、Y軸及びZ軸を直角座標系で制御する制御手段
と、 前記ノズルヘッドをC軸回転制御するC軸制御手段と、 前記ノズルヘッドをA軸回転制御するA軸制御手段と、 前記X軸、Y軸、Z軸、C軸及びA軸を同時に補間する
補間手段と、 ノズルヘッドの長さをプログラマブルに変更でき、前記
X軸、Y軸及びZ軸に関してノズルヘッドを変更したこ
とによるそれらのプログラム点との差分及び回転角度の
変化に対応する前記X軸、Y軸及びZ軸の変化量を補正
する補正手段と、 を具備することを特徴とする3次元オフセットタイプC
NCレーザ加工機。
1. In a three-dimensional offset type CNC laser processing machine having an offset type nozzle for performing three-dimensional processing, control means for controlling the X-axis, Y-axis and Z-axis in a rectangular coordinate system, and the nozzle head are C C-axis control means for controlling axis rotation, A-axis control means for controlling A-axis rotation of the nozzle head, interpolation means for simultaneously interpolating the X-axis, Y-axis, Z-axis, C-axis and A-axis, nozzle head Of the X-axis, the Y-axis, and the Z-axis corresponding to the change in the rotation angle and the difference from those program points by changing the nozzle head with respect to the X-axis, the Y-axis, and the Z-axis. A three-dimensional offset type C, characterized by comprising:
NC laser processing machine.
【請求項2】 前記補正手段はノズルヘッドの変更時に
工具長の補正指令を与える3次元工具長補正指令部と、
その変更時におけるプログラム点の補正を行う第1補正
手段と、そのプログラム点の補正後におけるX軸、Y軸
及びZ軸の常時補正を行う第2補正手段とからなること
を特徴とする請求項1記載の3次元オフセットタイプC
NCレーザ加工機。
2. A three-dimensional tool length correction command unit for giving a tool length correction command when the nozzle head is changed,
The first correction means for correcting the program point at the time of the change, and the second correction means for constantly correcting the X-axis, the Y-axis and the Z-axis after the correction of the program point. 3D offset type C described in 1
NC laser processing machine.
【請求項3】 前記第1補正手段はプログラム点の座標
系を前記差分だけ変化させることを特徴とする請求項2
記載の3次元オフセットタイプCNCレーザ加工機。
3. The first correction means changes the coordinate system of a program point by the difference.
The described three-dimensional offset type CNC laser processing machine.
【請求項4】 前記第1補正手段はX軸、Y軸及びZ軸
を前記差分だけ軸移動させることを特徴とする請求項2
記載の3次元オフセットタイプCNCレーザ加工機。
4. The first correction means axially moves the X axis, the Y axis, and the Z axis by the difference.
The described three-dimensional offset type CNC laser processing machine.
【請求項5】 前記第1補正手段の補正は、プログラム
点までのノズルヘッドの長さが変更前をD1、変更後を
D2とし、C軸の回転角をα、A軸の回転角をβとする
とき、X軸、Y軸及びZ軸の変化量が 【数1】 Δx1=−(D2−D1)sinβsinα Δy1=(D2−D1)sinβcosα Δz1=−(D2−D1)cosβ であることを特徴とする請求項2記載の3次元オフセッ
トタイプCNCレーザ加工機。
5. The correction of the first correction means is such that the length of the nozzle head up to the program point is D1 before the change and D2 after the change, and the rotation angle of the C axis is α and the rotation angle of the A axis is β. Then, the change amounts of the X axis, the Y axis, and the Z axis are as follows: Δx1 =-(D2-D1) sinβsinα Δy1 = (D2-D1) sinβcosα Δz1 =-(D2-D1) cosβ The three-dimensional offset type CNC laser beam machine according to claim 2.
【請求項6】 前記第2補正手段のX軸、Y軸及びZ軸
の補正は、X軸方向のアームの長さをH1、Z軸方向の
アームの長さをH2とし、プログラム点までのノズルヘ
ッドの変更後の長さをD2とし、C軸の回転角をα、A
軸の回転角をβとして、回転角がΔα、Δβだけ変化し
た時のX軸、Y軸及びZ軸の変化量が 【数2】 Δx2=H1(cos(α+Δα)−cosα)−(H2+D2) ×(sin(β+Δβ)sin(α+Δα)−sinβsinα) Δy2=H1(sin(α+Δα)−sinα)+(H2+D2) ×(sin(β+Δβ)cos(α+Δα)−sinβcosα) Δz2=−(H2+D2)(cos(β+Δβ)−cosβ) であることを特徴とする請求項2記載の3次元オフセッ
トタイプCNCレーザ加工機。
6. The correction of the X-axis, Y-axis and Z-axis of the second correction means is performed by setting the arm length in the X-axis direction to H1 and the arm length in the Z-axis direction to H2, up to the program point. The changed length of the nozzle head is D2, and the rotation angle of the C axis is α, A
When the rotation angle of the axis is β, the amount of change in the X axis, Y axis, and Z axis when the rotation angle changes by Δα and Δβ is as follows: Δx2 = H1 (cos (α + Δα) -cosα)-(H2 + D2) × (sin (β + Δβ) sin (α + Δα) -sinβsinα) Δy2 = H1 (sin (α + Δα) -sinα) + (H2 + D2) × (sin (β + Δβ) cos (α + Δα) -sinβcosα) Δz2 =-(H2 + D2) (cos The three-dimensional offset type CNC laser beam machine according to claim 2, wherein β + Δβ) -cosβ).
JP08660793A 1993-04-14 1993-04-14 CNC laser processing machine Expired - Fee Related JP3267734B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08660793A JP3267734B2 (en) 1993-04-14 1993-04-14 CNC laser processing machine
PCT/JP1994/000555 WO1994023885A1 (en) 1993-04-14 1994-04-04 Three-dimensional offset type cnc laser machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08660793A JP3267734B2 (en) 1993-04-14 1993-04-14 CNC laser processing machine

Publications (2)

Publication Number Publication Date
JPH06297179A true JPH06297179A (en) 1994-10-25
JP3267734B2 JP3267734B2 (en) 2002-03-25

Family

ID=13891707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08660793A Expired - Fee Related JP3267734B2 (en) 1993-04-14 1993-04-14 CNC laser processing machine

Country Status (2)

Country Link
JP (1) JP3267734B2 (en)
WO (1) WO1994023885A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0958884A1 (en) * 1998-05-19 1999-11-24 Lastec Laserjob AG Process for machining workpieces and machine tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714559B2 (en) * 1987-12-18 1995-02-22 ファナック株式会社 Attitude control device for CNC laser beam machine
JPH01224194A (en) * 1988-03-03 1989-09-07 Fanuc Ltd Position control method for cnc laser beam machine
JP2740004B2 (en) * 1989-05-16 1998-04-15 株式会社アマダ Teaching method for laser beam machine

Also Published As

Publication number Publication date
WO1994023885A1 (en) 1994-10-27
JP3267734B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
EP1302829B1 (en) Numerical controller
CN1636172B (en) Method for continuous-path control
JP4149165B2 (en) Control device for 3D laser processing machine
CN103116316B (en) Numerical control machining control method adapted to type or dimensional change of cutting tool
EP1661657B1 (en) Laser processing robot system with a scanning head and a rapid movable support mechanism ; Method for controlling the same
US20100228384A1 (en) Method and device for generating transformed control data for controlling a tool on a machine tool
JP4293132B2 (en) Numerical controller
JP2002172543A (en) Control parameter setting system and control parameter setting method for machining device
US4503373A (en) Numerical control system
KR0180953B1 (en) Method of controlling the normal direction of the main shaft of the numerical machine tool
US5545959A (en) Speed control method for a numerical control apparatus
JPH0736514A (en) Three-dimensional tool diameter correction system
US5216222A (en) Attitude control system for cnc laser beam machining apparatus
CN105278449B (en) Numerical control device with front tool point control function
US5578913A (en) NC device controlling machining processes with pre- and post-execution in-position values
JP3267734B2 (en) CNC laser processing machine
JPS62163109A (en) Numerical controller
JP2733714B2 (en) Automatic coordinate axis conversion method for machine tools
JPH05216516A (en) Laser beam machine
JPH0714559B2 (en) Attitude control device for CNC laser beam machine
CN109884982B (en) Numerical controller
JPH05108134A (en) Coordinates converting method for dividing correspondence of main axis
JPH01224194A (en) Position control method for cnc laser beam machine
JPH02156308A (en) Numerical controller
JPH0744215A (en) Method and device for controlling feeding shaft of machine tool

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees