JPH0629689Y2 - Mass flow meter - Google Patents

Mass flow meter

Info

Publication number
JPH0629689Y2
JPH0629689Y2 JP10730787U JP10730787U JPH0629689Y2 JP H0629689 Y2 JPH0629689 Y2 JP H0629689Y2 JP 10730787 U JP10730787 U JP 10730787U JP 10730787 U JP10730787 U JP 10730787U JP H0629689 Y2 JPH0629689 Y2 JP H0629689Y2
Authority
JP
Japan
Prior art keywords
curved conduit
support
tube
conduit
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10730787U
Other languages
Japanese (ja)
Other versions
JPS6415921U (en
Inventor
宏 山本
Original Assignee
オ−バル機器工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オ−バル機器工業株式会社 filed Critical オ−バル機器工業株式会社
Priority to JP10730787U priority Critical patent/JPH0629689Y2/en
Publication of JPS6415921U publication Critical patent/JPS6415921U/ja
Application granted granted Critical
Publication of JPH0629689Y2 publication Critical patent/JPH0629689Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 技術分野 本考案は、コリオリ式質量流量計の湾曲導管の構造に関
する。
TECHNICAL FIELD The present invention relates to the structure of a curved conduit of a Coriolis mass flowmeter.

従来技術 第4図は、コリオリ流量計の動作原理を説明するための
構成図で、図中、1は被測定流体が流れるU字形の湾曲
導管で、流入、流出端は支持部材2に固定されている。
湾曲導管1の先端で対称軸X−X′と交わる位置に支持
部材2上のY−Y′軸まわりに湾曲導管1を加振する磁
石5が保持板6を介して配設されており、磁石5と対向
して電磁力を与える電磁コイル4が、一端を支持部材2
に固定された往復部材3のX−X′軸上の他端に配設さ
れている。往復部材3と湾曲導管1とはY−Y′軸まわ
りの固有振動と等しくしてあるので、支持部材2を節と
した音叉状の振動をすることとなる。このような振動の
もとにQ方向の流れを与えると、U字形の湾曲導管1を
流れる流体にコリオリの力が発生する。このコリオリの
力の大きさは湾曲導管1内を流れる流体の質量流量に比
例する。また、力の方向は流体の運動方向をY−Y′軸
まわりの角速度とのベクトル積方向である。流体の流れ
方向は流入側と流出側とで反体になるので、コリオリの
力は振動周波数と等しい周波数の変動トルクとして駆動
振動の振幅に重畳した形で発生する。このトルクは湾曲
導管1のY−Y′軸まわりの振動に加えられるので、光
検出器7とU字形の湾曲導管1の腕の対称位置に固定さ
れた遮光板8とにより光変化として位置検出され、湾曲
導管1の基準面を通過する両腕の検出信号の時間差とし
て求められる。上記のコリオリ流量計の湾曲導管1は通
常ステンレス等の耐触性をもった金属管により構成され
ている。
Prior Art FIG. 4 is a block diagram for explaining the operating principle of a Coriolis flowmeter. In the figure, 1 is a U-shaped curved conduit through which a fluid to be measured flows, and its inflow and outflow ends are fixed to a support member 2. ing.
A magnet 5 for exciting the curved conduit 1 around the Y-Y 'axis on the support member 2 is arranged via a holding plate 6 at a position where it intersects with the axis of symmetry XX' at the tip of the curved conduit 1. An electromagnetic coil 4, which is opposed to the magnet 5 and gives an electromagnetic force, has one end supported by the support member 2.
It is arranged at the other end on the XX 'axis of the reciprocating member 3 fixed to. Since the reciprocating member 3 and the curved conduit 1 are made equal to the natural vibration around the YY 'axis, the supporting member 2 vibrates in a tuning fork shape. When a flow in the Q direction is given under such vibration, Coriolis force is generated in the fluid flowing through the U-shaped curved conduit 1. The magnitude of this Coriolis force is proportional to the mass flow rate of the fluid flowing in the curved conduit 1. The direction of the force is the vector product direction of the fluid motion direction and the angular velocity around the YY 'axis. Since the flow direction of the fluid is opposite between the inflow side and the outflow side, the Coriolis force is generated as a fluctuating torque having a frequency equal to the vibration frequency in a form superimposed on the amplitude of the drive vibration. Since this torque is applied to the vibration of the curved conduit 1 around the YY 'axis, the position is detected as a light change by the photodetector 7 and the light shielding plate 8 fixed at the symmetrical position of the arm of the U-shaped curved conduit 1. Then, the time difference between the detection signals of both arms passing through the reference surface of the curved conduit 1 is obtained. The curved conduit 1 of the Coriolis flowmeter is usually made of a metal tube having a touch resistance such as stainless steel.

従来技術の問題点 上述のように、第4図に示したコリオリ質量流量計にお
いては、コリオリの力がY−Y′軸まわりの回転角速度
と質量流量とのベクトル積としてあらわされ、かつ、こ
のコリオリの力はU字形湾曲導管の対称軸X−X′まわ
りに振動モーメントを与える。また、この振動モーメン
トはU字形湾曲導管の捩りトルクと釣り合う。一方、捩
りトルクは、U字形導管のばね定数と対称軸X−X′軸
まわりの捩り角とに比例する。従って、質量流量は、捩
り角とばね定数とに比例する。即ち、前記振動方式によ
るコリオリ流量計においては、導管のばね定数の変化
は、質量流量の計測値に誤差をもたらす。また、ばね定
数はU字形湾曲導管のヤング率に逆比例し、ヤング率は
温度の或る範囲においては温度にほぼ逆比例して変化す
るので、通常のコリオリ質量流量計においては、U字形
湾曲導管の温度を検出して前記ばね定数の変化を補正し
ている。また、U字形湾曲導管は通常ステンレス鋼を曲
げることにより成形されているが、曲げによって生ずる
結晶粒界の滑り面に沿って酸、アルカリ液等によっては
腐融を生ずることがあるなどの問題がある。しかし、酸
やアルカリ液等に安定な材料としては化学的に安定な合
成樹脂が有効であるが、合成樹脂はクリープが生じ易く
長期間使用すると変形により支持部が不安定となり質量
流量の測定精度が悪化するという他の問題点が生じた。
Problems of Prior Art As described above, in the Coriolis mass flowmeter shown in FIG. 4, the Coriolis force is expressed as a vector product of the rotational angular velocity about the YY ′ axis and the mass flow rate, and The Coriolis force imparts an oscillating moment about the axis of symmetry XX 'of the U-shaped curved conduit. This vibration moment also balances the torsional torque of the U-shaped curved conduit. On the other hand, the twisting torque is proportional to the spring constant of the U-shaped conduit and the twisting angle around the axis of symmetry XX '. Therefore, the mass flow rate is proportional to the torsion angle and the spring constant. That is, in the vibration type Coriolis flowmeter, a change in the spring constant of the conduit causes an error in the measured mass flow rate. Also, the spring constant is inversely proportional to the Young's modulus of the U-shaped curved conduit, and the Young's modulus changes almost inversely proportionally to the temperature in a certain temperature range. The temperature of the conduit is detected to correct the change in the spring constant. Further, the U-shaped curved conduit is usually formed by bending stainless steel, but there is a problem that corrosion may occur along the sliding surface of the crystal grain boundary caused by the bending due to an acid, an alkaline liquid or the like. is there. However, although chemically stable synthetic resin is effective as a material that is stable to acids and alkaline liquids, the synthetic resin tends to cause creep, and if used for a long period of time, the supporting part becomes unstable due to deformation, and the measurement accuracy of mass flow rate is high. The other problem that was worsened.

問題解決の手段 固有振動数で加振されるU字形湾曲導管を2重構造と
し、該U字形湾曲導管の外部を金属管、内部を合成樹脂
管で構成し、金属管を温度変化によるヤング率の変化の
小さい金属例えばニッケルスパンC等のエリンバー合
金、合成樹脂管をテフロン等のふっ素樹脂とし、温度変
化に対して固有振動数の変化を小さくし、且つ耐触性の
高いU字形湾曲導管を構成し、且つ湾曲導管の端部を拡
大して拡大管部として、拡大管部の内面と密接する固定
金具の突起した台座に拡大管を嵌挿して拡大管部の外部
から弾性材の押えカラーを介して固着することにより、
合成樹脂管に及ぼす圧力を小さくしてクリープ量を減
じ、更に、合成樹脂管がクリープしても押えカラーの弾
性により実質的にクリープを取除き、長期安定で、使用
温度が広く、活性の高い化学液体の計測に強い流量計を
提供することを目的とする。
Means for Solving Problems A U-shaped curved conduit that is excited by a natural frequency has a double structure. The U-shaped curved conduit has a metal tube outside and a synthetic resin tube inside. A metal having a small change in temperature, such as an Elinvar alloy such as nickel span C, a synthetic resin tube made of a fluororesin such as Teflon, and a U-shaped curved conduit that has a small change in natural frequency with respect to temperature changes and has high touch resistance. The end of the curved pipe is enlarged to form an enlarged pipe portion, and the enlarged pipe is inserted into the protruding pedestal of the fixing metal fitting that is in close contact with the inner surface of the enlarged pipe portion, and the elastic collar is pressed from the outside of the enlarged pipe portion. By fixing via
The pressure exerted on the synthetic resin pipe is reduced to reduce the amount of creep, and even if the synthetic resin pipe creeps, the elasticity of the holding collar virtually removes the creep, which is stable for a long time, has a wide operating temperature, and is highly active. An object is to provide a flowmeter that is strong in measuring chemical liquids.

実施例 第1図は、本考案の概要をしめす構成図で、第4図に示
した従来例と同一作用をする部分には同一の符号を付し
てその説明を省く。第1図において、9はU字形湾曲導
管の固着部、11は本考案によるU字形複合湾曲導管
で、第2図に固着部9を拡大断面図にて示す。第2図に
示すように、U字形複合湾曲導管11は2重構造に構成
され、該U字形複合湾曲導管11の外側管はニッケルス
パンC等のエリンバー合金からなる金属管111にて構
成され、内側管は4ふっ素樹脂等の合成樹脂管112に
て構成される。金属管111と合成樹脂管112とは密
着しており一体構造となっている。金属管111と合成
樹脂管112との接合は接着剤によるが、合成樹脂管1
12が特に4ふっ素樹脂の場合、4ふっ素樹脂は極めて
化学的安定性が高いことから適当な接着剤がなく、4ふ
っ素樹脂の表面処理なしには接着することはできない。
表面処理の方法としてはナトリウム−アンモニア法、ナ
トリウム−ナフタリン−テトラヒドロフラン法とがあ
る。前者は、4ふっ素樹脂が金属ナトリウムを液体アン
モニアに溶かした液によって僅かに侵食されることを利
用したもので、冷却した液体アンモニアに金属ナトリウ
ムを重量比1%投入溶解させて、この中に4ふっ素樹脂
を短時間浸漬して、水洗乾燥するものである。後者はナ
トリウム−ナフタリン錯化合物のテトラヒドロフラン溶
液が4ふっ素樹脂を侵食することを利用したもので、テ
トラヒドロフランにナフタリンを溶解し、ナフタリンと
同モルの金属ナトリウムまたはナトリウムディスバージ
ョンを加え、これに4ふっ化樹脂を約15分浸漬し、ア
セトンで洗浄後水洗乾燥するものである。本考案におい
ては、前記の何れかの方法によって、ニッケル−スパン
C等のエリンバ管の内径より僅かに細い外径の4ふっ素
樹脂管の外壁面を処理して主としてエポキシ系の接着剤
を塗布してエリンバ管内に挿入後湾曲して固着し、一体
化するものである。その他の方法として、エリンバ管よ
り僅かに太い4ふっ素樹脂管の一端を封止し、他端を真
空ポンプと接合して管内を真空にして、外気圧により圧
縮して細小化してエリンバ管に挿入後封止を開放するこ
とによりエリンバ管内に圧接する。この場合でも前記の
処理により接着すればより強固な一体化複合管となる。
尚、この場合、複合管のばね定数はエリンバ管により支
配され、4ふっ素樹脂管は単に耐蝕材としての作用をも
たせるだけのものである。従って、一体後の曲げ加工に
よっても内部歪による経年変化も生じない。以上のよう
にして製作された複合湾曲等管11の端部114は固設
のために拡大される。拡大部113をもつ端部114は
支持部材2に固設する部分であり、固設は固着部9によ
ってなされる。固着部9は固定金具91,パッキン9
2,押え金具93,押えカラー94とからなる。固定金
具91は中央に通孔913を穿設した円柱状の台座91
1を配設し、該台座911には複合湾曲導管11の拡大
部113の合成樹脂管112が挿入される。パッキン9
2は4ふっ素樹脂からできていて固定金具91と端部1
14とで挟持密封される。拡大部113の外部金属管1
11の外壁部には硬質ゴム、樹脂、又は金属からなる押
えカラ94が装着され、押え具93に被包され、押え具
93外壁に螺刻されたねじ931と固定金具91の内ね
じ912との螺合により拡大部113を台座911に圧
接,液密に固設する。尚、少なくとも接液する通孔91
3は合成樹脂管112と同等の耐蝕性をもつように、同
じ合成樹脂管を挿着する等の耐蝕処置をしておく。以上
の如く構成された複合湾曲導管11は第4図にしめした
従来技術と同様に支持部材2に対して往復動部材3と音
叉を形成し、磁石5と駆動コイル4とにより一定振幅の
固有振動数で電磁駆動され、遮光板8により光遮閉され
て生ずる光を光検出器7により基準面を複合湾曲管11
が通過する時間差としてコリオリの力を検出する。
Embodiment FIG. 1 is a block diagram showing an outline of the present invention. The parts having the same functions as those of the conventional example shown in FIG. In FIG. 1, 9 is a fixed portion of a U-shaped curved conduit, 11 is a U-shaped compound curved conduit according to the present invention, and the fixed portion 9 is shown in an enlarged sectional view in FIG. As shown in FIG. 2, the U-shaped compound curved conduit 11 has a double structure, and the outer tube of the U-shaped compound curved conduit 11 is composed of a metal tube 111 made of an Erinver alloy such as nickel span C. The inner tube is composed of a synthetic resin tube 112 such as 4-fluorine resin. The metal tube 111 and the synthetic resin tube 112 are in close contact with each other and have an integrated structure. The metal pipe 111 and the synthetic resin pipe 112 are joined by an adhesive, but the synthetic resin pipe 1
Especially when 12 is 4 fluororesin, 4 fluororesin has extremely high chemical stability, so that there is no suitable adhesive and it cannot be adhered without surface treatment of 4 fluororesin.
Surface treatment methods include the sodium-ammonia method and the sodium-naphthalene-tetrahydrofuran method. The former utilizes the fact that 4 fluororesin is slightly eroded by a liquid in which metallic sodium is dissolved in liquid ammonia. Metal sodium is added to cooled liquid ammonia at a weight ratio of 1% and dissolved therein. The fluororesin is immersed for a short time, washed with water and dried. The latter utilizes the fact that a solution of a sodium-naphthalene complex compound in tetrahydrofuran erodes tetrafluororesin. Dissolve naphthalene in tetrahydrofuran and add metal sodium or sodium disversion in the same mole as naphthalene. The resin is immersed for about 15 minutes, washed with acetone, washed with water and dried. In the present invention, the outer wall surface of the 4 fluororesin tube having an outer diameter slightly smaller than the inner diameter of the Erinba tube such as nickel-span C is treated by any one of the above-mentioned methods, and the epoxy adhesive is mainly applied. After being inserted into the Elimba tube, it is curved and fixed to be integrated. As another method, one end of a 4 fluororesin tube that is slightly thicker than the Erinba tube is sealed, the other end is joined to a vacuum pump to make the inside of the tube a vacuum, and it is compressed by external pressure to be miniaturized and inserted into the Erinba tube. It is pressed into the Erinva pipe by opening the rear seal. Even in this case, if it is bonded by the above-mentioned treatment, a stronger integrated composite pipe is obtained.
In this case, the spring constant of the composite pipe is dominated by the Elinvar pipe, and the 4-fluorine resin pipe merely serves as a corrosion resistant material. Therefore, the secular change due to the internal strain does not occur even after the bending process after the integration. The end portion 114 of the composite curved equal tube 11 manufactured as described above is enlarged for fixing. The end portion 114 having the enlarged portion 113 is a portion fixed to the support member 2, and the fixing portion 9 is fixed. The fixing portion 9 includes a fixing metal fitting 91 and a packing 9.
2, consisting of a presser fitting 93 and a presser collar 94. The fixing bracket 91 is a cylindrical pedestal 91 having a through hole 913 formed in the center.
1, and the synthetic resin pipe 112 of the enlarged portion 113 of the composite curved conduit 11 is inserted into the pedestal 911. Packing 9
2 is made of 4 fluororesin and has a fixing bracket 91 and an end 1
It is sandwiched and sealed with 14. External metal tube 1 of expansion section 113
A holding collar 94 made of hard rubber, resin, or metal is attached to the outer wall portion of 11, and is covered with a holding tool 93, and a screw 931 threaded on the outer wall of the holding tool 93 and an inner screw 912 of a fixing bracket 91 are provided. The enlarged portion 113 is pressed against the pedestal 911 and fixed in a liquid-tight manner by screwing. In addition, at least the through hole 91 that comes into contact with the liquid
In order to have the same corrosion resistance as that of the synthetic resin pipe 112, 3 is subjected to corrosion resistance treatment such as inserting the same synthetic resin pipe. The composite curved conduit 11 configured as described above forms a tuning fork with the reciprocating member 3 with respect to the support member 2 as in the prior art shown in FIG. Light generated by being electromagnetically driven at a frequency and being blocked by the light shielding plate 8 is used as a reference surface by the photodetector 7 to form a complex curved tube 11
The Coriolis force is detected as the time difference of passing by.

第3図は、本考案の他の実施例を示す図で、この実施例
は、フランジ22で図示しない配管に挟持される流管2
1内を支切板23で仕切り、支切られた液体を複合湾曲
導管25,26に分流するようにしたもので、第1図に
11にて示した複合導管11と同様にエリンバ管と該エ
リンバ管内に挿入接合された4ふっ素樹脂管からなるU
字形の複合湾曲導管25,26を第2図に示した固着部
9により流管21に固設して、各々の複合導管25,2
6の固着部9近傍で各々の導管を支持板27で支持し、
該支持板27まわりに音叉状に振動できるようにしたも
のである。振動駆動は、U字形の複合湾曲導管25,2
6の先端近傍に取付けられた各々磁石ブラケット28と
コイルブラケット29との中央に配設された駆動磁石5
と駆動コイル4とにより図示しない電源により一定振幅
の固有振動数で駆動される。検出磁石32,センサコイ
ル33は、流体流れと、振動角速度とのベクトル積の向
きに生ずるコリオリの力を複合湾曲導管25,26の静
止基準面を該複合湾曲管25,26が通過する時間差と
して検出するセンサである。
FIG. 3 is a view showing another embodiment of the present invention. In this embodiment, the flow tube 2 is held by a flange 22 in a pipe (not shown).
The inside of 1 is partitioned by a partition plate 23, and the partitioned liquid is divided into the complex curved conduits 25 and 26. Like the composite conduit 11 shown at 11 in FIG. U consisting of 4 fluororesin pipes inserted and joined in the Erinba pipe
The letter-shaped compound curved conduits 25 and 26 are fixed to the flow pipe 21 by the fixing portion 9 shown in FIG.
6, each conduit is supported by the support plate 27 in the vicinity of the fixed portion 9 of 6,
The support plate 27 can be vibrated like a tuning fork. The vibration drive is a U-shaped compound curved conduit 25,2.
Drive magnets 5 arranged at the centers of the respective magnet brackets 28 and coil brackets 29 mounted near the tips of the magnets 6.
And a driving coil 4 are driven by a power source (not shown) at a natural frequency with a constant amplitude. The detection magnet 32 and the sensor coil 33 use the Coriolis force generated in the direction of the vector product of the fluid flow and the vibration angular velocity as the time difference when the composite bending pipes 25, 26 pass through the stationary reference plane of the composite bending pipes 25, 26. It is a sensor for detecting.

以上において、複合湾曲導管をエリンバ、4ふっ素樹脂
にて構成した例を述べたが、耐蝕的に満足されるもので
あれば3ふっ素樹脂、その他の脂樹でもよく、金属管も
アンバ等の膨脹係数の小さい金属でもよい。しかし、こ
の場合においてもばね定数は金属導管が支配するもので
なければならない。
In the above, the example in which the composite curved conduit is composed of elinvar and 4 fluororesin has been described, but 3 fluororesin or other oily resin may be used as long as it is corrosion-resistant, and the metal tube also expands such as amber. A metal having a small coefficient may be used. However, even in this case, the spring constant must be dominated by the metal conduit.

効果 以上に述べた本考案の質量流量計における複合湾曲導管
は、実質的に金属導管のばね定数と流体とにより支配さ
れる固有振動数で共振駆動され、Qを低下させることが
なく、効率よく駆動でき、温度によるヤング率の変化お
よび長さの変化もないので温度に対して安定した振動系
となり、温度誤差も極小におさえられ、従って、広範囲
な温度において高精度の質量流量計測を温度補償等複雑
な手法なしに可能とし、また、4ふっ素樹脂の使用によ
り王水、熱硝酸、熱濃硫酸、濃苛性ソーダ溶液等の計測
を可能とする。更に、複合湾曲導管と支持部材に開口す
る流管との接続を、複合湾曲導管の端部を拡大して拡大
管部内面の合成樹脂管に作用する面圧を小さくするよう
にして、複合湾曲導管を弾性のある押えカラーにより拡
大管部を外部から押圧支持したので、合成樹脂管がクリ
ープ変形しても安定して支持され、長期にわたり精度が
維持される。
Effect The compound curved conduit in the mass flowmeter of the present invention described above is resonantly driven substantially by the natural frequency dominated by the spring constant of the metal conduit and the fluid, and does not decrease Q, and is efficient. Since it can be driven and there is no change in Young's modulus or length due to temperature, it becomes a stable vibration system with respect to temperature, and temperature error is suppressed to a minimum. Therefore, temperature compensation of highly accurate mass flow rate measurement in a wide range of temperature It is possible without complicated methods, and the use of 4 fluororesin makes it possible to measure aqua regia, hot nitric acid, hot concentrated sulfuric acid, concentrated caustic soda solution, etc. Further, the connection between the composite curved conduit and the flow pipe opening to the supporting member is performed by enlarging the end of the composite curved conduit so as to reduce the surface pressure acting on the synthetic resin pipe on the inner surface of the expanded pipe. Since the expansion pipe portion is pressed and supported from the outside by the elastic pressing collar, the pipe is stably supported even if the synthetic resin pipe is creep-deformed, and the accuracy is maintained for a long time.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案による質量流量計の一例を示す全体構
成図、第2図は、第1図に示した固着部9の詳細図、第
3図は、他の実施例を示す全体構成図、第4図は、従来
技術を説明するための図である。 1……湾曲導管,2……支持部材,3……往復部材,4
……駆動コイル,5……駆動マグネット,7……光検出
器,8……遮光板,11,25,26……複合湾曲導
管,21……流管,111……金属管,112……合成
樹脂管。
FIG. 1 is an overall configuration diagram showing an example of a mass flowmeter according to the present invention, FIG. 2 is a detailed diagram of the fixing portion 9 shown in FIG. 1, and FIG. 3 is an overall configuration showing another embodiment. FIG. 4 and FIG. 4 are views for explaining a conventional technique. 1 ... Curved conduit, 2 ... Support member, 3 ... Reciprocating member, 4
...... Drive coil, 5 ...... Drive magnet, 7 ...... Photodetector, 8 ...... Light shield, 11,25,26 …… Complex curved conduit, 21 …… Flow tube, 111 …… Metal tube, 112 …… Synthetic resin tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】離間して配設された流体の流入口、流出口
を有する支持体と、該支持体の前記流入口、流出口に端
部が接続支持され該支持体の面と直角な軸に対称な湾曲
導管と、該湾曲導管を該湾曲導管面と直角方向に単振駆
動する駆動手段と、該駆動手段の駆動により前記湾曲導
管に作用するコリオリの力を検出する検出手段とからな
り、前記コリオリの力に比例した質量流量を検出する質
量流量計において、前記湾曲導管を、端部が拡大された
拡大管部を有し外側が金属,内側が耐薬品性の合成樹脂
からなる複合湾曲管とし、前記拡大管部を該拡大管部内
面と略等しい形状の台座を有する前記支持体に固着され
た固定金具の前記台座に嵌挿し、前記拡大部近傍外面に
嵌挿された弾性のある押えカラーを介して前記拡大管部
を押える押え具により前記固定金具に固着して前記複合
湾曲管を前記支持体に接続支持したことを特徴とする質
量流量計。
1. A support having a fluid inlet and a fluid outlet arranged apart from each other, and an end portion connected to and supported by the inlet and the outlet of the support and perpendicular to a surface of the support. An axially symmetric curved conduit, drive means for driving the curved conduit in a single direction in a direction perpendicular to the curved conduit surface, and detection means for detecting the Coriolis force acting on the curved conduit by driving the drive means. In the mass flowmeter for detecting the mass flow rate proportional to the Coriolis force, the curved conduit is made of a metal having an enlarged tube portion with an enlarged end and an outer side made of metal and a chemically resistant synthetic resin. A composite curved tube, the expansion tube portion is fitted and inserted into the pedestal of a fixing member fixed to the support body having a pedestal of substantially the same shape as the inner surface of the expansion tube portion, and the elasticity is fitted and inserted into the outer surface near the expansion portion. For a retainer that retains the expansion tube through a retaining collar with Ri mass flow meter of the composite bending tube and fixed to the fixing bracket, characterized in that the connection support to the support.
JP10730787U 1987-07-13 1987-07-13 Mass flow meter Expired - Lifetime JPH0629689Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10730787U JPH0629689Y2 (en) 1987-07-13 1987-07-13 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10730787U JPH0629689Y2 (en) 1987-07-13 1987-07-13 Mass flow meter

Publications (2)

Publication Number Publication Date
JPS6415921U JPS6415921U (en) 1989-01-26
JPH0629689Y2 true JPH0629689Y2 (en) 1994-08-10

Family

ID=31341601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10730787U Expired - Lifetime JPH0629689Y2 (en) 1987-07-13 1987-07-13 Mass flow meter

Country Status (1)

Country Link
JP (1) JPH0629689Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861603B2 (en) 2008-01-07 2011-01-04 Keyence Corporation Coriolis mass flowmeter including an inner pipe made of fluororesin and outer pipe having fibers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127815B2 (en) * 2001-11-26 2006-10-31 Emerson Electric Co. Method of manufacturing a Coriolis flowmeter
US7005019B2 (en) * 2001-11-26 2006-02-28 Emerson Electric Co. Manufacturing flow meters having a flow tube made of a fluoropolymer substance
JP5582737B2 (en) 2009-07-03 2014-09-03 株式会社キーエンス Coriolis mass flow meter
JP5335583B2 (en) 2009-07-06 2013-11-06 株式会社キーエンス Coriolis mass flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861603B2 (en) 2008-01-07 2011-01-04 Keyence Corporation Coriolis mass flowmeter including an inner pipe made of fluororesin and outer pipe having fibers

Also Published As

Publication number Publication date
JPS6415921U (en) 1989-01-26

Similar Documents

Publication Publication Date Title
US6920798B2 (en) Vibratory transducer
US4733569A (en) Mass flow meter
US6691583B2 (en) Vibratory transducer
CA2461101C (en) Vibratory transducer
CA2443375C (en) Vibratory transducer
US8104360B2 (en) Vibration-type measuring transducer having securement element for mounting components of the oscillation sensor
EP0421812B1 (en) Improved coriolis-type flowmeter
TWI625507B (en) Coriolis mass flow meter
US7424376B2 (en) Precise pressure measurement by vibrating an oval conduit along different cross-sectional axes
TWI628418B (en) Coriolis mass flow meter
EP1147381A1 (en) Solid state transducer for coriolis flowmeter
JPH0629689Y2 (en) Mass flow meter
JP2917051B2 (en) Flow measurement method and device
JPH0341319A (en) Coriolis mass flowmeter
JPH0715397B2 (en) Mass flow meter
JPH05142134A (en) Vibrating-tube density meter
JPS63314415A (en) Mass flowmeter
JPH0331725A (en) Coriolis flow meter
JPS63233328A (en) Mass flowmeter
WO2024072431A1 (en) Flowmeter magnetic shielding apparatus and method
KR20240145727A (en) In-line mass flow controller of vibration type, including a viscosity and density sensor
RU2122182C1 (en) Device for measuring of mass flow rate of fluid materials
JPH0455253B2 (en)
JPH0424514A (en) Mass flowmeter
JPH04155221A (en) Corioli's mass flowmeter