JPH06296680A - Production of artificial bone material - Google Patents

Production of artificial bone material

Info

Publication number
JPH06296680A
JPH06296680A JP5114145A JP11414593A JPH06296680A JP H06296680 A JPH06296680 A JP H06296680A JP 5114145 A JP5114145 A JP 5114145A JP 11414593 A JP11414593 A JP 11414593A JP H06296680 A JPH06296680 A JP H06296680A
Authority
JP
Japan
Prior art keywords
calcium
organic
amorphous
artificial bone
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5114145A
Other languages
Japanese (ja)
Other versions
JP3170385B2 (en
Inventor
Masahiko Okuyama
雅彦 奥山
Satoshi Hirano
訓 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP11414593A priority Critical patent/JP3170385B2/en
Publication of JPH06296680A publication Critical patent/JPH06296680A/en
Application granted granted Critical
Publication of JP3170385B2 publication Critical patent/JP3170385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To provide the artificial bone material having a relatively high mechanical strength to withstand handling and excellent bioaffinity while having a high porosity and large pore sizes. CONSTITUTION:This process for production includes a stage for preparing the amorphous body of chelate org. matter by ethylenediaminetetraacetic acid contg. phosphorus P and calcium Ca and a stage for generating foaming and a reaction to change the org. matter from the amorphous body into the crystalline body of the calcium phosphate by baking the amorphous body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人工骨材料の製造方法
に関する。この材料は、整形外科、形成外科、脳外科、
口腔外科、歯科等の医療分野に於いて骨補填部材として
好適に利用され得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an artificial bone material. This material is used in orthopedics, plastic surgery, brain surgery,
It can be suitably used as a bone filling member in the medical field such as oral surgery and dentistry.

【0002】[0002]

【従来の技術】リン酸カルシウム化合物は生体親和性に
優れ、その焼結体は骨と化学的に結合あるいは骨に置換
される材料であることが知られている。本発明者らは既
に生体親和性が高く且つ高強度なリン酸カルシウム焼成
体の製造方法として、特公昭60−50744号公報に
おいて、カルシウム/リン原子比1.4〜1.75のリン
酸カルシウム塩を主体とする粉末に、焼成後のリン酸カ
ルシウム焼成体に対し0.5〜15重量%のアルカリ土
類金属酸化物−リン酸系フリットを含有せしめ焼成する
方法を考案した。この方法により生体親和性に優れ且つ
機械的強度の高い人工骨材料が得られた。これらの人工
骨材料を生体に移植すると骨組織と化学的に結合し、高
強度のため容易に破損することなく、良好な結果を示し
た。
2. Description of the Related Art Calcium phosphate compounds are known to have excellent biocompatibility, and their sintered bodies are known to be materials that are chemically bound to bone or replaced with bone. As a method for producing a calcium phosphate calcined product having high biocompatibility and high strength, the inventors of the present invention have disclosed in JP-B-60-50744 that a calcium phosphate having a calcium / phosphorus atomic ratio of 1.4 to 1.75 is mainly used. A method was devised in which 0.5 to 15% by weight of alkaline earth metal oxide-phosphate frit was added to the powder to be calcined, and then calcined. By this method, an artificial bone material having excellent biocompatibility and high mechanical strength was obtained. When these artificial bone materials were transplanted into a living body, they were chemically bonded to bone tissue, and because of their high strength, they were not easily broken and showed good results.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の材料でも新生骨との結合には約1ヶ月を要し、更なる
生体親和性の向上、特に術後初期の骨増殖性の向上が望
まれている。一般に、数十〜数百μmの気孔を導入する
と生体骨が侵入し易いことが古くより知られている。
However, even with these materials, it takes about one month to bond with new bone, and further improvement in biocompatibility, particularly improvement in bone growth in the early stage after surgery is desired. ing. Generally, it has long been known that living bones easily invade by introducing pores of several tens to several hundreds of μm.

【0004】一方、煉瓦を始めとしたセラミックス多孔
質体の製造方法としては、古くより原料中に有機物やカ
ーボンなどの可燃性気孔形成材を導入する方法や、発泡
剤等を混入する方法が行われており、これらの方法をリ
ン酸カルシウム系にそのまま用いれば多孔質体を調製で
きる。
On the other hand, as a method for producing a porous ceramic body such as a brick, a method of introducing a combustible pore-forming material such as an organic material or carbon into a raw material and a method of mixing a foaming agent have been used for a long time. Therefore, a porous body can be prepared by directly applying these methods to the calcium phosphate system.

【0005】しかしながらこれらの通常の多孔質体の製
造方法では、アパタイト系の場合には粒子同士の焼結が
進行し難いため、多孔質体としての骨格が充分に成長し
ない。その結果、得られる多孔質体は、強度が著しく低
く、指で触ったり擦ったりすると粒子が脱落したり、破
損したりしてしまうものである。従って、研削による後
加工をすることができず、更にはハンドリングが難しく
骨補填手術の際の操作性を著しく低下させるものであっ
た。
However, in these conventional methods for producing a porous body, in the case of an apatite system, it is difficult for the particles to sinter, so that the skeleton as a porous body does not grow sufficiently. As a result, the obtained porous body has a remarkably low strength, and when it is touched or rubbed with a finger, the particles fall off or are damaged. Therefore, post-processing by grinding cannot be performed, and further, it is difficult to handle and the operability during bone replacement surgery is significantly reduced.

【0006】本発明の目的は、高い気孔率と大きい気孔
径を持ちながら、且つハンドリングに耐え得る比較的高
い機械的強度を有する、生体親和性に優れた人工骨材料
の製造方法を提供することである。
[0006] An object of the present invention is to provide a method for producing an artificial bone material having a high porosity and a large pore size, and having a relatively high mechanical strength capable of withstanding handling and having excellent biocompatibility. Is.

【0007】[0007]

【課題を解決するための手段】その手段は、リンP及び
カルシウムCaを含む有機物の非晶質体を調製する工程
と、その非晶質体を焼成する工程とを経ることを特徴と
する人工骨材料の製造方法にある。以下、本発明を詳細
に説明する。本発明では、先ずリンP及びカルシウムC
aを含む有機物(以下、「リン・カルシウム含有有機
物」という。)の非晶質体を調製する。
Means for Solving the Problems The artificial means is characterized in that it comprises a step of preparing an amorphous body of an organic substance containing phosphorus P and calcium Ca and a step of firing the amorphous body. It is in the method of manufacturing bone material. Hereinafter, the present invention will be described in detail. In the present invention, first, phosphorus P and calcium C
An amorphous substance of an organic substance containing a (hereinafter referred to as “phosphorus / calcium-containing organic substance”) is prepared.

【0008】出発原料としては特に限定されず、Caや
Pの各種の無機塩、有機塩、金属アルコキシド、アルキ
ル金属、キレート化合物など、リン・カルシウム含有有
機物の非晶質体が調製可能であれば、用いることができ
る。操作及び制御の容易さや製造コスト等の面からは無
機塩や有機塩を用いることが好ましい。
The starting material is not particularly limited as long as it is possible to prepare an amorphous form of a phosphorus-calcium-containing organic material such as various inorganic salts of Ca and P, organic salts, metal alkoxides, alkyl metals, chelate compounds, and the like. , Can be used. It is preferable to use an inorganic salt or an organic salt from the viewpoints of easiness of operation and control and manufacturing cost.

【0009】例えば無機塩としては、硝酸塩、塩化物、
臭化物、ヨウ化物、塩素酸塩、亜塩素酸塩、亜硝酸塩、
亜硫酸塩などが使用可能であり、有機塩としては、酢酸
塩、蓚酸塩、乳酸塩、酒石酸塩、クエン酸塩、安息香酸
塩、イソ酪酸塩、マレイン酸塩などが使用可能である。
ただし、リン・カルシウム含有有機物の非晶質体を調製
するためには、反応溶媒(水あるいは有機溶媒)に充分
な溶解性を持つものが好ましく、炭酸塩や硫酸塩では反
応が遅く好ましくない。
For example, as inorganic salts, nitrates, chlorides,
Bromide, iodide, chlorate, chlorite, nitrite,
Sulfite and the like can be used, and as the organic salt, acetate, oxalate, lactate, tartrate, citrate, benzoate, isobutyrate, maleate and the like can be used.
However, in order to prepare an amorphous substance of a phosphorus-calcium-containing organic substance, a substance having sufficient solubility in a reaction solvent (water or an organic solvent) is preferable, and a carbonate or a sulfate is not preferable because the reaction is slow.

【0010】これらの出発原料から有機物の非晶質体を
調製する。金属アルコキシドやアルキル金属を出発原料
に用いる場合には、単にそのCa原料とP原料を有機溶
媒に溶解・混合して乾燥・濃縮すれば透明な非晶質の固
体が得られる。無機塩や有機塩を用いる場合にはCaと
Pのそれぞれの塩を水に溶解させた後にキレート剤を添
加して反応させる。ここでキレート剤とは金属イオンに
配位してキレート化合物をつくる多座配位子をいう。ジ
メチルグリオキシム、ジチゾン、オキシン、アセチルア
セトン、グリシン、EDTA、NTAなどが用いられる
が、高い溶解度・反応性の点から特に好ましいのはED
TA(エチレンジアミン四酢酸)であった。調製したC
aとPを含んだ透明な反応溶液を加熱・減圧して溶媒の
水を除去すると透明な非晶質の固体が得られる。
Amorphous organic compounds are prepared from these starting materials. When a metal alkoxide or an alkyl metal is used as a starting material, a transparent amorphous solid can be obtained simply by dissolving and mixing the Ca material and the P material in an organic solvent, drying and concentrating. When an inorganic salt or an organic salt is used, the respective salts of Ca and P are dissolved in water and then a chelating agent is added to cause a reaction. Here, the chelating agent means a polydentate ligand which forms a chelate compound by coordinating with a metal ion. Dimethylglyoxime, dithizone, oxine, acetylacetone, glycine, EDTA, NTA and the like are used, and ED is particularly preferable from the viewpoint of high solubility and reactivity.
It was TA (ethylenediaminetetraacetic acid). Prepared C
When a transparent reaction solution containing a and P is heated and decompressed to remove water as a solvent, a transparent amorphous solid is obtained.

【0011】こうして得られた非晶質体は、有機リン化
合物と有機カルシウム化合物との混合物、有機リン化合
物と有機カルシウム化合物との反応物及び有機リン・カ
ルシウム化合物のうちから選ばれる1種以上を主成分と
するものである。
The amorphous body thus obtained contains at least one selected from a mixture of an organic phosphorus compound and an organic calcium compound, a reaction product of an organic phosphorus compound and an organic calcium compound, and an organic phosphorus / calcium compound. It is the main component.

【0012】この非晶質体を電気炉にて700〜130
0℃程度の温度まで焼成すると発泡した多孔質体が得ら
れる。この多孔質体を観察すると、少なくとも数十〜数
百μmの大きな気孔が多数存在し、それ以外にも数μm
の気孔が多数全面に存在する。このように大きい気孔率
を持つにも関わらず、得られた多孔質体は、指で擦って
も粒子の脱落は全く見られず、通常のハンドリングでは
破損することが無い、比較的高い強度を示した。焼成に
より非晶質体は発泡した多孔質体となると共に、結晶化
してリン酸カルシウム系の結晶質体となっていた。
This amorphous body is heated to 700 to 130 in an electric furnace.
Firing to a temperature of about 0 ° C. gives a foamed porous body. When observing this porous body, there are many large pores of at least several tens to several hundreds of μm, and other than that, several μm.
There are many pores on the entire surface. Despite having such a large porosity, the obtained porous body has a relatively high strength with no particles falling off even if it is rubbed with a finger, and is not damaged by normal handling. Indicated. Upon firing, the amorphous body became a foamed porous body and was crystallized into a calcium phosphate-based crystalline body.

【0013】ここで重要であるのは、リン・カルシウム
含有有機物の非晶質体を調製し、これを焼成の前駆体と
して用いることであった。例えばキレート剤を用いず無
機塩だけを用いた場合には、無機質の非晶質体あるいは
結晶化度が低い結晶体となったが、種々の焼成条件で焼
成しても多孔質体は全く得られず、急速昇温の焼成では
破裂しているだけだった。
What was important here was to prepare an amorphous substance of a phosphorus-calcium-containing organic substance and use it as a precursor for firing. For example, when only an inorganic salt was used without using a chelating agent, an inorganic amorphous body or a crystal body with low crystallinity was obtained, but even if it was fired under various firing conditions, a porous body was obtained at all. It was not possible to do this, and it only burst when fired at a rapid temperature rise.

【0014】尚、非晶質体をそのまま焼成するのではな
く、数mm程度に粉砕して耐熱性容器(例えばアルミナ
製)に入れて焼成すると、粉砕により分割せられた各々
の発泡体が接合した一体型の多孔質体が得られる。但
し、更に微細に粉砕すると(例えば1mm以下)、気孔
率が低下する。また昇温速度は多孔質体の気孔径と気孔
量を制御する重要な因子であり、昇温速度が大きい程、
気孔径と気孔量が増加する傾向がある。好ましい昇温速
度は5℃/分以上であり、更に好ましくは10℃/分以
上である。
It should be noted that, instead of firing the amorphous body as it is, it is crushed to about several mm and put in a heat-resistant container (for example, made of alumina) and fired. A monolithic porous body is obtained. However, when finely pulverized (for example, 1 mm or less), the porosity decreases. The rate of temperature increase is an important factor for controlling the pore size and the amount of pores of the porous body.
Pore size and porosity tend to increase. A preferable rate of temperature rise is 5 ° C./minute or more, more preferably 10 ° C./minute or more.

【0015】リン・カルシウム含有有機物の非晶質体の
カルシウム/リン(Ca/P)原子比は1.4〜1.75
であることが好ましく、この場合には700〜1300
℃まで焼成すると生体親和性に優れた水酸化アパタイト
相(HAP:Ca/P=1.67)や第三リン酸カルシ
ウム相(TCP:Ca/P=1.5)とすることができ
る。更に好ましいのは、非晶質体がHAP相とTCP相
との混合結晶相となるようなカルシウム/リン(Ca/
P)原子比である。この混合結晶相からなる材料を生体
内に骨補填すると第三リン酸カルシウムが生体内に溶出
して骨組織の成長を促進し、更にこのTCPの溶出によ
り、発泡時に生じた気孔以外に新たに気孔が造られ骨組
織の侵入成長を容易なものとするからである。HAP相
とTCP相との構成比率は出発原料の調合割合のCa/
P比で制御できる。
The calcium / phosphorus (Ca / P) atomic ratio of the amorphous substance of the organic substance containing phosphorus / calcium is 1.4 to 1.75.
And in this case 700 to 1300
When it is fired up to ° C, a hydroxyapatite phase (HAP: Ca / P = 1.67) or a tertiary calcium phosphate phase (TCP: Ca / P = 1.5) having excellent biocompatibility can be obtained. More preferably, calcium / phosphorus (Ca / Ca / Ca / Ca / Ca /) is used so that the amorphous body becomes a mixed crystal phase of HAP phase and TCP phase.
P) atomic ratio. When the material consisting of this mixed crystal phase is filled in the living body with bone, tricalcium phosphate is eluted into the living body to promote the growth of bone tissue, and due to the elution of TCP, new pores other than the pores generated during foaming are newly formed. This is because it facilitates the invasion and growth of bone tissue. The composition ratio of the HAP phase and the TCP phase is Ca / of the mixing ratio of the starting materials.
It can be controlled by the P ratio.

【0016】尚、水酸アパタイトと第三リン酸カルシウ
ムとの結晶相構成比率は公知のX線回折法により同定さ
れる。具体的には、CuKα線を用い、水酸アパタイト
の(2,1,1)面のピーク高さIHAPと第三リン酸カ
ルシウムの(0,2,10)面及び(2,1,7)面の
ピーク高さITCPとから次式により求めることができ
る。 CTCP={ITCP/(IHAP+ITCP)}×100 (%) CTCP:第三リン酸カルシウムの含有率
The crystal phase constituent ratio of hydroxyapatite and tricalcium phosphate is identified by a known X-ray diffraction method. Specifically, using CuKα rays, the peak height I HAP of the (2,1,1) plane of hydroxyapatite and the (0,2,10) plane and the (2,1,7) plane of tricalcium phosphate are used. It can be calculated from the peak height I TCP of C TCP = {I TCP / (I HAP + I TCP )} × 100 (%) C TCP : Content of tricalcium phosphate

【0017】[0017]

【作用】本発明製造方法の発泡現象は上記の有機金属化
合物の非晶質体を用いた場合にのみ観察された特異な現
象であった。一般の多孔質体の製造方法で原料粉末を含
んだスラリーに発泡剤を添加して発泡させて発泡成形体
を調製し、その後に焼成して発泡形状を保持した多孔質
体を調製する方法は古くから知られている。ところが、
本発明の発泡メカニズムはこれと全く異なり、リン・カ
ルシウム含有有機物の非晶質体自身が、焼成過程中に自
ら発泡するものであり、更にこれらのCa/P比や焼成
後の結晶相を制御すると人工骨材料に最適となるもので
ある。
The foaming phenomenon of the production method of the present invention is a unique phenomenon observed only when the above-mentioned amorphous organometallic compound is used. In a general porous body manufacturing method, a foaming agent is added to a slurry containing raw material powders to foam a foamed molded body, and then a method of preparing a porous body that retains a foamed shape by firing is It has been known since ancient times. However,
The foaming mechanism of the present invention is completely different from this, in which the amorphous substance of the phosphorus-calcium-containing organic material itself foams during the firing process, and further controls the Ca / P ratio and the crystalline phase after firing. Then, it is most suitable for artificial bone material.

【0018】本発明でなぜ発泡多孔質体が製造されるの
か現時点では定かではないが、以下の様に推察される。
おそらくリン・カルシウム含有有機物の非晶質体の、焼
成時の熱分解−緻密化−結晶化挙動に基因する。即ち、
リン・カルシウム含有有機物の非晶質体は、焼成により
酸化、燃焼又は分解されて、一旦非晶質の準安定状態の
無機物となり、この準安定状態の生成物に特有な緻密化
−結晶化挙動が本発明の特異な発泡現象の原因と推察さ
れる。
The reason why the foamed porous body is produced in the present invention is not clear at present, but it is presumed as follows.
Probably due to the thermal decomposition-densification-crystallization behavior of the amorphous substance of phosphorus-calcium-containing organic substance during firing. That is,
The amorphous substance of phosphorus-calcium-containing organic matter is oxidized, burned or decomposed by firing to once become an amorphous metastable inorganic substance, and the densification-crystallization behavior peculiar to this metastable product is obtained. Is believed to be the cause of the unique foaming phenomenon of the present invention.

【0019】この準安定物は焼成中に粘性流動挙動を示
し、粘性流動と焼結が進行するにつれて、内部から有機
物の燃焼ガスやOH基の重合により発生するH2Oガス
を放出しながら発泡する。その結果、多孔質構造が構築
される。その後に、準安定物がHAPやTCPに結晶化
すると考えられる。そして、一旦結晶化すると物質の移
動機構は粘性流動機構から拡散機構に変化するため形状
が保持される。
This metastable material exhibits viscous flow behavior during firing, and as the viscous flow and sintering progress, foaming occurs while releasing combustion gas of organic matter and H 2 O gas generated by polymerization of OH groups from the inside. To do. As a result, a porous structure is constructed. After that, the metastable substance is considered to crystallize into HAP and TCP. Then, once crystallized, the material movement mechanism changes from the viscous flow mechanism to the diffusion mechanism, so that the shape is maintained.

【0020】この点、無機塩から調製した非晶質体が、
焼成すると容易に結晶質に結晶化してしまうのと相違す
る。すなわち、発泡するより先に結晶化してしまって物
質の移動機構は拡散機構となると、内部からガスが放出
されても発泡せず、ガスの圧力が高い場合には破裂する
からである。従って前記の準安定状態は無機質原料から
は得られず、本発明のようにリン・カルシウム含有有機
物の非晶質体を用いた場合にのみ特異的に得られる。
In this respect, the amorphous substance prepared from the inorganic salt is
This differs from the fact that calcination easily crystallizes. That is, if the substance is crystallized before foaming and the substance transfer mechanism becomes a diffusion mechanism, the gas does not foam even if the gas is released from the inside and bursts when the gas pressure is high. Therefore, the above metastable state cannot be obtained from an inorganic raw material, and is specifically obtained only when an amorphous substance of a phosphorus-calcium-containing organic substance is used as in the present invention.

【0021】また本発明で得られた人工骨材料の強度が
比較的高い理由は、原料スラリーに発泡剤を添加した従
来の場合(発泡成形体を焼成)とは異なり、焼成中に緻
密化と発泡が同時に進行して強固な骨格が形成されたた
めと推察される。
The reason why the strength of the artificial bone material obtained in the present invention is relatively high is that, unlike the conventional case where a foaming agent is added to a raw material slurry (baking a foamed molded body), the artificial bone material is densified during baking. It is speculated that foaming proceeded at the same time to form a strong skeleton.

【0022】[0022]

【実施例】【Example】

−実施例1− 蒸留水1リットル中に硝酸カルシウム0.39molを
溶解した。この溶液にエチレンジアミン四酢酸アンモニ
ウム塩(EDTA)0.39molを加えて1時間攪拌
し反応させた。この反応溶液にリン酸アンモニウム0.
26molを加えて更に透明溶液となるまで攪拌した
後、120℃で乾燥して透明な固体を得た。この固体を
X線回折法で分析すると非晶質体であった。
-Example 1- 0.39 mol of calcium nitrate was dissolved in 1 liter of distilled water. 0.39 mol of ethylenediaminetetraacetic acid ammonium salt (EDTA) was added to this solution and stirred for 1 hour to cause a reaction. To this reaction solution, ammonium phosphate was added.
After adding 26 mol and further stirring until it became a transparent solution, it was dried at 120 ° C. to obtain a transparent solid. When this solid was analyzed by X-ray diffractometry, it was an amorphous substance.

【0023】この非晶質体を電気炉に入れて昇温速度1
0℃/分で昇温し1100℃で2時間保持し、焼成し
た。焼成物は気孔率70%程度に発泡した多孔質体とな
っており、指で擦っても粒子の脱落等は起こらずハンド
リングに十分耐える強度を示した。焼成物は図1に示す
様に数十〜数百μmの気孔と数μmの気孔を多数有して
いた。またその結晶相をX線回折法で分析すると第三リ
ン酸カルシウムであった。従って、この焼成物は、優れ
た生体親和性と必要な強度を兼備した人工骨に適用でき
ることが明きらかとなった。
This amorphous material was placed in an electric furnace and the temperature rising rate was 1
The temperature was raised at 0 ° C./min, and the temperature was maintained at 1100 ° C. for 2 hours, followed by firing. The fired product was a porous body having a porosity of about 70%, and even if it was rubbed with a finger, the particles did not fall off and showed a strength sufficient to withstand handling. The fired product had a large number of pores of several tens to several hundreds μm and several pores of several μm as shown in FIG. The crystal phase was analyzed by X-ray diffractometry and found to be tricalcium phosphate. Therefore, it became clear that this fired product can be applied to an artificial bone having both excellent biocompatibility and required strength.

【0024】−実施例2− 実施例1で調製した透明な固体の非晶質体を、メノ−乳
鉢で5mm程度の顆粒に粉砕した後、アルミナ製の円筒
状容器に充填し、その上にアルミナ製の板をかぶせて、
電気炉にて昇温速度5℃/分で昇温し1200℃で2時
間保持することによって焼成した。
-Example 2- The transparent solid amorphous material prepared in Example 1 was crushed into granules of about 5 mm in a Meno-mortar and then charged into a cylindrical container made of alumina, and the granules were placed on it. Cover with a plate made of alumina,
Firing was performed by raising the temperature in an electric furnace at a temperature rising rate of 5 ° C./min and holding at 1200 ° C. for 2 hours.

【0025】焼成物は一体化した気孔率65%程度に発
泡した円柱状の多孔質体となっていた。焼成物は実施例
1とほぼ同様に、数十〜数百μmの気孔と数μmの気孔
を多数有し、ハンドリングに十分耐える強度を示し、そ
の結晶相は第三リン酸カルシウム相であった。従って、
この焼成物は、優れた生体親和性と必要な強度を兼備し
た人工骨に適用できることが明きらかとなった。
The fired product was a columnar porous body which was integrated and foamed to a porosity of about 65%. Similar to Example 1, the fired product had a large number of pores of several tens to several hundreds μm and several μm, and exhibited a strength sufficient to withstand handling, and its crystal phase was a tricalcium phosphate phase. Therefore,
It has become clear that this calcined product can be applied to an artificial bone having both excellent biocompatibility and required strength.

【0026】−実施例3− 蒸留水1リットル中に硝酸カルシウム0.40molを
溶解した後、この溶液にエチレンジアミン四酢酸アンモ
ニウム塩(EDTA)0.65molを加えて1時間攪
拌し反応させた。この反応溶液にリン酸アンモニウム
0.25molを加えて更に透明溶液となるまで攪拌し
た後、120℃で乾燥して透明な固体を得た。この固体
をX線回折法で分析すると非晶質体であった。
Example 3 0.40 mol of calcium nitrate was dissolved in 1 liter of distilled water, and 0.65 mol of ethylenediaminetetraacetic acid ammonium salt (EDTA) was added to this solution and stirred for 1 hour to react. To this reaction solution, 0.25 mol of ammonium phosphate was added, and the mixture was further stirred until it became a transparent solution, and then dried at 120 ° C to obtain a transparent solid. When this solid was analyzed by X-ray diffractometry, it was an amorphous substance.

【0027】この非晶質体を実施例2と同様に5mm程
度の顆粒に粉砕した後、アルミナ製の円筒状容器に充填
し、その上にアルミナ製の板をかぶせて、昇温速度5℃
/分で昇温し1100℃で2時間保持することによっ
て、焼成した。焼成物は一体化した気孔率65%程度に
発泡した多孔質体となっており、焼成物は数十〜数百μ
mの気孔と数μmの気孔を多数有しており、また指で擦
っても粒子の脱落等は起こらずハンドリングに十分耐え
る強度を示した。またその結晶相は70%水酸化アパタ
イト相−30%第三リン酸カルシウム相であった。従っ
て、この焼成物は、極めて優れた生体親和性と必要な強
度を兼備した人工骨に適用できることが明きらかとなっ
た。
This amorphous material was crushed into granules of about 5 mm in the same manner as in Example 2, then charged into a cylindrical container made of alumina, and an alumina plate was covered on the container, and the temperature rising rate was 5 ° C.
Firing was performed by heating at 1 / min and holding at 1100 ° C. for 2 hours. The fired product is an integrated porous body having a porosity of about 65%, and the fired product is several tens to several hundreds μ.
It has a large number of pores of m and several μm, and even if it is rubbed with a finger, the particles do not fall off and the strength is sufficient to withstand handling. The crystal phase was 70% hydroxyapatite phase-30% tricalcium phosphate phase. Therefore, it became clear that this calcined product can be applied to an artificial bone having extremely excellent biocompatibility and required strength.

【0028】−比較例1− 実施例1とほぼ同様であるが、蒸留水1リットル中に硝
酸カルシウムを0.39molを溶解した後にエチレン
ジアミン四酢酸アンモニウム塩(EDTA)を加えず、
そのままリン酸アンモニウムを0.26mol加えた。
瞬時に白色沈澱が生じ、乾燥するとゲル状のほぼ非晶質
体となった。この非晶質体を電気炉に入れて昇温速度1
0℃/分で昇温し1100℃で2時間保持したが、発泡
は全く起こらなかった。
Comparative Example 1 Almost the same as in Example 1, except that 0.39 mol of calcium nitrate was dissolved in 1 liter of distilled water and then ethylenediaminetetraacetic acid ammonium salt (EDTA) was not added.
0.26 mol of ammonium phosphate was added as it was.
A white precipitate was formed instantaneously, and when dried, it became a gel-like almost amorphous body. The amorphous body is put into an electric furnace and the temperature rising rate is 1
The temperature was raised at 0 ° C./minute and the temperature was maintained at 1100 ° C. for 2 hours, but no foaming occurred at all.

【0029】[0029]

【発明の効果】本発明製造方法により、高い気孔率と数
十〜数百μmの大きい気孔径を持ちながら、且つハンド
リングに耐え得る比較的高い機械的強度を有する、生体
親和性の良好な生体人工骨材料を得ることができる。
EFFECTS OF THE INVENTION According to the production method of the present invention, a living body having a high porosity and a large pore diameter of several tens to several hundreds of μm, and a relatively high mechanical strength capable of withstanding handling, and having a good biocompatibility. An artificial bone material can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の焼成物の材料組織を示すもので、
(A)は倍率50、(B)は倍率500の走査型電子顕
微鏡写真である。
FIG. 1 shows the material structure of the fired product of Example 1,
(A) is a scanning electron micrograph with a magnification of 50 and (B) is a magnification of 500.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リンP及びカルシウムCaを含む有機物
の非晶質体を調製する工程と、その非晶質体を焼成する
工程とを経ることを特徴とする人工骨材料の製造方法。
1. A method for producing an artificial bone material, comprising: a step of preparing an amorphous body of an organic material containing phosphorus P and calcium Ca; and a step of firing the amorphous body.
【請求項2】 リンP及びカルシウムCaを含む有機物
の非晶質体が、有機リン化合物と有機カルシウム化合物
との混合物、有機リン化合物と有機カルシウム化合物と
の反応物及び有機リン・カルシウム化合物のうちから選
ばれる1種以上を主成分とするものである請求項1に記
載の人工骨材料の製造方法。
2. An amorphous substance of an organic substance containing phosphorus P and calcium Ca is a mixture of an organic phosphorus compound and an organic calcium compound, a reaction product of an organic phosphorus compound and an organic calcium compound, and an organic phosphorus / calcium compound. The method for producing an artificial bone material according to claim 1, wherein the main component is one or more selected from the following.
【請求項3】 焼成する工程が、発泡と、有機物の非晶
質体からリン酸カルシウムの結晶質体へ変化する反応と
を生じさせるものである請求項1ないし2に記載の人工
骨材料の製造方法。
3. The method for producing an artificial bone material according to claim 1, wherein the step of firing causes foaming and a reaction of changing an amorphous substance of an organic substance into a crystalline substance of calcium phosphate. .
【請求項4】 非晶質体中のカルシウム/リン(Ca/
P)原子比が1.4〜1.75である請求項1ないし3に
記載の人工骨材料の製造方法。
4. Calcium / phosphorus (Ca /) in an amorphous body
The method for producing an artificial bone material according to claim 1, wherein the P) atomic ratio is 1.4 to 1.75.
【請求項5】 有機物の非晶質体がキレート化合物であ
る請求項1ないし4に記載の人工骨材料の製造方法。
5. The method for producing an artificial bone material according to claim 1, wherein the amorphous substance of the organic substance is a chelate compound.
【請求項6】 キレート化合物がエチレンジアミン四酢
酸化合物である請求項5に記載の人工骨材料の製造方
法。
6. The method for producing an artificial bone material according to claim 5, wherein the chelate compound is an ethylenediaminetetraacetic acid compound.
JP11414593A 1993-04-16 1993-04-16 Manufacturing method of artificial bone material Expired - Fee Related JP3170385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11414593A JP3170385B2 (en) 1993-04-16 1993-04-16 Manufacturing method of artificial bone material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11414593A JP3170385B2 (en) 1993-04-16 1993-04-16 Manufacturing method of artificial bone material

Publications (2)

Publication Number Publication Date
JPH06296680A true JPH06296680A (en) 1994-10-25
JP3170385B2 JP3170385B2 (en) 2001-05-28

Family

ID=14630276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11414593A Expired - Fee Related JP3170385B2 (en) 1993-04-16 1993-04-16 Manufacturing method of artificial bone material

Country Status (1)

Country Link
JP (1) JP3170385B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348872A (en) * 1999-04-13 2000-10-18 Toshiba Ceramics Co Calcium phosphate porous sintered body and production thereof
EP1155705A3 (en) * 2000-05-19 2003-10-15 Ochi, Takahiro, Ph. D. Biomaterial

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348872A (en) * 1999-04-13 2000-10-18 Toshiba Ceramics Co Calcium phosphate porous sintered body and production thereof
US6340648B1 (en) 1999-04-13 2002-01-22 Toshiba Ceramics Co., Ltd. Calcium phosphate porous sintered body and production thereof
GB2348872B (en) * 1999-04-13 2003-03-26 Toshiba Ceramics Co Calcium phosphate porous sintered body and production thereof
EP1155705A3 (en) * 2000-05-19 2003-10-15 Ochi, Takahiro, Ph. D. Biomaterial

Also Published As

Publication number Publication date
JP3170385B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
Yoshimura et al. Hydrothermal processing of hydroxyapatite: past, present, and future
JP4540225B2 (en) Process for producing magnesium and carbonate substituted hydroxyapatite
JP2567888B2 (en) Solid calcium phosphate material
CN107141022B (en) Whitlockite coating constructed on surface of calcium phosphate biological ceramic matrix and preparation method thereof
JP2008050260A (en) Novel minerals and methods for their production and use
EP1642600B1 (en) Medical bone prosthetic material and process for producing the same
JPS6287406A (en) Production of beta-tricalcium phosphate
TWI573776B (en) Dicalcium phosphate ceramics, dicalcium phosphate/hydroxyapatite biphasic ceramics and method of manufacturing the same
JP3170385B2 (en) Manufacturing method of artificial bone material
Safronova et al. Densification additives for hydroxyapatite ceramics
JP2006025915A (en) Production method for calcium phosphate-based bone prosthetic material
JP2756703B2 (en) Spherical apatite, method for producing the same, and molded article with porous structure
JP3082503B2 (en) Precursor for artificial bone production and method for producing artificial bone
JP3231135B2 (en) Biological implant material and method for producing the same
Larson et al. Non-stirred synthesis of Na-and Mg-doped, carbonated apatitic calcium phosphate
JPS6158422B2 (en)
JP3668530B2 (en) Method for producing tetracalcium phosphate
JPH0791127B2 (en) Method for producing porous body of calcium phosphate compound
JP3725935B2 (en) Method for producing calcium phosphate ceramics
CN110194485B (en) Low-temperature preparation of CaTiO by using sintered flue gas desulfurization ash3Method for producing powder
JPH0627025B2 (en) Hydroxyapatite filter cake dried product
JPS6366790B2 (en)
JPH05306108A (en) Production of beta-tricalcium phosphate calcium titanate composite body
WO2000068144A1 (en) Method for the preparation of carbonated hydroxyapatite compositions
JP3308355B2 (en) Method for producing sintered carbonated apatite

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees