JPH02156308A - Numerical controller - Google Patents

Numerical controller

Info

Publication number
JPH02156308A
JPH02156308A JP31083888A JP31083888A JPH02156308A JP H02156308 A JPH02156308 A JP H02156308A JP 31083888 A JP31083888 A JP 31083888A JP 31083888 A JP31083888 A JP 31083888A JP H02156308 A JPH02156308 A JP H02156308A
Authority
JP
Japan
Prior art keywords
axis direction
coordinate value
tool
correction
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31083888A
Other languages
Japanese (ja)
Inventor
Hideaki Kawamura
川村 英昭
Yukito Nagaoka
長岡 幸仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP31083888A priority Critical patent/JPH02156308A/en
Publication of JPH02156308A publication Critical patent/JPH02156308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To easily operate a machine by correcting the command value in the X-axis direction to cancel the working error due to the deviation in the Y-axis direction between the position of a tool and the center of a main shaft. CONSTITUTION:Only coordinate values of the end point are inputted from a decoding means 2 to an end point coordinate value calculating means 3, and this means 3 outputs its end point coordinate value AGSX(n) in the X-axis direction. Meanwhile, an offset OFSX of the tool diameter is inputted to an ffset data memory 5 and is stored there. A deviation y in the Y-axis direction between the position of the tool and the center of the main shaft is stored in an Y-axis offset memory 6 from a CRT/MDI unit 4. A correction extent calculating means 7 obtains an extent CMPX(n) of difference correction based on the coordinate value AGSX(n), the offset OFSX, and the deviation y by calculation and outputs it to an end point coordinate value correcting means 8. The means 8 adds the extent CMPX(n) of correction to the coordinate value outputted from a decoding means 2 to output a correction command. A pulse distributing means 9 distributes this correction command to an X-axis command pulse and a Z-axis command pulse.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は旋盤機械を制御する数値制御装置(CNC)に
関し、特に工具の位置と主軸の中心とのY軸方向の偏差
に起因する加工誤差を補正可能な数値制御装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a numerical control device (CNC) for controlling a lathe machine, and in particular to a machining error caused by a deviation in the Y-axis direction between the tool position and the center of the spindle. This invention relates to a numerical control device capable of correcting.

〔従来の技術〕[Conventional technology]

数値制御装置(CNC)は種々の工作機械と結合され、
広く使用されている。例えば、旋盤用の工作機械では数
値制御装置の加工プログラムに従って工具がX軸方向及
びX軸方向に位置制御され、主軸に取りつけられている
ワークを加工することができる。
Numerical control equipment (CNC) is coupled with various machine tools,
Widely used. For example, in a machine tool for a lathe, the position of the tool is controlled in the X-axis direction and in the X-axis direction according to a machining program of a numerical control device, and a workpiece attached to a main spindle can be machined.

ところで、このような旋盤機械では工具の位置と主軸の
中心とがY軸方向に少しでもずれていると、ワークの径
に誤差が生じて加工プログラムの指令通りの加工ができ
ない。
By the way, in such a lathe machine, if the position of the tool and the center of the main spindle are even slightly deviated in the Y-axis direction, an error will occur in the diameter of the workpiece, making it impossible to perform machining as instructed by the machining program.

このため、従来はスペーサ等を使用して工具の取りつけ
位置を厳密に調整していた。また、特殊な機械としてY
軸方向の位置を制御できるようにして、Y軸方向のずれ
を補正している。
For this reason, conventionally, spacers or the like have been used to precisely adjust the mounting position of the tool. Also, as a special machine, Y
By making it possible to control the position in the axial direction, the deviation in the Y-axis direction is corrected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、工具の位置と主軸の中心とがずれないように調
整するには相当の時間を要し、さらに精密に調整するの
は困難な場合が多い。
However, it takes a considerable amount of time to adjust the tool position and the center of the spindle so that they do not deviate, and it is often difficult to make more precise adjustments.

また、Y軸方向の位置を制御可能にするにはコストがか
かり、構造も複雑となって、信頼性を低下させる原因と
もなる。
Furthermore, making it possible to control the position in the Y-axis direction is costly and requires a complicated structure, leading to a decrease in reliability.

本発明はこのような点に鑑みてなされたものであり、工
具の位置と主軸の中心とのY軸方向の偏差に起因する加
工誤差をX軸方向で補正する数値制御装置を提供するこ
とを目的とする。
The present invention has been made in view of these points, and it is an object of the present invention to provide a numerical control device that corrects machining errors in the X-axis direction caused by deviations in the Y-axis direction between the tool position and the center of the spindle. purpose.

〔課題を解決するための手段] 本発明では上記課題を解決するために、工具をX軸方向
及びX軸方向に移動可能な旋盤機械を制御する数値制御
装置(CNC)において、前記工具の位置と前記主軸の
中心とのY軸方向の偏差量を設定する設定手段と、 前記偏差量に基づいて、加工工程のブロック毎にX軸方
向の補正量を計算する補正量計算手段と、前記補正量を
加工プログラムで指令された前記ブロックのX軸方向の
所定の座標値に加算して補正指令を出力する座標値補正
手段と、 を有し、前記偏差量に起因するワークの加工誤差をなく
すことを特徴とする数値制御装置が、提供される。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a numerical control device (CNC) that controls a lathe machine capable of moving tools in the X-axis direction and in the X-axis direction. a setting means for setting a deviation amount in the Y-axis direction between the center of the spindle and the center of the main axis; a correction amount calculation means for calculating a correction amount in the X-axis direction for each block of the machining process based on the deviation amount; coordinate value correction means for adding the amount to a predetermined coordinate value in the X-axis direction of the block instructed by the machining program and outputting a correction command, and eliminating machining errors of the workpiece due to the deviation amount. A numerical control device is provided.

〔作用〕[Effect]

Y軸方向の偏差量に基づいて加工工程のブロック毎に補
正量を計算し、これをX軸方向の所定の座標値に加算し
て補正指令として出力する。
A correction amount is calculated for each block of the machining process based on the amount of deviation in the Y-axis direction, added to a predetermined coordinate value in the X-axis direction, and output as a correction command.

この補正指令により、工具は加工プログラムで指令され
た座標値よりもさらにX軸方向に補正量だけ移動し、Y
軸方向の偏差に起因する加工形状の誤差が打ち消される
With this correction command, the tool moves further in the X-axis direction by the correction amount than the coordinate values commanded in the machining program, and
Errors in machined shape due to deviation in the axial direction are canceled out.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図は本発明の数値制御装置による旋盤加工の概念図
である。図において、20は理想的に取りつけられた場
合の旋盤機械の工具の位置を示しており、Y軸方向に関
しては主軸の中心0と一致している。
FIG. 2 is a conceptual diagram of lathe processing using the numerical control device of the present invention. In the figure, reference numeral 20 indicates the position of the tool of the lathe machine when it is ideally installed, and coincides with the center 0 of the main shaft in the Y-axis direction.

しかし、一般に工具をY軸方向に関して主軸の中心Oと
完全に一致させて取りつけることは困難であり、通常は
Y軸方向に多少ずれて、工具20aに示すような位置に
取りつけられている。工具20aは図のX軸方向、及び
紙面に直角な図示されていないX軸方向に制御キれてワ
ークを加工する。
However, it is generally difficult to mount the tool so that it is completely aligned with the center O of the spindle in the Y-axis direction, and is usually mounted at a position slightly offset in the Y-axis direction as shown in the tool 20a. The tool 20a processes the workpiece in a controlled manner in the X-axis direction shown in the figure and the unillustrated X-axis direction perpendicular to the plane of the paper.

いま、工具20aのX軸方向の位置は加工プログラムに
よって指令された座標値Xにあり、この状態で加工を行
うとワークは加工形状21aに示すように、加工プログ
ラムで指令された加工形状21よりも大きな直径の形状
に加工されてしまう。
Now, the position of the tool 20a in the X-axis direction is at the coordinate value X commanded by the machining program, and if machining is performed in this state, the workpiece will change from the machining shape 21 commanded by the machining program, as shown in the machining shape 21a. It is also processed into a shape with a large diameter.

本発明の数値制御装置では、この加工上の誤差を、工具
のX軸方向の移動量を補正して打ち消す。
In the numerical control device of the present invention, this machining error is canceled out by correcting the amount of movement of the tool in the X-axis direction.

すなわち、工具を加工プログラムで指令された座標値よ
りもさらにX軸方向に補正量ΔXだけ移動させ、加工形
状の半径をXにする。
That is, the tool is moved further in the X-axis direction by a correction amount ΔX than the coordinate values commanded by the machining program, and the radius of the machining shape is set to X.

補正量ΔXは、Y軸方向の偏差量をΔyとすれば、次式 %式%) ・・−一一一−−−−−・・−(1) を計算して求めることができる。但し、5QRTは平方
根を表す。本発明の一実施例の数値制御装置は、この計
算を加工工程のブロック毎に行って、加工プログラムで
指令されたX軸方向の終点座標値に加算して補正指令を
出力し、これによって工具の位置を制御する。
The correction amount ΔX can be obtained by calculating the following formula (%) (1), where the deviation amount in the Y-axis direction is Δy. However, 5QRT represents the square root. The numerical control device of one embodiment of the present invention performs this calculation for each block of the machining process, adds it to the end point coordinate value in the X-axis direction commanded by the machining program, outputs a correction command, and thereby control the position of

第1図に本発明の一実施例の数値制御装置のブロック図
を示す。図において、所定のフォーマットで作成された
加工プログラムlは解読手段2によって解読され、加工
時の座標値が出力される。
FIG. 1 shows a block diagram of a numerical control device according to an embodiment of the present invention. In the figure, a machining program l created in a predetermined format is decoded by a decoding means 2, and coordinate values at the time of machining are output.

このうち、終点座標値計算手段3は終点の座標値のみを
入力し、そのX軸方向の終点座標値ABSX (n)を
出力する。
Of these, the end point coordinate value calculation means 3 inputs only the coordinate value of the end point, and outputs the end point coordinate value ABSX (n) in the X-axis direction.

一方、オペレータにより、工具径のオフセットデータが
CRT/MDrユニット4を介してオフセットデータメ
モリ5に入力され、記憶されている。また、工具の位置
と主軸の中心とのY軸方向の偏差量Δyは予め測定され
て、CRT/MDIユニット4よりY軸偏差量メモリ6
に格納されている。
On the other hand, the operator inputs tool diameter offset data to the offset data memory 5 via the CRT/MDr unit 4 and stores it. Further, the deviation amount Δy in the Y-axis direction between the tool position and the center of the spindle is measured in advance, and is stored in the Y-axis deviation amount memory 6 from the CRT/MDI unit 4.
is stored in.

補正量計算手段7は、X軸方向の終点座標値ABSX 
(n)、X軸方向のオフセット量0FSX、及び偏差量
Δyに基づいて、加工工程のブロック毎に次の計算を行
う。
The correction amount calculation means 7 calculates the end point coordinate value ABSX in the X-axis direction.
(n), the offset amount 0FSX in the X-axis direction, and the deviation amount Δy, the following calculation is performed for each block of the machining process.

X (n)=ABSX (n)−0FSXΔx  (n
)=X  (n)−3QRT  (X  (n)”−Δ
y2 )    −・−・−−−−−(3)CMPX 
 (n)  −Δx  (n)  −Δx(n−1)・
−(4) すなわち、まず計算式(2)によって加工プログラムの
指令に基づいた工具の終点座標値X(n)を求める。座
標値X (n)はY軸方向に偏差のない場合の、主軸の
中心から工具までの距離となる。次に計算式(3)によ
り補正量Δx (n)を求める。但し、5QRTは平方
根を表す。そして、計算式(4)によって前回のブロッ
クの補正量Δx(n−1)との差を計算して差分補正量
CMPX (n)を求め、終点座標値補正手段8に出力
する。
X (n)=ABSX (n)−0FSXΔx (n
)=X (n)-3QRT (X (n)"-Δ
y2) −・−・−−−−−(3) CMPX
(n) −Δx (n) −Δx(n-1)・
-(4) That is, first, the end point coordinate value X(n) of the tool based on the instruction of the machining program is determined using calculation formula (2). The coordinate value X (n) is the distance from the center of the spindle to the tool when there is no deviation in the Y-axis direction. Next, the correction amount Δx (n) is determined using calculation formula (3). However, 5QRT represents the square root. Then, the difference from the correction amount Δx(n-1) of the previous block is calculated using calculation formula (4) to obtain the difference correction amount CMPX (n), which is output to the end point coordinate value correction means 8.

終点座標値補正手段8は、解読手段2の出力した座標値
に差分補正量CMPX (n)を加算して補正指令を出
力する。パルス分配手段9は、この補正指令をX軸指令
パルス及びX軸指令パルスにパルス分配し、サーボ制御
手段10がX軸サーボモータlla及びZ軸サーボモー
タllbを駆動する。
The end point coordinate value correction means 8 adds the difference correction amount CMPX (n) to the coordinate values output by the decoding means 2 and outputs a correction command. The pulse distribution means 9 distributes this correction command into an X-axis command pulse and an X-axis command pulse, and the servo control means 10 drives the X-axis servo motor lla and the Z-axis servo motor llb.

これにより、ブロックの終点における主軸の中心と工具
との距離はX (n)となり、終点座標の加工誤差が打
ち消されてワークが加工される。この場合、加工プログ
ラムで指令された加工径路が直線補間のときは、指令さ
れた始点と補正された終点を直線で結ぶ直線補間でワー
クが加工される。
As a result, the distance between the center of the spindle and the tool at the end point of the block becomes X (n), and the machining error in the end point coordinates is canceled out and the workpiece is machined. In this case, when the machining path commanded by the machining program is linear interpolation, the workpiece is machined by linear interpolation connecting the commanded starting point and the corrected end point with a straight line.

また、加工径路が円弧補間のときは、指令された始点と
補正された終点を螺旋で結ぶ螺旋補間でワークが加工さ
れる。
Further, when the machining path is circular interpolation, the workpiece is machined by helical interpolation that connects the commanded starting point and the corrected end point in a spiral.

〔発明の効果] 以上説明したように本発明の数値制御装置は、工具の位
置と主軸の中心とのY軸方向の偏差に起因する加工誤差
をX軸方向の指令値を補正して打ち消すので、機械側で
工具の取りつけ位置を厳密に調整する必要がなく、機械
の操作が容易となる。
[Effects of the Invention] As explained above, the numerical control device of the present invention cancels the machining error caused by the deviation in the Y-axis direction between the tool position and the center of the spindle by correcting the command value in the X-axis direction. There is no need to strictly adjust the mounting position of the tool on the machine side, making the machine easier to operate.

また、工具をY軸方向に制御する必要がないので、経済
的で、機械の構造も簡素となる。
Furthermore, since there is no need to control the tool in the Y-axis direction, it is economical and the structure of the machine is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の数値制御装置のブロック図
、 第2図は本発明の数値制御装置による旋盤加工の概念図
である。 ・−・−加工プログラム 終点座標値計算手段 Y軸偏差量メモリ ・−補正量計算手段 終点座標値補正手段 パルス分配手段 サーボ制御手段 6・ −−−−−・ 7− ・・−・・−・ 8−−−−−−−・ 9−−−−・ 1 0−−−−−一−−−・ 1 1  a −−−−・ 1  l  b−−−−−・−・ Δy・・−・・・ FSX A B S X  (n )  −−−−−−・CMP
X  (n)  ・−・ 20、20 a−−−−−・ L21a x −−m−・− ΔX X軸サーボモータ ・X軸サーボモータ m個差量 オフセット量 ・X軸方向終点座標値 ・差分補正量 工具 加工形状 主軸の中心 指令されたX軸座標値 補正量 特許出願人 ファナック株式会社 代理人   弁理士  服部毅巖 第2図
FIG. 1 is a block diagram of a numerical control device according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of lathe processing using the numerical control device of the present invention.・−・− Machining program end point coordinate value calculation means Y-axis deviation amount memory ・−Correction amount calculation means End point coordinate value correction means Pulse distribution means Servo control means 6・ −−−−−・ 7− ・・−・・−・8---------・ 9------・ 1 0------1---・ 1 1 a ----・ 1 l b--------・-・ Δy・・-・・・FSX ABSX (n) --------・CMP
X (n) ・−・ 20, 20 a−−−−−・ L21a x −−m−・− ΔX X axis servo motor/X axis servo motor m individual difference offset amount/X axis direction end point coordinate value/difference Correction amount Center of tool machining shape spindle Commanded X-axis coordinate value Correction amount Patent applicant: Fanuc Co., Ltd. Agent Patent attorney Takeshi Hattori Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)工具をX軸方向及びZ軸方向に移動可能な旋盤機
械を制御する数値制御装置(CNC)において、 前記工具の位置と前記主軸の中心とのY軸方向の偏差量
を設定する設定手段と、 前記偏差量に基づいて、加工工程のブロック毎にX軸方
向の補正量を計算する補正量計算手段と、前記補正量を
加工プログラムで指令された前記ブロックのX軸方向の
所定の座標値に加算して補正指令を出力する座標値補正
手段と、 を有し、前記偏差量に起因するワークの加工誤差をなく
すことを特徴とする数値制御装置。
(1) In a numerical control device (CNC) that controls a lathe machine that can move a tool in the X-axis direction and the Z-axis direction, a setting that sets the deviation amount in the Y-axis direction between the position of the tool and the center of the spindle. means for calculating a correction amount in the X-axis direction for each block of the machining process based on the deviation amount; A numerical control device comprising: a coordinate value correcting means for adding to a coordinate value and outputting a correction command, and eliminating a machining error of a workpiece caused by the deviation amount.
(2)前記所定の座標値は終点の座標値であることを特
徴とする特許請求の範囲第1項記載の数値制御装置。
(2) The numerical control device according to claim 1, wherein the predetermined coordinate values are coordinate values of an end point.
(3)前記補正量は次の計算式 Δx(n)=X(n)−SQRT(X(n)^2−Δy
^2) 但し、Δx(n):補正量 X(n):加工プログラムで指令され たX軸の座標値 Δy:偏差量 (n):n回目のパルス分配時 SQRT:平方根 によって求められることを特徴とする特許請求の範囲第
1項記載の数値制御装置。
(3) The above correction amount is calculated using the following formula Δx(n)=X(n)-SQRT(X(n)^2-Δy
^2) However, Δx(n): Correction amount A numerical control device according to claim 1, characterized in that:
JP31083888A 1988-12-08 1988-12-08 Numerical controller Pending JPH02156308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31083888A JPH02156308A (en) 1988-12-08 1988-12-08 Numerical controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31083888A JPH02156308A (en) 1988-12-08 1988-12-08 Numerical controller

Publications (1)

Publication Number Publication Date
JPH02156308A true JPH02156308A (en) 1990-06-15

Family

ID=18010001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31083888A Pending JPH02156308A (en) 1988-12-08 1988-12-08 Numerical controller

Country Status (1)

Country Link
JP (1) JPH02156308A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114058A1 (en) * 2015-01-16 2016-07-21 住友電工ハードメタル株式会社 Method for manufacturing machine part, apparatus for manufacturing machine part, machining method for rotationally symmetric surface, recording medium, and program
JP2016132052A (en) * 2015-01-16 2016-07-25 住友電工ハードメタル株式会社 Machine component manufacturing method, machine component manufacturing device, rotation symmetrical surface processing method, record medium, and program
JP2016203338A (en) * 2015-04-27 2016-12-08 住友電工ハードメタル株式会社 Manufacturing method of machine component, manufacturing apparatus of machine component, machining method of rotational asymmetrical surface, recording medium, and program
WO2022202591A1 (en) * 2021-03-23 2022-09-29 ファナック株式会社 Computation device, machining system, and correction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114058A1 (en) * 2015-01-16 2016-07-21 住友電工ハードメタル株式会社 Method for manufacturing machine part, apparatus for manufacturing machine part, machining method for rotationally symmetric surface, recording medium, and program
JP2016132052A (en) * 2015-01-16 2016-07-25 住友電工ハードメタル株式会社 Machine component manufacturing method, machine component manufacturing device, rotation symmetrical surface processing method, record medium, and program
JP2016203338A (en) * 2015-04-27 2016-12-08 住友電工ハードメタル株式会社 Manufacturing method of machine component, manufacturing apparatus of machine component, machining method of rotational asymmetrical surface, recording medium, and program
WO2022202591A1 (en) * 2021-03-23 2022-09-29 ファナック株式会社 Computation device, machining system, and correction method

Similar Documents

Publication Publication Date Title
CN1636172B (en) Method for continuous-path control
US20030120376A1 (en) Numerical controller
US8818549B2 (en) Controller for machine tool and five-axis simultaneous control machine tool controlled thereby
JPH0252282B2 (en)
JP5897662B2 (en) Servo motor control device that improves multi-axis machining accuracy
KR100284668B1 (en) Numerical control unit
US7044830B2 (en) Numeric controller
US20060037951A1 (en) Laser processing apparatus
JP2000322105A (en) Servo controller and method for stabilizing and adjusting servo controller
JPH02156308A (en) Numerical controller
JP2004174586A (en) Numerical control device
JPH07152417A (en) Tool path and tool feeding speed control system for numerical controller
JPS6375907A (en) Method for eliminating follow-up delay in full-close feedback nc system
JPH09190211A (en) System for controlling route of numerically controlled device
US5347461A (en) Tool travel path creating method
JPH02156307A (en) Numerical controller
JP6985563B1 (en) Numerical control device
JP2002006913A (en) Numerical control equipment of machine tool and method for groove machining
JPH11194813A (en) Operation command generating method for industrial machine
JPH03246707A (en) Position correcting system by systems
CN109884982B (en) Numerical controller
JPH04176516A (en) Second cut machining method and second cut machining controller in wire electric discharge machining
EP0453572A1 (en) Method of correcting positional fluctuation of machine
JPH07186001A (en) Product working accuracy correction method in servo positioning control type working system
JPH0484202A (en) Numerical controller