JPH01224194A - Position control method for cnc laser beam machine - Google Patents

Position control method for cnc laser beam machine

Info

Publication number
JPH01224194A
JPH01224194A JP63050147A JP5014788A JPH01224194A JP H01224194 A JPH01224194 A JP H01224194A JP 63050147 A JP63050147 A JP 63050147A JP 5014788 A JP5014788 A JP 5014788A JP H01224194 A JPH01224194 A JP H01224194A
Authority
JP
Japan
Prior art keywords
axis
axes
movement
laser processing
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63050147A
Other languages
Japanese (ja)
Inventor
Mitsuo Kinoshita
木下 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP63050147A priority Critical patent/JPH01224194A/en
Publication of JPH01224194A publication Critical patent/JPH01224194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To enable three dimensional laser machining at high speed by performing an interpolation by neglecting the movement of alpha axis and beta axis in controlling X, Y, Z axes and constituting so as to add the correction value for the movement of the alpha and beta axes. CONSTITUTION:When the locus (X, Y, Z) of the control point to be worked and the position (alpha, beta) of a nozzle are commanded, an interpolater 10 performs the interpolation of 5 axes at the same time. The interpolation of the X, Y, Z axes is performed by neglecting the movement of alpha axis and beta axis in the interpolator 10. The interpolation of the X, X, Z axes is therefore same as that of an ordinary numerical value control device and can be operated at high speed. A correction means 11 calculates the correction value X, Y, Z to be given to the X, Y, Z axes by the movement of the alpha and beta axes. This calculation can be operated at high speed and is simple compared with the case of performing the interpolation of five axes at the same time. An adder 12 controls a servomotor by taking the movement amt. of the X, Y, Z axes by adding the correction value X, Y, Z to the movement amt. of the X, Y, Z axes. The output of the interpolater 10 is given to the servomotor of the alpha and beta axes as it is.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は3次元加工を行うCNCレーザ加工機のノズル
の姿勢を加工面に対して制御するCNCレーザ加工機の
姿勢制御方式に関し、特にオフセット型のノズルヘッド
機構の制御を高速にできるようにしたCNCレーザ加工
機の姿勢制御方式に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an attitude control method for a CNC laser processing machine that performs three-dimensional processing to control the attitude of a nozzle with respect to a processing surface, and particularly relates to an offset The present invention relates to a posture control method for a CNC laser processing machine that enables high-speed control of a mold nozzle head mechanism.

〔従来の技術〕[Conventional technology]

レーザ発振器と数値制御装置(CNC)を結合したCN
Cレーザ加工機が広く使用されるようになってきた。特
に、レーザ加工機の高速加工と、複雑な輪郭制御のでき
る数値制御装置(CNC)の特徴を結合して、複雑な形
状の加工を非接触で、高速に加工することが可能になっ
てきており、特に従来のパンチプレス、ニブリングマシ
ン等では不可能であった3次元加工のできるCNCレー
ザ加工機が実用に供されるようになってきた。
CN that combines a laser oscillator and numerical control unit (CNC)
C laser processing machines have become widely used. In particular, by combining the high-speed processing of laser processing machines with the features of numerical control equipment (CNC) that can control complex contours, it has become possible to process complex shapes at high speed and without contact. In particular, CNC laser processing machines that can perform three-dimensional processing, which was impossible with conventional punch presses, nibbling machines, etc., have come into practical use.

CNCレーザ加工機で3次元加工を行うには、X、Y、
Z軸の制御以外に先端のノズルの姿勢制御を行う必要が
あり、このための制御軸をα軸及びβ軸と称する。ノズ
ルの姿勢制御には、以下の2通りの方式がある。
To perform three-dimensional processing with a CNC laser processing machine, X, Y,
In addition to controlling the Z axis, it is necessary to control the attitude of the nozzle at the tip, and the control axes for this purpose are referred to as the α axis and β axis. There are two methods for nozzle attitude control:

第1の方式は、ゼロオフセット型、あるいは1点指向型
と称されるものであり、α軸はZ軸に対する回転軸、β
軸はZ軸に対して一定の傾斜を有する回転軸として構成
されている。
The first method is called a zero-offset type or one-point directional type, in which the α axis is the rotation axis relative to the Z axis, and the β axis is the rotation axis relative to the Z axis.
The axis is configured as a rotation axis having a constant inclination with respect to the Z axis.

第2の方式は、オフセント型と称するものであり、α軸
はZ軸に対する回転軸とし、β軸はZ軸に垂直な軸の回
転軸として構成されている。
The second method is called an offset type, in which the α axis is a rotation axis relative to the Z axis, and the β axis is configured as a rotation axis perpendicular to the Z axis.

ゼロオフセット型は機構は複雑であるが、X1Y、Zの
位置が変化してもノズルの先端の位置が変化しないので
、制御が簡単であり、制?ffD面からは望ましい。こ
のようなゼロオフセット型のCNCレーザ加工機の姿勢
制御方式として、本出願人の出願による特願昭62−3
21115号がある。
The zero offset type has a complicated mechanism, but the nozzle tip position does not change even if the X, Y, and Z positions change, so it is easy to control. It is desirable from the ffD perspective. As a posture control system for such a zero-offset type CNC laser processing machine, Japanese Patent Application No. 1986-3 filed by the present applicant has been proposed.
There is No. 21115.

一方、オフセット型は、機械的な機構は簡単であるが、
制御が複雑で、高速加工には適していないと考えられて
きた。第5図に従来の3次元レーザ加工機の補間器の概
念図を示す。図において、IOは補間器であり、制御点
の軌跡(X、Y、Z)とノズルの姿勢(α、β)を同時
に5軸制御する。
On the other hand, the offset type has a simple mechanical mechanism, but
Control is complicated, and it has been thought that it is not suitable for high-speed machining. FIG. 5 shows a conceptual diagram of an interpolator of a conventional three-dimensional laser processing machine. In the figure, IO is an interpolator that simultaneously controls the locus of control points (X, Y, Z) and the nozzle attitude (α, β) in five axes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、オフセット型は制御が高速に処理できれば、機
構が簡単で、加工時のワークとの干渉もゼロオフセット
型に比べて少なく、有用である。
However, if the offset type can be controlled at high speed, the mechanism is simple and there is less interference with the workpiece during machining than the zero offset type, which makes it useful.

本発明はこのような点に鑑みてなされたものであり、オ
フセット型のノズルヘッド機構の制御を高速にできるよ
うにしたCNCレーザ加工機の姿勢制御方式を提供する
ことを目的とする。
The present invention has been made in view of these points, and it is an object of the present invention to provide a posture control method for a CNC laser processing machine that enables high-speed control of an offset-type nozzle head mechanism.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では上記課題を解決するために、3次元加工を行
うCNCレーザ加工機のノズルの姿勢を加工面に対して
制御するCNCレーザ加工機の姿勢制御方式において、 Z軸、Y軸及びZ軸を直角座標系で制御する制御手段と
、 前記Z軸に対する回転軸であって、ノズルの姿勢を制御
するα軸制御手段と、 前記Z軸に対して垂直な軸に対する回転軸であって、ノ
ズルの姿勢用のβ軸を制御するβ軸制御手段と、 前記Z軸、Y軸、Z軸はα軸とβ軸の移動量を無視して
、Z軸、Y軸、Z軸、α軸及びβ軸を同時に補間する補
間手段と、 前記α軸と前記β軸の変化に応じて、ノズルの先端が目
的の点からずれないように、前記Z軸、Y軸及びZ軸の
座標位置を補正する補正手段と、を具備することを特徴
とするCNCレーザ加工機の姿勢制御方式が、 提供される。
In order to solve the above problems, the present invention provides a posture control method for a CNC laser processing machine that controls the posture of a nozzle of a CNC laser processing machine that performs three-dimensional processing with respect to a processing surface. control means for controlling the nozzle in a rectangular coordinate system; α-axis control means for controlling the nozzle attitude, which is a rotation axis with respect to the Z-axis; β-axis control means for controlling the β-axis for the posture of the interpolation means for simultaneously interpolating the β-axis, and correcting the coordinate positions of the Z-axis, Y-axis, and Z-axis according to changes in the α-axis and the β-axis so that the tip of the nozzle does not deviate from the target point. Provided is a posture control method for a CNC laser processing machine, characterized in that it comprises a correction means for:

〔作用〕[Effect]

α軸、β軸、X、Y、Z軸の値を常に補間していくこと
は、計算量も多く、現状の数値制御装置(CNC)では
困難であり、加工速度を満たすためには、補間間隔を粗
くせざるをえない。この結果、加工通路が不正確なもの
になる。
Constantly interpolating the values of the α-axis, β-axis, I have no choice but to make the spacing coarser. This results in inaccurate processing paths.

このために、−旦、α軸及びβ軸の移動量を無視して、
X、Y、Z軸の補間を行い、α軸とβ軸の移動による補
正量を計算して、X、Y、Z軸の移動量にに加算するこ
とにより、演算速度を上げ、実用的な3次元レーザ加工
を可能にする。
For this purpose, ignoring the amount of movement of the α- and β-axes,
By performing interpolation on the X, Y, and Z axes, calculating the amount of correction due to the movement of the α and β axes, and adding it to the amount of movement on the X, Y, and Z axes, calculation speed is increased and practical Enables three-dimensional laser processing.

〔実施例〕 以下、本発明の一実施例を図面に基づいて説明する。〔Example〕 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図に本発明の一実施例のノズルヘッド機構の部分構
成図を示す。図において、1はα軸を駆動するα軸用サ
ーボモータ、2はβ軸を駆動するβ軸用サーボモータで
ある。3はレーザビームであり、図示されていない反射
ミラーによってノズルの先端まで導かれ、ワークに照射
される。
FIG. 2 shows a partial configuration diagram of a nozzle head mechanism according to an embodiment of the present invention. In the figure, 1 is an α-axis servo motor that drives the α-axis, and 2 is a β-axis servo motor that drives the β-axis. Reference numeral 3 denotes a laser beam, which is guided to the tip of the nozzle by a reflection mirror (not shown) and is irradiated onto the workpiece.

α軸はZ軸に対する回転軸であり、α軸用サーボモータ
1の回転が、ギア4a、4bによって、部材5を回転さ
せることによって回転制御される。
The α-axis is a rotation axis relative to the Z-axis, and the rotation of the α-axis servo motor 1 is rotationally controlled by rotating the member 5 using gears 4a and 4b.

β軸は、β軸用サーボモータ2の回転がギア6a、6b
によって軸7を回転させ、全歯歯車8a、8bによって
軸9を回転させて制御する。9aは軸9に固定されたノ
ズルである。
For the β-axis, the rotation of the β-axis servo motor 2 is controlled by gears 6a and 6b.
The control is performed by rotating the shaft 7 by rotating the shaft 7, and rotating the shaft 9 by the fully toothed gears 8a and 8b. 9a is a nozzle fixed to the shaft 9.

ここで、Z軸の中心から照射ビームの中心までの距離を
R1軸9の中心から照射ビームのワーク上の焦点までの
距離をLとする。
Here, the distance from the center of the Z axis to the center of the irradiation beam is R1, and the distance from the center of the axis 9 to the focal point of the irradiation beam on the workpiece is L.

第1図に本発明の一実施例のCNCレーザ加工機の姿勢
制御方式のブロック図を示す。図において、10は補間
器であり、加工すべき制御点の軌跡(X、Y、Z)と、
ノズルの姿勢(α、β)が指令される。補間器10は指
令を受け、同時に5軸の補間を行う。本来、X、Y、Z
軸はα軸とβ軸の移動も加味して、補間されるべきであ
るが、そうするとベクトル計算が必要であり演算時間が
膨大になり、実用的な速度でレーザ加工を実行できない
、そこで、補間器10ではα軸とβ軸の移動を無視して
、x、y、z軸の補間を行う。従って、X、Y、Z軸の
補間は通常の数値制御装置の補間と同じであり、高速に
演算することができる。
FIG. 1 shows a block diagram of a posture control system for a CNC laser processing machine according to an embodiment of the present invention. In the figure, 10 is an interpolator, and the locus (X, Y, Z) of the control point to be processed,
The nozzle attitude (α, β) is commanded. The interpolator 10 receives commands and simultaneously performs five-axis interpolation. Originally, X, Y, Z
The axes should be interpolated by taking into account the movements of the α and β axes, but this would require vector calculations, which would take an enormous amount of time, making it impossible to perform laser processing at a practical speed. The device 10 performs interpolation on the x, y, and z axes, ignoring movement on the α and β axes. Therefore, the interpolation of the X, Y, and Z axes is the same as that of a normal numerical control device, and calculations can be performed at high speed.

11は補正手段であり、α軸とβ軸の移動によって、X
、Y、Z軸に与えるべき補正値ΔX、ΔY、ΔZを計算
する。この計算は同時に5軸の補間を行う場合に比べ簡
単で高速に演算することができる。
Reference numeral 11 denotes a correction means, which corrects the
, the correction values ΔX, ΔY, and ΔZ to be given to the Y and Z axes are calculated. This calculation is simpler and faster than when interpolating five axes at the same time.

12は加算器であり、X、Y、Z軸の移動量に補正値Δ
X、ΔY、ΔZを加算して、X、Y、Z軸の移動量とし
て、サーボモータを制御する。α軸とβ軸のサーボモー
タは補間器10の出力がそのまま与えられる。
12 is an adder, which adds a correction value Δ to the movement amount of the X, Y, and Z axes.
The servo motor is controlled by adding X, ΔY, and ΔZ as the amount of movement of the X, Y, and Z axes. The output of the interpolator 10 is directly applied to the α-axis and β-axis servo motors.

上記に述べた補間器10、補正手段11、加算器12等
の制御は数値制御装置内のマイクロプロセッサによって
処理されるが、特に、処理を高速にするために、補正手
段11は専用のマイクロプロセッサによって処理するよ
うに構成することにより高速の3次元レーザ加工が可能
になる。
Control of the interpolator 10, correction means 11, adder 12, etc. described above is processed by a microprocessor in the numerical control device, but in particular, in order to speed up processing, the correction means 11 is controlled by a dedicated microprocessor. High-speed three-dimensional laser processing becomes possible by configuring the processing to be performed using the following methods.

第3図にα軸の移動によるX、Y軸の補正量を求めるた
めの図を示す。Rは第2図に示したように、Z軸の中心
から照射ビームの中心までの距離である。X、Y軸の補
正値ΔX(α)及びΔY(α)は以下の式で与えられる
FIG. 3 shows a diagram for determining the amount of correction on the X and Y axes due to movement of the α axis. R is the distance from the center of the Z axis to the center of the irradiation beam, as shown in FIG. The correction values ΔX(α) and ΔY(α) for the X and Y axes are given by the following formulas.

ΔX(α)=Rcosα ΔY(α)=Rsinα 第4図にβ軸の移動によるx、Y軸の補正量を求めるた
めの図を示す。Lは第2図に示したように、軸9の中心
から照射ビームのワーク上の焦点までの距離である。
ΔX(α)=Rcosα ΔY(α)=Rsinα FIG. 4 shows a diagram for determining the amount of correction on the x and Y axes due to the movement of the β axis. As shown in FIG. 2, L is the distance from the center of the axis 9 to the focal point of the irradiation beam on the workpiece.

Y、Z軸の補正値ΔY(β)及びΔZ(β)は以下の式
で与えられる。
The correction values ΔY(β) and ΔZ(β) for the Y and Z axes are given by the following equations.

ΔY(β)=Lsinβ ΔZ(β)=−Lcosβ また、α軸とβ軸が同時に移動したときのX、Y、Z軸
の補正値は以下の式で求められる。
ΔY(β)=Lsinβ ΔZ(β)=−Lcosβ Further, the correction values for the X, Y, and Z axes when the α and β axes move simultaneously are determined by the following equations.

ΔX=ΔX(α)−ΔY(β)sinα=Rcosα−
Ls 1ncx−s inβΔY=ΔY (α)+ΔY
(β)cosα=R3inα+LCO3α°S inβ
ΔZ;ΔZ(β)=−Lcosβ このように、補正値ΔX、ΔY、ΔZは簡単に求めるこ
とができ、特に三角関数等はコ・プロセッサ等を使用す
ればより高速に求めることができる。
ΔX=ΔX(α)−ΔY(β)sinα=Rcosα−
Ls 1ncx-s inβΔY=ΔY (α)+ΔY
(β)cosα=R3inα+LCO3α°S inβ
ΔZ; ΔZ(β)=−Lcosβ In this way, the correction values ΔX, ΔY, and ΔZ can be easily obtained, and especially trigonometric functions can be obtained more quickly by using a co-processor or the like.

以上の説明では、自動運転の指令について述べたが、手
動運転の移動についても同様に処理することができる。
In the above explanation, instructions for automatic driving have been described, but movement in manual driving can also be processed in the same way.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、CNCレーザ加工機の
ノズルの姿勢制御で、X、Y、Z軸の制御はα軸とβ軸
の移動を無視して補間を行い、α軸とβ軸の移動に対す
る補正値を加算するように構成したので、オフセット型
のノズルヘッドでも高速に3次元レーザ加工を行うこと
ができる。
As explained above, in the present invention, when controlling the nozzle posture of a CNC laser processing machine, the X, Y, and Z axes are controlled by performing interpolation while ignoring the movements of the α and β axes. Since the configuration is such that a correction value for movement is added, three-dimensional laser processing can be performed at high speed even with an offset type nozzle head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のCNCレーザ加工機の姿勢
制御方式のブロック図、 第2図は本発明の一実施例のノズルヘッド機構の部分構
成図、 第3図はα軸の移動によるXXY軸の補正量を求めるた
めの図、 第4図はβ軸の移動によるY、Z軸の補正量を求めるた
めの図、 第5図は従来の3次元レーザ加工機の補間の概念を示す
図である。 l−・・−・・−・・−α軸用サーボモータ2−−−−
・−・・・−・β軸用サーボモータ3−−−一−−−−
−−レーザビーム 9a・−・・・・−・−ノズル 10−・−−−−−・・・−・−・補間器11・−・・
・−・・−・補正手段 12−・・・・−・・・−・・−加算器特許出願人 フ
ァナック株式会社 代理人   弁理士  服部毅巖 第1図 第3図 第4図
Fig. 1 is a block diagram of a posture control system of a CNC laser processing machine according to an embodiment of the present invention, Fig. 2 is a partial configuration diagram of a nozzle head mechanism according to an embodiment of the present invention, and Fig. 3 is a movement of the α-axis. Figure 4 is a diagram for determining the amount of correction for the Y and Z axes due to movement of the β axis. Figure 5 shows the concept of interpolation in a conventional three-dimensional laser processing machine. FIG. l−・・−・・−・・−α axis servo motor 2−−−−
・−・−・β axis servo motor 3−−−1−−−−
--Laser beam 9a --- Nozzle 10 --- Interpolator 11 ---
······Correction means 12······················Adder patent applicant Fanuc Co., Ltd. agent Patent attorney Takeshi Hattori Figure 1 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)3次元加工を行うCNCレーザ加工機のノズルの
姿勢を加工面に対して制御するCNCレーザ加工機の姿
勢制御方式において、 X軸、Y紬及びZ軸を直角座標系で制御する制御手段と
、 前記Z軸に対する回転軸であって、ノズルの姿勢を制御
するα軸制御手段と、 前記Z軸に対して垂直な軸に対する回転軸であって、ノ
ズルの姿勢用のβ軸を制御するβ軸制御手段と、 前記X軸、Y軸、Z軸はα軸とβ軸の移動量を無視して
、X軸、Y軸、Z軸、α軸及びβ軸を同時に補間する補
間手段と、 前記α軸と前記β軸の変化に応じて、ノズルの先端が目
的の点からずれないように、前記X軸、Y軸及びZ軸の
座標位置を補正する補正手段と、を具備することを特徴
とするCNCレーザ加工機の姿勢制御方式。
(1) In the attitude control method of a CNC laser processing machine that controls the nozzle attitude of a CNC laser processing machine that performs three-dimensional processing with respect to the processing surface, control is performed to control the X-axis, Y-pongee, and Z-axis in a rectangular coordinate system. means, an α-axis control means that is a rotation axis with respect to the Z-axis and controls the attitude of the nozzle; and a rotation axis that is a rotation axis with respect to an axis perpendicular to the Z-axis and controls a β-axis for the nozzle attitude. and an interpolation means for simultaneously interpolating the X-axis, Y-axis, Z-axis, α-axis, and β-axis while ignoring the movement amount of the α-axis and β-axis for the X-axis, Y-axis, and Z-axis. and a correction means for correcting the coordinate positions of the X-axis, Y-axis, and Z-axis according to changes in the α-axis and the β-axis so that the tip of the nozzle does not deviate from the target point. A posture control method for a CNC laser processing machine characterized by the following.
(2)前記補正手段は専用のプロセッサを設けて処理す
るように構成したことを特徴とする特許請求の範囲第1
項記載のCNCレーザ加工機の姿勢制御方式。
(2) Claim 1, characterized in that the correction means is configured to be processed by providing a dedicated processor.
Attitude control method of CNC laser processing machine described in Section 1.
(3)前記専用のプロセッサにコ・プロセッサを結合し
たことを特徴とする特許請求の範囲第2項記載のCNC
レーザ加工機の姿勢制御方式。
(3) The CNC according to claim 2, characterized in that a co-processor is coupled to the dedicated processor.
Attitude control method for laser processing machines.
JP63050147A 1988-03-03 1988-03-03 Position control method for cnc laser beam machine Pending JPH01224194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050147A JPH01224194A (en) 1988-03-03 1988-03-03 Position control method for cnc laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050147A JPH01224194A (en) 1988-03-03 1988-03-03 Position control method for cnc laser beam machine

Publications (1)

Publication Number Publication Date
JPH01224194A true JPH01224194A (en) 1989-09-07

Family

ID=12851064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050147A Pending JPH01224194A (en) 1988-03-03 1988-03-03 Position control method for cnc laser beam machine

Country Status (1)

Country Link
JP (1) JPH01224194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014531A1 (en) * 1990-03-29 1991-10-03 Fanuc Ltd Method of controlling attitude of cnc laser working machine
JPH0437496A (en) * 1990-05-31 1992-02-07 Fanuc Ltd Nozzle movement system of laser beam machine
WO1994023885A1 (en) * 1993-04-14 1994-10-27 Teruo Masuda Three-dimensional offset type cnc laser machining apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014531A1 (en) * 1990-03-29 1991-10-03 Fanuc Ltd Method of controlling attitude of cnc laser working machine
JPH03281083A (en) * 1990-03-29 1991-12-11 Fanuc Ltd Attitude control system for cnc laser beam machine
JPH0437496A (en) * 1990-05-31 1992-02-07 Fanuc Ltd Nozzle movement system of laser beam machine
WO1994023885A1 (en) * 1993-04-14 1994-10-27 Teruo Masuda Three-dimensional offset type cnc laser machining apparatus

Similar Documents

Publication Publication Date Title
JP5323280B1 (en) Numerical controller
KR960001962B1 (en) Method of controlling tool attitude of a robot
KR0180953B1 (en) Method of controlling the normal direction of the main shaft of the numerical machine tool
JPH03281083A (en) Attitude control system for cnc laser beam machine
Yang et al. A tool path generation and contour error estimation method for four-axis serial machines
JP2005071016A (en) Numerical control device
EP0485615B1 (en) Method of moving nozzle of laser beam machine
JPH01224194A (en) Position control method for cnc laser beam machine
JP2790643B2 (en) Numerical control unit
JPH0682293B2 (en) NC processing method and device for preventing occurrence of path error due to high speed NC processing loop
JP2686293B2 (en) Three-dimensional laser processing method
JP2007172325A (en) Method of machining free curve and numerical control device
JPH0354610A (en) Involute interpolation error correcting system
JPH01162592A (en) Attitude control method for cnc laser beam machine
JPH04331048A (en) Tracer controller
JPH05216516A (en) Laser beam machine
JP2723570B2 (en) Three-dimensional laser nozzle control method
JP3267734B2 (en) CNC laser processing machine
JPH0683416A (en) Controller for robot with small graphic machining unit
JP3065167B2 (en) Automatic programming device for numerical control
JPH04259012A (en) Numerical controller
JPH0635096B2 (en) NC processing method and device
JPH048473A (en) Chopping control system
Tajima et al. KINEMATIC LOCAL CORNER SMOOTHING OF 5-AXIS LINEAR TOOL-PATHS
JPH02280988A (en) Nozzle control system of three dimensional laser beam