JPH06297026A - Method for preventing hot crack of cu-and sn-containing steel - Google Patents

Method for preventing hot crack of cu-and sn-containing steel

Info

Publication number
JPH06297026A
JPH06297026A JP8755193A JP8755193A JPH06297026A JP H06297026 A JPH06297026 A JP H06297026A JP 8755193 A JP8755193 A JP 8755193A JP 8755193 A JP8755193 A JP 8755193A JP H06297026 A JPH06297026 A JP H06297026A
Authority
JP
Japan
Prior art keywords
steel
cracking
heating
scale
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8755193A
Other languages
Japanese (ja)
Other versions
JP3173914B2 (en
Inventor
Toshiyuki Kajitani
敏之 梶谷
Masamitsu Wakao
昌光 若生
Shigeaki Ogibayashi
成章 荻林
Naoki Tokumitsu
直樹 徳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08755193A priority Critical patent/JP3173914B2/en
Publication of JPH06297026A publication Critical patent/JPH06297026A/en
Application granted granted Critical
Publication of JP3173914B2 publication Critical patent/JP3173914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the surface crack occurring in a Cu by adding Si at need to a Cu- and Sn-contg. steel, then heating and hot rolling the steel. CONSTITUTION:The Si is added as an alloy component at need to the Cu-and Sn-contg. steel and thereafter, the steel is heated by preferentially oxidize the Si in the steel, by which the Si is taken into surface scale to form the scale the scale consisting of a low melting oxide phase of an SiO2-FeO system. The steel is rolled while the precipitation of the Cu and Sn melt formed on the surface of the steel is thereby prevented. The steel is heated at >=1350-[-200(% Cu)+500](%Si) deg.C heating temp. and is rolled in the case of <=0.5 to 1.0% Cu and <=0.1 Sn. The steel is heated at 1150 deg.C if the heating temp. is <1150 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCu、Sn含有鋼に必要
に応じてSiを添加し、その後、加熱して熱間圧延する
ことによって、Cu起因の表面割れを防止する熱間割れ
防止方法に関する。
FIELD OF THE INVENTION The present invention relates to a hot crack preventing method for preventing surface cracks caused by Cu by adding Si to Cu and Sn-containing steel as required, and then heating and hot rolling. Regarding

【0002】[0002]

【従来の技術】最近の電気炉製鋼が活発化してその溶解
量が増大している。この原料であるスクラップに含まれ
るトランプエレメント、特にCu、Sn含有量の高い自
動車、家電、缶屑等の劣悪スクラップの環境(屑処理)
問題が提起されている。スクラップについての公知資料
として、例えばElliott Symposium Proceeding( P599,1
990)に、Snの含Cu鋼への影響について、Snは含C
u鋼の表面疵を助長することが知られているが、Cu、
Snともに精錬による除去が困難である。そのため、C
u、Snを含有するスクラップの再生処理に、スクラッ
プの希釈が提案されている。
2. Description of the Related Art Recently, electric furnace steelmaking has become more active and the amount of melting has increased. The environment (waste treatment) of bad scraps such as automobiles, home appliances, and can scraps, which have a high Cu and Sn content in the Trump element contained in the scrap that is the raw material.
A problem has been raised. Well-known materials about scrap include, for example, Elliott Symposium Proceeding (P599,1
990), regarding the effect of Sn on Cu-containing steel, Sn is C-containing.
It is known to promote surface defects of u steel, but Cu,
Both Sn are difficult to remove by refining. Therefore, C
Dilution of scraps has been proposed for the recycling process of scraps containing u and Sn.

【0003】また、含Cu鋼の熱間加工性について、例
えば「鉄鋼に及ぼす公金元素の影響」(P378,誠文堂新光
社) には、含Cu鋼の熱間加工においては、Cu0.3
%未満でも軽微な表面疵が認められる。Cu0.3%以
上になると小さな割れ疵が生じ、Cu0.8%に達すれ
ば割れ疵は著しく大きくなり、これ以上含Cu量を増加
すれば、割れ疵は含Cu量の増加にともない一層増大す
ることが記載されている。
Regarding the hot workability of Cu-containing steel, for example, “Effect of public money elements on steel” (P378, Seibundo Shinkosha) states that Cu0.3-0.3
Even if it is less than%, slight surface flaws are recognized. When the Cu content is 0.3% or more, small cracks are generated, and when the Cu content is 0.8%, the cracks are significantly increased. When the Cu content is further increased, the crack flaws are further increased as the Cu content is increased. Is described.

【0004】さらに、最近では含Cu鋼にNiを所定量
添加することによって、疵の原因となる高温酸化時のC
u融液の鋼表面での析出を抑制し、割れを防止すること
ができることが知られている。しかし、上記の従来技術
においては、スクラップを再生処理するか、もしくは希
釈によってCu、Snの影響を軽減するものであるが、
これらは処理コストおよび希釈合金コストが高く、充分
な対策としては問題を有している。最近の鉄鋼製造にお
ける、スクラップ使用量の増大とともにより効率のよ
い、Cu、Sn含有鋼スクラップの使用技術の開発が望
まれている。
Further, recently, by adding a predetermined amount of Ni to Cu-containing steel, C at the time of high temperature oxidation which causes a flaw is caused.
It is known that precipitation of the u melt on the steel surface can be suppressed and cracking can be prevented. However, in the above-mentioned conventional technique, the effect of Cu and Sn is reduced by recycling scrap or diluting it.
These are high in processing cost and dilution alloy cost, and have a problem as a sufficient countermeasure. It is desired to develop a more efficient use technique of Cu- and Sn-containing steel scraps with the increase of the amount of scraps used in recent steel production.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来の問
題点を解決することを目的に、Cu、Sn含有鋼の製造
において発生する表面割れを防止するために、鋼中にS
iを添加して、その後の加熱によってSiによるCuS
n融液をSiO2 ─FeO系低融点酸化物液体に取り込
み、鋳片表面にCuSn融液が析出しないで、その後の
加工工程においてCu、Snの粒界侵入を抑制すること
によって、表面割れのないCu、Sn含有鋼の熱間割れ
防止方法を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention aims to prevent surface cracks that occur in the production of Cu- and Sn-containing steel.
Cu is added by adding i and then heating it to form CuS.
Incorporating the n-melt into the SiO 2 —FeO low-melting-point oxide liquid to prevent CuSn melt from precipitating on the surface of the slab, and suppressing the intergranulation of Cu and Sn in the subsequent processing steps to prevent surface cracking. A method for preventing hot cracking of steel containing Cu and Sn which does not exist.

【0006】さらに、Cu、Snを増量しても前記Cu
Sn融液の析出が起こらない条件を、Cu、Sn含有量
との関係より決定することによって、より広い範囲にお
いて、表面の良好なCu、Sn含有鋼を得ることを目的
とする。
Furthermore, even if Cu and Sn are increased,
The purpose of the present invention is to obtain a Cu- and Sn-containing steel with a good surface in a wider range by determining the conditions under which the precipitation of Sn melt does not occur from the relationship with the Cu and Sn contents.

【0007】[0007]

【課題を解決するための手段】本発明は前記課題を解決
するもので、その要旨は、 (1)Cu、Snを含有する鋼に、Siを合金の成分と
して添加し、その後加熱して、鋼中の該Siを優先酸化
させることによりこれを表面スケール中に取り込み、S
iO2 ─FeO系の低融点酸化物相からなるスケール中
に生成せしめて、鋼の表面に生成するCu、Sn融液を
その中に取り込んだ後圧延することを特徴とするCu、
Sn含有鋼の熱間割れ防止方法であり、
Means for Solving the Problems The present invention is to solve the above problems, and the gist thereof is: (1) Si is added as an alloy component to steel containing Cu and Sn, and then heated, This is incorporated into the surface scale by preferentially oxidizing the Si in the steel, and S
Cu which is produced in a scale consisting of an iO 2 --FeO low melting point oxide phase, Cu which is produced on the surface of the steel, Cu which is taken into the melt and then rolled.
A method for preventing hot cracking of Sn-containing steel,

【0008】(2)重量%で、Cu:0.1%以上〜
0.5%未満、Sn:0.1%以下を含有する鋼を、1
150℃以上で加熱した後圧延し、鋼の表面に生成する
Cu、Sn融液をスケール中に取り込むことを特徴とす
るCu、Sn含有鋼の熱間割れ防止方法、あるいは、
(2) Cu: 0.1% or more by weight%
Steel containing less than 0.5% and Sn: 0.1% or less is 1
A method for preventing hot cracking of Cu- and Sn-containing steel, which comprises heating Cu at 150 ° C. or higher and rolling, and incorporating Cu and Sn melts formed on the surface of the steel into the scale, or

【0009】(3)重量%で、Cu:0.5%以上〜
1.0%以下、Sn:0.1%以下を含有する鋼に、S
iを合金成分とし、加熱した後圧延するに際し、加熱温
度:TがT≧1350−〔−200(%Cu)+50
0〕(%Si)℃なる関係式を満足する温度であって、
かつ1150℃以上の温度にて加熱後圧延することを特
徴とするCu、Sn含有鋼の熱間割れ防止方法である。
(3) Cu: 0.5% or more by weight%
Steel containing 1.0% or less and Sn: 0.1% or less, S
When i is an alloy component and heating is followed by rolling, the heating temperature T is T ≧ 1350 − [− 200 (% Cu) +50.
0] (% Si) ° C., which satisfies the relational expression,
In addition, it is a method for preventing hot cracking of Cu- and Sn-containing steel, which comprises heating and rolling at a temperature of 1150 ° C. or higher.

【0010】[0010]

【作用】図3はCu起因の割れ発生のメカニズムを示す
もので、Cu含有鋼の表面の酸化スケールにFeが拡散
することによって、その界面にCu融液が析出して来
る。その後、圧延等の加工を受けることによって、この
析出したCu融液相のCuが母材の粒界に侵入して、脆
化を生じせしめ割れに至る。発明者等の知見によれば、
Cu含有鋼の表面割れは、Feの選択酸化によって、C
u融液がFe表面に析出し、それが加工時粒界に侵入す
ることによって発生する。したがって、Cu、Sn融液
をFe表面から取り去ることができれば、割れは発生し
なくなる。
FIG. 3 shows the mechanism of cracking caused by Cu. Fe diffuses into the oxide scale on the surface of the Cu-containing steel, and a Cu melt deposits on the interface. Thereafter, by subjecting to processing such as rolling, the precipitated Cu in the Cu melt phase penetrates into the grain boundaries of the base material, causing embrittlement and leading to cracking. According to the findings of the inventors,
The surface cracking of Cu-containing steel is C due to the selective oxidation of Fe.
It is generated by the fact that the u melt deposits on the surface of Fe and enters the grain boundaries during processing. Therefore, if the Cu and Sn melts can be removed from the Fe surface, cracking will not occur.

【0011】本発明は上記の知見に基ずいてなされたも
のである。すなわち、この手段として、Siを鋼に添加
して、その後の加熱工程でこのSiをスケール中に存在
させ、SiO2 ─FeO系の低融点酸化物液体スケール
を生成させ、Cu、Sn融液をその中に取り込む。ただ
し、その液体スケールの融点は1150℃程度であるた
め、Siを鋼中よりスケールに移行させるためには、加
熱時の温度が1150℃以上である必要がある。
The present invention has been made based on the above findings. That is, as this means, Si is added to steel, and in the subsequent heating step, this Si is present in the scale to generate a SiO 2 —FeO-based low-melting point oxide liquid scale, and Cu, Sn melts are generated. Take in it. However, since the melting point of the liquid scale is about 1150 ° C, the temperature during heating must be 1150 ° C or higher in order to transfer Si from the steel to the scale.

【0012】図2にFeO−SiO2 系の状態図を示
す。この図でわかるとおり、2FeOSiO2 (ファヤ
ライト)とウスタイトの共晶温度は1177℃にあり、
通常では1150℃以上の温度で液相が出てくるため
に、この中にCu、Sn融液を取り込むことは容易に起
こり得ることがわかる。
FIG. 2 shows a phase diagram of the FeO-SiO 2 system. As you can see in this figure, the eutectic temperature of 2FeOSiO 2 (fayalite) and wustite is 1177 ℃,
Since the liquid phase usually comes out at a temperature of 1150 ° C. or higher, it is understood that it is easy to take Cu and Sn melts into the liquid phase.

【0013】本発明者等は、Cu、Sn起因の表面割れ
の脆化温度の上限は、鋼中Si濃度が大きい程低下する
ことを見だした。これはSiが増加するにともない、析
出CuSn融液をとりこむSi酸化物液相の液相率が増
大するからである。しかし、Si濃度をいくら増加させ
ても、割れ発生温度の上限は1100℃未満にはならな
い。これはSi酸化物液相の融点が1100℃以上であ
り、1100℃以下ではSi酸化物液相が形成されない
からである。
The present inventors have found that the upper limit of the embrittlement temperature of surface cracks caused by Cu and Sn decreases as the Si concentration in steel increases. This is because the liquid fraction of the Si oxide liquid phase that takes in the precipitated CuSn melt increases as the Si content increases. However, no matter how the Si concentration is increased, the upper limit of the crack generation temperature does not fall below 1100 ° C. This is because the melting point of the Si oxide liquid phase is 1100 ° C. or higher, and the Si oxide liquid phase is not formed at 1100 ° C. or lower.

【0014】次に、Snの影響について以下にさらに説
明する。一般的には、Cuの約1/10の量でSnは顕
著に作用する。図4は別の試験による結果の一例でSn
による温度低下をみるために成したものであって、この
Snの添加量の影響を示す一例の図で、Snを0.05
%まで増量した時の割れ発生する加熱温度を示す。この
時のCuは0.5%である。要すればこの図より、例え
ばSn0.03%の時の割れ温度は1000〜1200
℃を示し、約50℃低温側に移行している。
Next, the influence of Sn will be further described below. Generally, Sn acts remarkably in the amount of about 1/10 of Cu. FIG. 4 shows an example of the result of another test Sn
This is done in order to see the temperature decrease due to
The heating temperature at which cracking occurs when the content is increased to 100% is shown. Cu at this time is 0.5%. If necessary, from this figure, for example, the cracking temperature when Sn is 0.03% is 1000 to 1200.
C., indicating a shift to the low temperature side of about 50.degree.

【0015】[0015]

【実施例】次に、本発明の実施例に基ずいてその効果に
ついて詳述する。 実施例1 炭素鋼の化学成分として、C:0.20%、Mn:0.
50%、T−Al:0.03%、およびCu:0.4
%、Snを含有しない鋼に必要に応じてSiを合金成分
として添加し、大気中において1000〜1350℃で
10分間加熱し、スケールを生成させた後、引っ張り変
形を加えた。この引っ張り試験後、割れ発生の有無と加
熱温度、Si濃度との関係を調べた。その結果を図1
(a)に示す。図1(a)より、本成分鋼においては、
1050〜1100℃の範囲で割れが発生しており、1
150℃以上では割れが発生しないことがわかる。
Next, the effects will be described in detail based on the embodiments of the present invention. Example 1 As chemical components of carbon steel, C: 0.20%, Mn: 0.
50%, T-Al: 0.03%, and Cu: 0.4
%, Si was added as an alloy component to the steel containing no Sn, and heated in the atmosphere at 1000 to 1350 ° C. for 10 minutes to generate a scale, and then tensile deformation was applied. After this tensile test, the relationship between the presence or absence of cracking, the heating temperature, and the Si concentration was investigated. The result is shown in Figure 1.
It shows in (a). From FIG. 1 (a), in this component steel,
Cracks occurred in the range of 1050 to 1100 ° C, and 1
It can be seen that cracking does not occur at 150 ° C or higher.

【0016】実施例2 炭素鋼の化学成分として、C:0.20%、Mn:0.
50%、T−Al:0.03%、およびCu:0.4
%、Sn:0.1%を含有する鋼に応じてSiを合金成
分として添加し、大気中において1000〜1350℃
で10分間加熱し、スケールを生成させた後、引っ張り
変形を加えた。この引っ張り試験後、割れ発生の有無と
加熱温度、Si濃度との関係を調べた。その結果を図1
(b)に示す。図1(b)より、本成分鋼においては、
1000〜1100℃の範囲で割れが発生しており、1
150℃以上では割れが発生しないことがわかる。
Example 2 As chemical components of carbon steel, C: 0.20%, Mn: 0.
50%, T-Al: 0.03%, and Cu: 0.4
%, Sn: 0.1%, Si is added as an alloy component according to the steel, and the temperature is 1000 to 1350 ° C.
After 10 minutes of heating to generate a scale, tensile deformation was applied. After this tensile test, the relationship between the presence or absence of cracking, the heating temperature, and the Si concentration was investigated. The result is shown in Figure 1.
It shows in (b). From FIG. 1 (b), in this component steel,
Cracks occurred in the range of 1000 to 1100 ° C, and 1
It can be seen that cracking does not occur at 150 ° C or higher.

【0017】実施例3 炭素鋼の化学成分として、C:0.20%、Mn:0.
50%、T−Al:0.03%、およびCu:0.5
%、Snを含有量しない鋼に応じてSiを合金成分とし
て添加し、大気中において1000〜1350℃で10
分間加熱し、スケールを生成させた後、引っ張り変形を
加えた。この引っ張り試験後、割れ発生の有無と加熱温
度、Si濃度との関係を調べた。その結果を図1(c)
に示す。図1(c)より、本成分鋼においては、Si<
0.5%以下の領域で、加熱温度:T=−400(Si
%)+1350℃以下では割れが発生しているが、これ
以上の温度では割れが発生しないことがわかる。また、
Si>0.5%では1150℃以上で割れの発生はない
ことがわかる。
Example 3 As chemical constituents of carbon steel, C: 0.20%, Mn: 0.
50%, T-Al: 0.03%, and Cu: 0.5
%, Si is added as an alloying component depending on the steel containing no Sn, and at 10 ° C. at 1000 to 1350 ° C. in the atmosphere.
After heating for a minute to generate a scale, tensile deformation was applied. After this tensile test, the relationship between the presence or absence of cracking, the heating temperature, and the Si concentration was investigated. The results are shown in Fig. 1 (c).
Shown in. From FIG. 1 (c), in this component steel, Si <
In a region of 0.5% or less, heating temperature: T = -400 (Si
%) + 1350 ° C. or less, cracking occurs, but it is understood that cracking does not occur at temperatures higher than this. Also,
It can be seen that when Si> 0.5%, cracking does not occur at 1150 ° C. or higher.

【0018】実施例4 炭素鋼の化学成分として、C:0.20%、Mn:0.
50%、T−Al:0.03%、およびCu:1.0
%、Snを含有量しない鋼に応じてSiを合金成分とし
て添加し、大気中において1000〜1350℃で10
分間加熱し、スケールを生成させた後、引っ張り変形を
加えた。この引っ張り試験後、割れ発生の有無と加熱温
度、Si濃度との関係を調べた。その結果を図1(d)
に示す。図1(d)より、本成分鋼においては、Si<
0.5%以下の領域で、加熱温度:T=−300(Si
%)+1350℃以下では割れが発生しているが、これ
以上の温度では割れが発生しないことがわかる。また、
Si>0.5%では1150℃以上で割れの発生はない
ことがわかる。
Example 4 As chemical components of carbon steel, C: 0.20%, Mn: 0.
50%, T-Al: 0.03%, and Cu: 1.0
%, Si is added as an alloying component depending on the steel containing no Sn, and at 10 ° C. at 1000 to 1350 ° C. in the atmosphere.
After heating for a minute to generate a scale, tensile deformation was applied. After this tensile test, the relationship between the presence or absence of cracking, the heating temperature, and the Si concentration was investigated. The result is shown in Fig. 1 (d).
Shown in. From Fig. 1 (d), in this component steel, Si <
In a region of 0.5% or less, heating temperature: T = -300 (Si
%) + 1350 ° C. or less, cracking occurs, but it is understood that cracking does not occur at temperatures higher than this. Also,
It can be seen that when Si> 0.5%, cracking does not occur at 1150 ° C. or higher.

【0019】実施例5 炭素鋼の化学成分として、C:0.20%、Mn:0.
50%、T−Al:0.03%、およびCu:1.0
%、Sn:0.1を含有する鋼に応じてSiを合金成分
として添加し、大気中において1000〜1350℃で
10分間加熱し、スケールを生成させた後、引っ張り変
形を加えた。この引っ張り試験後、割れ発生の有無と加
熱温度、Si濃度との関係を調べた。その結果を図1
(e)に示す。図1(e)より、本成分鋼においては、
Si<0.5%以下の領域で、加熱温度:T=−300
(Si%)+1350℃以下では割れが発生している
が、これ以上の温度では割れが発生しないことがわか
る。また、Si>0.5%では1150℃以上で割れの
発生はないことがわかる。
Example 5 As chemical components of carbon steel, C: 0.20%, Mn: 0.
50%, T-Al: 0.03%, and Cu: 1.0
%, Sn: 0.1, Si was added as an alloy component according to the steel, and the mixture was heated in the atmosphere at 1000 to 1350 ° C. for 10 minutes to generate a scale, and then tensile deformation was applied. After this tensile test, the relationship between the presence or absence of cracking, the heating temperature, and the Si concentration was investigated. The result is shown in Figure 1.
It shows in (e). From Fig. 1 (e), in this component steel,
In a region of Si <0.5% or less, heating temperature: T = -300
It can be seen that cracking occurs at (Si%) + 1350 ° C. or lower, but cracking does not occur at temperatures higher than this. Further, it can be seen that when Si> 0.5%, no cracks occur at 1150 ° C. or higher.

【0020】以上の実施例からも明らかなごとく、本発
明はCu、Sn含有鋼にSiを添加することによって、
その後の加熱時にSiをスケールに移行させ反応させる
ことによって、割れの原因であるCuSn融液をSiO
2 ─FeO系液相に取り込ませることが可能となり、C
u、Sn含有鋼の割れを防止することがわかる。
As is clear from the above examples, according to the present invention, by adding Si to steel containing Cu and Sn,
During subsequent heating, the CuSn melt, which is the cause of cracking, is converted into SiO
2 --FeO-based liquid phase can be incorporated and C
It can be seen that the cracking of the steel containing u and Sn is prevented.

【0021】[0021]

【発明の効果】本発明はCu、Sn含有鋼の製造上の問
題であるCuSn融液起因の表面割れを防止することを
可能として、今後のスクラップ事情に対応してCu、S
n含有鋼が増加してくることが予想されるが、これに対
してNi添加および熔銑希釈などコスト高をまねく方法
をとることなく、Cu、Sn含有鋼の製造を可能とす
る。
INDUSTRIAL APPLICABILITY The present invention makes it possible to prevent surface cracks caused by CuSn melt, which is a problem in manufacturing Cu- and Sn-containing steels, and to cope with future scrap circumstances, Cu and S
Although it is expected that the n-containing steel will increase, it is possible to manufacture the Cu- and Sn-containing steel without taking a costly method such as Ni addition and hot metal dilution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加熱温度、Si濃度と割れ発生の関係
を示す図である。(a)Cu0.4%、Sn0%、
(b)Cu0.4%、Sn0.1%、(c)Cu0.5
%、Sn0%、(d)Cu1.0%、Sn0%、(e)
Cu1.0%、Sn1.0%における図である。
FIG. 1 is a diagram showing the relationship between the heating temperature, Si concentration, and crack generation according to the present invention. (A) Cu 0.4%, Sn 0%,
(B) Cu 0.4%, Sn 0.1%, (c) Cu 0.5
%, Sn0%, (d) Cu1.0%, Sn0%, (e)
It is a figure in Cu1.0% and Sn1.0%.

【図2】本発明に係るFeO−SiO2 系状態図であ
る。
FIG. 2 is an FeO—SiO 2 system phase diagram according to the present invention.

【図3】本発明のSnのFe−Cu系液相線温度への影
響を示す一例の図である。
FIG. 3 is a diagram showing an example of the effect of Sn of the present invention on the liquidus temperature of Fe—Cu system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳光 直樹 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoki Tokumitsu 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Corporate Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cu、Snを含有する鋼に、Siを合金
成分として添加し、その後加熱してスケールを生成せし
めた後、圧延することを特徴とするCu、Sn含有鋼の
熱間割れ防止方法。
1. Prevention of hot cracking of Cu-Sn-containing steel, characterized in that Si is added as an alloy component to a Cu-Sn-containing steel and then heated to form a scale and then rolled. Method.
【請求項2】 重量%で、Cu:0.1%以上〜0.5
%未満、Sn:0.1%以下を含有する鋼を、1150
℃以上で加熱した後圧延することを特徴とするCu、S
n含有鋼の熱間割れ防止方法。
2. Cu: 0.1% or more to 0.5 by weight.
%, Sn: steel containing 0.1% or less, 1150
Cu, S characterized by being rolled at a temperature of ℃ or more
Method for preventing hot cracking of n-containing steel.
【請求項3】 重量%で、Cu:0.5%以上〜1.0
%以下、Sn:0.1%以下を含有する鋼に、Siを合
金成分として添加し、加熱した後圧延するに際し、加熱
温度:TがT≧1350−〔−200(%Cu)+50
0〕(%Si)℃なる関係式を満足する温度以上の温度
であって、かつ該関係式により決定される加熱温度:T
が1150℃未満の場合は1150℃にて加熱した後圧
延することを特徴とするCu、Sn含有鋼の熱間割れ防
止方法。
3. By weight%, Cu: 0.5% or more to 1.0
%, Sn: 0.1% or less in steel, Si is added as an alloying component, and when heating and rolling, heating temperature: T is T ≧ 1350 − [− 200 (% Cu) +50.
0] (% Si) ° C., which is a temperature equal to or higher than the temperature satisfying the relational expression, and which is determined by the relational expression: T
Is less than 1150 ° C., heating at 1150 ° C. is followed by rolling, which is a method for preventing hot cracking of Cu- and Sn-containing steel.
JP08755193A 1993-04-14 1993-04-14 Method for preventing hot cracking of Cu, Sn-containing steel Expired - Fee Related JP3173914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08755193A JP3173914B2 (en) 1993-04-14 1993-04-14 Method for preventing hot cracking of Cu, Sn-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08755193A JP3173914B2 (en) 1993-04-14 1993-04-14 Method for preventing hot cracking of Cu, Sn-containing steel

Publications (2)

Publication Number Publication Date
JPH06297026A true JPH06297026A (en) 1994-10-25
JP3173914B2 JP3173914B2 (en) 2001-06-04

Family

ID=13918131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08755193A Expired - Fee Related JP3173914B2 (en) 1993-04-14 1993-04-14 Method for preventing hot cracking of Cu, Sn-containing steel

Country Status (1)

Country Link
JP (1) JP3173914B2 (en)

Also Published As

Publication number Publication date
JP3173914B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JP2510154B2 (en) Fe-Ni alloy cold rolled sheet and method for producing the same
JP3885267B2 (en) Manufacturing method of highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking
JPH06297026A (en) Method for preventing hot crack of cu-and sn-containing steel
JPH0583610B2 (en)
JP3721637B2 (en) Method for producing Ca-containing austenitic heat resistant steel
JPH09287015A (en) Method for refining harmful inclution in steel
JPH06256904A (en) Hot rolled steel containing cu and sn
JPH04329843A (en) Manufacture of high strength nickel alloy resisting against seawater corrosion
JP4479092B2 (en) Hot rolled steel and method for producing the same
JP3363490B2 (en) Ingot making method of Fe-Ni based alloy ingot
JPS6059967B2 (en) Method for preventing surface defects in low Mn-low Al slabs
JP2000178693A (en) Ferritic stainless steel sheet having high temperature strength at intermittent heating and oxide scale practically free from peeling
JP3504437B2 (en) High cleanliness austenitic stainless steel
JP3148041B2 (en) Method for producing Cu, Sn-containing steel material
JP3558745B2 (en) Hot-rolled steel sheet for press forming excellent in secondary workability and surface quality and method for producing the same
JP2000034545A (en) Austenitic heat resistant steel with improved hot workability, and its manufacture
JPH07118800A (en) Hot rolled plate of sn-and ti-b-containing high strength steel excellent in surface characteristic and its production
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
JP2002356723A (en) Method for dissolving and dehydrogenating copper scrap alloy
JPH06306464A (en) Production of hot rolled austenitic stainless steel plate
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JP3360033B2 (en) Fe-Ni alloy for shadow mask and method for producing the same
JP2002322508A (en) METHOD FOR PRODUCING EXTRA LOW Ti STEEL
JPH07292413A (en) Method for preventing surface cracking of steel containing copper and tin
JP3708376B2 (en) Non-tempered steel suitable for machining in sub-hot temperature range

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees