JPH06295715A - Nonwoven fabric for alkaline battery separator and manufacture thereof - Google Patents

Nonwoven fabric for alkaline battery separator and manufacture thereof

Info

Publication number
JPH06295715A
JPH06295715A JP5079828A JP7982893A JPH06295715A JP H06295715 A JPH06295715 A JP H06295715A JP 5079828 A JP5079828 A JP 5079828A JP 7982893 A JP7982893 A JP 7982893A JP H06295715 A JPH06295715 A JP H06295715A
Authority
JP
Japan
Prior art keywords
fiber
diameter
nonwoven fabric
separator
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5079828A
Other languages
Japanese (ja)
Inventor
Toshihiro Shigematsu
俊広 重松
Takaomi Ishikawa
敬臣 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP5079828A priority Critical patent/JPH06295715A/en
Publication of JPH06295715A publication Critical patent/JPH06295715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To heighten strength of fiber itself and alkaline resistance, and obtain excellent water absorptivity by constituting nonwoven fabric of metallic ion added acrylic fiber having a specific fiber diameter and a ratio of a specific fiber length to a fiber diameter. CONSTITUTION:A battery for an alkaline battery separator is composed of metallic ion added acrylic fiber where at least one or more kinds of fibers are short fiber having a diameter of 3-l0mum and a ratio (L/D, an aspect ratio) of a fiber length L to a fiber diameter D is 1000-2000. When nonwoven fabric for this alkaline battery separator is manufactured, first of all, the metallic ion added acrylic fiber where at least one or more kinds of fibers are short fiber having a diameter of 3-10mum and a ratio (an aspect ratio) of a fiber length L to a fiber diameter D is 1000-2000, is dispersed in water, and is formed as slurry. Next, this slurry is combed in a wet system, and a web is formed. Next, after this web is entangled with/joined to each other by a water flow entangling method, the nonwoven fabric is manufactured by heat work.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ電池セパレー
タ用不織布に関するものであり、特に、初期濡れ性と電
解液の保液性の両方に優れ、その他の諸性質を併せ持つ
アルカリ電池セパレータ用不織布、およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-woven fabric for an alkaline battery separator, and particularly to a non-woven fabric for an alkaline battery separator which is excellent in both initial wettability and liquid retaining property of an electrolytic solution and has other properties. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】アルカリ電池は充放電特性、過充電過放
電特性に優れ、長寿命で繰り返し使用できるため、小型
軽量化の著しいエレクトロニクス機器に広く使用されて
いる。このようなアルカリ電池の特性は、その電池セパ
レータの特性にも大きく依存している。
2. Description of the Related Art Alkaline batteries are widely used in electronic devices which are remarkably miniaturized and lightweight because they are excellent in charge / discharge characteristics and overcharge / overdischarge characteristics and can be repeatedly used with a long life. The characteristics of such an alkaline battery greatly depend on the characteristics of the battery separator.

【0003】アルカリ電池セパレータには一般に、次の
性能が必要とされている。 (1)正極と負極を物理的に分離できること。 (2)短絡を防ぐための電気的絶縁性を持つこと。 (3)耐電解液性を持つこと。 (4)耐電気化学的酸化性を持つこと。 (5)電解液を含んだ状態で低い電気抵抗を示すこと。 (6)電解液に対して濡れやすく、電解液保持量が大き
いこと。 (7)電池組立工程で耐え得る強度、剛性を持つこと。 (8)電池にとっての有害物質を出さないこと。 (9)通気性を持つこと。
The alkaline battery separator is generally required to have the following performance. (1) The positive electrode and the negative electrode can be physically separated. (2) It must have electrical insulation to prevent short circuits. (3) Must have electrolytic solution resistance. (4) It has electrochemical oxidation resistance. (5) It exhibits low electric resistance in a state of containing an electrolytic solution. (6) The electrolytic solution is easily wetted and the amount of the electrolytic solution retained is large. (7) It must have the strength and rigidity to withstand the battery assembly process. (8) Do not emit harmful substances for batteries. (9) Be breathable.

【0004】そのため従来から、電解液に濡れやすく
て、その保持量が大きく、しかも電解液を含んだ状態で
電気抵抗が低い、ポリアミド繊維の不織布がアルカリ電
池用セパレータとして使用されている。また、比較的高
温における耐久性の必要な電池用には、ポリオレフィン
繊維不織布がセパレータとして使用されている。
Therefore, conventionally, a polyamide fiber non-woven fabric, which is easily wetted by an electrolytic solution, has a large holding amount, and has a low electric resistance in the state of containing the electrolytic solution, has been used as a separator for alkaline batteries. In addition, a polyolefin fiber non-woven fabric is used as a separator for batteries that require durability at relatively high temperatures.

【0005】ところが、前記のポリアミド繊維の不織布
からなるアルカリ電池用セパレータには、繰り返し使用
により、繊維から窒素酸化物が溶出し、電池の寿命を縮
めるという欠点がある。また、ポリオレフィン繊維不織
布からなるものは吸水性が低いため、電解液に対して濡
れにくくその保持量が少ない。
However, the alkaline battery separator made of the above-mentioned polyamide fiber nonwoven fabric has a drawback that nitrogen oxides are eluted from the fiber by repeated use and the life of the battery is shortened. Further, since the one made of the polyolefin fiber nonwoven fabric has a low water absorption, it is hard to be wet with the electrolytic solution, and the retained amount thereof is small.

【0006】そこで最近、耐電解液性及び耐電気化学的
酸化性と、電解液の濡れやすさ及びその保持量とを共に
向上させるため、例えば、特開平3−257755号公
報のアルカリ電池用セパレータが提案されている。この
セパレータは、ポリオレフィンとエチレンビニルアルコ
ール共重合体との分割型複合繊維を35%以上含有する
不織布からなる。
Therefore, recently, in order to improve both the electrolytic solution resistance and the electrochemical oxidation resistance, and the wettability of the electrolytic solution and the retained amount thereof, for example, an alkaline battery separator disclosed in JP-A-3-257755. Is proposed. This separator is made of a non-woven fabric containing 35% or more of splittable conjugate fibers of polyolefin and ethylene vinyl alcohol copolymer.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記の
分割型複合繊維を含有する不織布からなるセパレータ
は、その不織布の通気性、電解液の濡れやすさ及びその
保持量等が不充分である。そのため、前記諸性能を併せ
持たせつつセパレータを薄型にすることができず、この
ようなセパレータを使用したアルカリ電池では、最近の
コードレス機器用に必要な、高容量、長寿命、高信頼性
等の高度の特性を達成することができないという問題が
ある。
However, the separator made of a non-woven fabric containing the splittable conjugate fiber described above is insufficient in the air permeability of the non-woven fabric, the easiness of wetting of the electrolytic solution, the holding amount, and the like. Therefore, it is not possible to make the separator thin while also having the above-mentioned various performances, and in the alkaline battery using such a separator, high capacity, long life, high reliability, etc., required for recent cordless devices, etc. There is a problem that it is not possible to achieve a high degree of characteristics.

【0008】本発明の目的は、低目付けであり、かつ前
記諸性質を併せ持ち、特に初期濡れ性と電解液の保液性
の両方に優れたアルカリ電池セパレータ用不織布、およ
びその製造方法を提供することにある。
An object of the present invention is to provide a non-woven fabric for an alkaline battery separator, which has a low basis weight and also has the above-mentioned various properties, and is particularly excellent in both initial wettability and liquid retaining property of an electrolytic solution, and a method for producing the same. Especially.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために鋭意研究した結果、アルカリ電池用
不織布およびその製造方法を発明するに至った。即ち、
本発明のアルカリ電池セパレータ用不織布は、少なくと
も1種類以上の繊維径が3〜10μmの短繊維で、且つ
繊維長Lと繊維径Dの比(L/D、アスペクト比)が1
000〜2000である金属イオン付加アクリル繊維か
らなるアルカリ電池セパレータ用不織布から成る。
Means for Solving the Problems As a result of intensive research aimed at achieving the above object, the present inventors have invented a nonwoven fabric for alkaline batteries and a method for producing the same. That is,
The nonwoven fabric for alkaline battery separators of the present invention is at least one kind of short fibers having a fiber diameter of 3 to 10 μm, and has a ratio (L / D, aspect ratio) of the fiber length L to the fiber diameter D of 1.
It is composed of a non-woven fabric for an alkaline battery separator, which is made of a metal ion-added acrylic fiber of 000 to 2000.

【0010】また、本発明のアルカリ電池セパレータ用
不織布の製造方法は、少なくとも1種類以上の繊維径が
3〜10μmの短繊維で、且つ繊維長Lと繊維径Dの比
(L/D、アスペクト比)が1000〜2000である
金属イオン付加アクリル繊維を水に分散してスラリーと
し、該スラリーを湿式抄造してウェブを形成し、次いで
該ウェブを水流交絡法により交絡結合後、熱圧加工する
ことを特徴とする。
In the method for producing a non-woven fabric for an alkaline battery separator according to the present invention, at least one or more kinds of short fibers having a fiber diameter of 3 to 10 μm and a ratio of the fiber length L to the fiber diameter D (L / D, aspect ratio). A metal ion-added acrylic fiber having a ratio of 1000 to 2000 is dispersed in water to form a slurry, the slurry is wet-paper-formed to form a web, and then the web is entangled by the hydroentangling method and then hot pressed. It is characterized by

【0011】以下、本発明の詳細な説明を行う。なお、
本文中では、アルカリ電池セパレ−タ用不織布を、単に
不織布と略記する。本発明における金属イオン付加アク
リル繊維としては、アクリル系繊維に架橋結合を導入
し、加水分解し、2価の金属イオンで架橋又は1価の金
属イオンを付加させて得られる公知の繊維は全て使用す
ることができる(例えば、特開平2−84528号公
報、特開平2−84532号公報参照)。
The present invention will be described in detail below. In addition,
In the text, a non-woven fabric for an alkaline battery separator is simply referred to as a non-woven fabric. As the metal ion-added acrylic fiber in the present invention, all known fibers obtained by introducing a crosslink bond into an acrylic fiber, hydrolyzing it, and crosslinking or adding a monovalent metal ion with a divalent metal ion are used. (See, for example, Japanese Patent Laid-Open Nos. 2-84528 and 2-84532).

【0012】原料アクリル系繊維は、アクリロニトリル
40〜100重量%と他のビニル系モノマー60〜0重
量%とから得られるアクリロニトリル系の重合体あるい
は共重合体の繊維である。アクリロニトリルと共重合し
てもよい他のビニル系モノマ−としては、例えば、メタ
リルスルホン酸、P−スチレンスルホン酸、アクリル
酸、メタクリル酸、及びこれらの塩、ハロゲン化ビニ
ル、ハロゲン化ビニリデン、アクリル酸エステル、メタ
クリル酸エステル、アクリルアミド、スチレン、酢酸ビ
ニルを挙げることができる。
The raw acrylic fiber is an acrylonitrile polymer or copolymer fiber obtained from 40 to 100% by weight of acrylonitrile and 60 to 0% by weight of another vinyl monomer. Other vinyl monomers that may be copolymerized with acrylonitrile include, for example, methallyl sulfonic acid, P-styrene sulfonic acid, acrylic acid, methacrylic acid, and salts thereof, vinyl halides, vinylidene halides, acrylics. Examples thereof include acid ester, methacrylic acid ester, acrylamide, styrene and vinyl acetate.

【0013】原料アクリル系繊維への架橋結合の導入
は、例えば、ニトリル基を有する前記繊維をヒドラジ
ン、ヒドロキシルアミン等で加熱処理することによって
行なうことができる。このようにして架橋結合を導入し
たアクリル系繊維の加水分解は、酸又は塩基と共に加熱
処理することによって行なうことができ、ニトリル基を
カルボキシル基、アミド基に変換することができる。次
に、金属イオンによる架橋は、Zn、Cu、Ca、Fe
等の多価の金属塩水溶液で、また、金属イオンによる付
加はLi、Na、K等に1価の金属塩水溶液で繊維を処
理することによって行なうことができる。
The introduction of cross-linking into the raw material acrylic fiber can be carried out, for example, by heat-treating the fiber having a nitrile group with hydrazine, hydroxylamine or the like. The hydrolysis of the acrylic fiber in which the cross-linking has been introduced in this way can be carried out by heat treatment with an acid or a base, and the nitrile group can be converted into a carboxyl group or an amide group. Next, the cross-linking with metal ions is performed using Zn, Cu, Ca, Fe
And the like can be carried out by treating the fibers with a monovalent metal salt aqueous solution of Li, Na, K or the like.

【0014】本発明で用いる金属イオン付加アクリル繊
維の繊維径は、3〜10μmの短繊維が好ましく、4〜
7μmのものが更に好ましい。この範囲の繊維を使用し
た不織布は、ポア径及び通気性のコントロ−ルが容易で
ある。
The metal ion-added acrylic fiber used in the present invention preferably has a fiber diameter of 3 to 10 μm, preferably 4 to
It is more preferably 7 μm. A non-woven fabric using fibers in this range has easy control of pore diameter and air permeability.

【0015】本発明で用いる金属イオン付加アクリル繊
維のアスペクト比は、1000〜2000のものが好ま
しい。アスペクト比が2000を超える繊維は、水中で
の分散工程が難しく、分散剤を選択し、適量使用する必
要があるばかりか、一度分散した後、再度凝集して、よ
れ、もつれ、だま等が発生しやすくなるという問題が生
じてくる。また、分散濃度を低くしなければならず、生
産性が劣る。さらに、アスペクト比に関係する繊維長に
ついては、繊維径が太くても、20mmを超える繊維長
のものについては、ウェブの湿式抄造時に上述の問題が
生じ、地合の良好なウェブを得ることができない。
The aspect ratio of the metal ion-added acrylic fiber used in the present invention is preferably 1000 to 2000. Fibers with an aspect ratio of more than 2,000 are difficult to disperse in water, so it is necessary to select an appropriate amount of dispersant and to use it in an appropriate amount. Also, once dispersed, it is re-aggregated to cause twisting, entanglement, and deception. The problem arises that it is easier to do. Also, the dispersion concentration must be lowered, resulting in poor productivity. Further, regarding the fiber length related to the aspect ratio, even if the fiber diameter is large, if the fiber length is more than 20 mm, the above-mentioned problems occur during wet papermaking of the web, and a web with good texture can be obtained. Can not.

【0016】アスペクト比が1000未満の繊維は、分
散工程が容易であるが、水流により動きやすいため、繊
維を曲げ、絡み合わせるのが困難で、強度の大きい不織
布を得ることは困難である。また、繊維全体が動くた
め、繊維間のずれが生じ、不織布内部で歪が生じ、水流
を噴射した後、不織布に多くのしわが発生するという問
題点が生じる。
A fiber having an aspect ratio of less than 1000 is easy to disperse, but it is easy to move due to water flow, so that it is difficult to bend and entangle the fiber, and it is difficult to obtain a nonwoven fabric having high strength. In addition, since the entire fibers move, the fibers are displaced from each other, which causes strain inside the nonwoven fabric, causing many wrinkles in the nonwoven fabric after jetting a water stream.

【0017】水流交絡法は、ウェブの加工方法の1つで
あるため、加工を行う前に、ウェブを供給する必要があ
る。ウェブ製造法は、カ−ド法、エアレイ法の乾式法、
メルトブロ−法、スパンボンド法、湿式抄造法等が挙げ
られる。
Since the hydroentangling method is one of the web processing methods, it is necessary to supply the web before processing. The web manufacturing method is a card method, a dry method such as an air-laid method,
A melt blow method, a spun bond method, a wet papermaking method and the like can be mentioned.

【0018】カ−ド法やエアレイ法は、繊維長の長い繊
維を用いることができるが、均一なウェブ化が困難で、
高圧柱状水流で加工され得られた不織布も、地合が悪
く、透過光で観察すると、班模様が見られる。スパンボ
ンド法で得たウェブを用いると、強度は大きいものの、
地合が悪く、繊維が連続につながっており、繊維の自由
末端が少なく、3次元交絡には大きなエネルギ−を必要
とする。また、この方法では、繊維径が10μm以下の
繊維を用いたウェブの製造が困難である。メルトブロ−
法は、微細な繊維のウェブ化が可能であるが、地合が悪
く、生産速度が遅く、また、高価であるという問題があ
る。このように、上記の4種類の方法で製造したウェブ
は地合が悪いため、短絡を防ぐために必要な空隙径を得
るには、高目付けにしなければならないという問題があ
る。
In the card method and the air laid method, fibers having a long fiber length can be used, but it is difficult to form a uniform web,
The non-woven fabric obtained by processing with a high-pressure columnar water flow also has a poor texture and a plaque pattern is observed when observed with transmitted light. When using the web obtained by the spunbond method, although the strength is high,
The formation is poor, the fibers are continuously connected, the free ends of the fibers are few, and a large amount of energy is required for three-dimensional entanglement. Further, according to this method, it is difficult to manufacture a web using fibers having a fiber diameter of 10 μm or less. Melt blow
The method can make fine fibers into a web, but has problems that the formation is poor, the production rate is slow, and the cost is high. As described above, since the webs produced by the above-mentioned four kinds of methods are not well formed, there is a problem that a high basis weight must be obtained in order to obtain a void diameter necessary for preventing a short circuit.

【0019】湿式抄造法では、生産速度が上記の方法に
比べて速く、同一装置で、繊度、種類の異なる複数の繊
維を任意の割合で混合できる。即ち、繊維の形態にも、
ステ−プル状、パルプ状等選択の幅は広く、使用可能な
繊維径も、所謂7μm以下の極細繊維から、太い繊維ま
で使用可能で、他の方法に比べ極めて良好な地合のウェ
ブが得られる方法である。このようなことから、極めて
応用範囲の広く、空隙径をコントロ−ルしやすいウェブ
形成方法と考えられる。
In the wet papermaking method, the production speed is higher than that of the above method, and a plurality of fibers having different fineness and kinds can be mixed in an arbitrary ratio in the same apparatus. That is, even in the form of fiber,
A wide range of choices such as staple and pulp, and usable fiber diameters from so-called 7 μm or less ultrafine fibers to thick fibers can be obtained, and a web with a very good texture is obtained compared to other methods. It is a method to be done. Therefore, it is considered to be a web forming method which has a very wide range of applications and is easy to control the void diameter.

【0020】次に、本発明の不織布の製造方法を説明す
る。まず、繊維径及びアスペクト比が本発明の範囲内の
金属イオン付加アクリル繊維をパルパ−で離解し、アジ
テ−タ−等の緩やかな撹拌のもと、水中に分散して、均
一なスラリーを形成する。このスラリーを丸網、長網、
傾斜式等のワイヤ−の少なくとも1つを有する抄紙機を
用いて、抄紙して例えば厚み400μm以下となるよう
に地合の良好なウェブを製造する。
Next, a method for manufacturing the nonwoven fabric of the present invention will be described. First, a metal ion-added acrylic fiber having a fiber diameter and an aspect ratio within the range of the present invention is disintegrated with a pulper and dispersed in water under gentle agitation of an agitator to form a uniform slurry. To do. This slurry is a round net, a long wire,
Using a paper machine having at least one wire of an inclined type or the like, paper making is carried out to produce a web having a good texture so as to have a thickness of 400 μm or less.

【0021】次に、このように調製されたウェブを開孔
率40%以下、1つの開孔の大きさが0.04mm2
下の多孔質の支持体上に積載し、ウェブ上方から高圧の
柱状水流を噴射し、水流とウェブを相対的に移動させ、
繊維を3次元的に交絡させる。ウェブと水流を相対的に
移動させる方法としては、コンベア−式の支持体あるい
はドラム式の支持体を回転運動させる方法が簡便であ
る。このとき支持体の搬送速度はウェブに与える印加エ
ネルギ−により決定されるが、1〜200m/分以下の
速度で用いることが可能である。
Next, the web thus prepared is loaded on a porous support having a porosity of 40% or less and one opening size of 0.04 mm 2 or less, and a high pressure is applied from above the web. Inject a columnar water stream to move the water stream and the web relatively,
The fibers are entangled three-dimensionally. As a method of moving the web and the water flow relatively, a method of rotating the conveyor type support or the drum type support is convenient. At this time, the transport speed of the support is determined by the applied energy applied to the web, but it can be used at a speed of 1 to 200 m / min or less.

【0022】支持体の開孔率が40%より大きいと、得
られる不織布に開孔が生じ、空隙径の調整が困難にな
る。逆に、開孔率が小さいほど、得られた不織布の面質
が良くなるが、余りに開孔率が小さいと、交絡に要した
水が支持体から下に抜けず、支持体に当たった後、再び
ウェブに跳ね返り、跳ね返り水がウェブを突き上げ、ウ
ェブが破損する現象が生じ、好ましくない。このような
多孔質の支持体としては、平織り、綾織り等の織り方
で、ステンレス、ブロンズ等の金属あるいは強化ポリエ
ステル、ポリアミド等のプラスチック等の材質のワイヤ
−等が挙げられる。
When the porosity of the support is larger than 40%, the resulting nonwoven fabric has pores, which makes it difficult to adjust the void diameter. On the contrary, the smaller the porosity, the better the surface quality of the obtained non-woven fabric, but if the porosity is too small, the water required for the entanglement does not escape downward from the support and hits the support. Again, it bounces back to the web, and the water that bounces pushes up the web, causing a phenomenon of breaking the web, which is not preferable. Examples of such a porous support include a wire such as a plain weave, a twill weave, a metal such as stainless steel and bronze, or a material such as plastic such as reinforced polyester and polyamide.

【0023】次に、こうして得られた不織布は、温度1
00度以下、線圧500kg/cm以下の条件で、熱カ
レンダ−ロ−ル処理等の熱圧加工を行い、適当な厚さに
調整した不織布を製造することができる。
Next, the non-woven fabric thus obtained has a temperature of 1
A non-woven fabric adjusted to an appropriate thickness can be produced by performing hot pressure processing such as thermal calender roll treatment under the conditions of a temperature of not more than 00 degrees and a linear pressure of not more than 500 kg / cm.

【0024】本発明のアルカリ電池セパレータ用不織布
において、充分な通気性を確保するためには、最大ポア
径が70μm以下、平均ポア径が25μm以下、最大ポ
ア径/平均ポア径が3以下であることが好ましい。コー
ドレス機器用のアルカリ電池セパレータとして好適に使
用しうるためには、不織布の厚みは180μm以下とす
ることが望ましい。
In the nonwoven fabric for an alkaline battery separator of the present invention, in order to secure sufficient air permeability, the maximum pore diameter is 70 μm or less, the average pore diameter is 25 μm or less, and the maximum pore diameter / average pore diameter is 3 or less. It is preferable. The thickness of the nonwoven fabric is preferably 180 μm or less so that it can be suitably used as an alkaline battery separator for cordless devices.

【0025】[0025]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は本実施例に限定されるものではない。
なお、実施例中における、部、%はすべて重量によるも
のである。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples, all parts and% are by weight.

【0026】実施例1 アクリル系繊維に架橋結合を導入し、加水分解反応によ
り3.5m mol/gのカルボキシル基と残部にアミ
ド基を導入し、次いで一価ナトリウム金属イオンを付加
させて得られる繊維径5.4μm、繊維長6mm(アス
ペクト比が1111)の金属イオン付加アクリル繊維を
97部、繊度1デニ−ル、繊維長3mmの熱水可溶性ポ
リビニルアルコ−ル繊維(VPW103、クラレ社製)
3部を湿式抄造法により丸網抄紙機で、坪量50g/m
2、幅50cmのウェブを製造した。このウェブを10
0メッシュのステンレスワイヤ−(線径0.112mm
のモノフィラメントを使用した平織りで開孔率34%、
1つの開孔の大きさが0.023mm2)である多孔質
支持体上に搬送し、搬送速度10m/分で高圧柱状水流
により水流交絡処理を行った。ノズルベッドは3ヘッド
用い、第1ヘッドのノズルはノズル径120μm、ノズ
ル間隔0.6mm、2列で水圧75kgf/cm2、第2ヘッ
ドのノズルはノズル径100μm、ノズル間隔0.3m
m、1列で100kgf/cm2、第3ヘッドのノズルはノズ
ル径100μm、ノズル間隔0.3mm、1列で125
kgf/cm2である。交絡は、まず片面で行い、次に同じ条
件で裏面の交絡を行った。こうして得られた不織布を8
0度の熱風乾燥機で乾燥し、次いで温度60度、線圧4
15kg/cmで、カレンダ−ロ−ル処理を行って、厚さ約
130μ mの不織布となし、切断してセパレータを得
た。このセパレータについて各種性能試験を行った。そ
の結果を表1に示す。
Example 1 Obtained by introducing a cross-linking bond into an acrylic fiber, introducing a carboxyl group of 3.5 mmol / g and an amide group in the balance by a hydrolysis reaction, and then adding a monovalent sodium metal ion. 97 parts of a metal ion-added acrylic fiber having a fiber diameter of 5.4 μm and a fiber length of 6 mm (aspect ratio 1111), a fineness of 1 denier, and a fiber length of 3 mm, a hot water-soluble polyvinyl alcohol fiber (VPW103, manufactured by Kuraray Co., Ltd.).
3 parts by wet papermaking method on a cylinder paper machine, basis weight 50 g / m
2. A web having a width of 50 cm was produced. This web 10
0 mesh stainless wire- (wire diameter 0.112mm
A plain weave using a monofilament of 34% open area ratio,
It was transported onto a porous support having one opening having a size of 0.023 mm 2 ) and subjected to hydroentangling treatment with a high-pressure columnar water stream at a transport speed of 10 m / min. The nozzle bed uses 3 heads, the nozzle of the first head has a nozzle diameter of 120 μm, the nozzle spacing is 0.6 mm, the water pressure is 75 kgf / cm 2 in two rows, and the nozzle of the second head has a nozzle diameter of 100 μm and the nozzle spacing is 0.3 m.
m, 1 row is 100 kgf / cm 2 , the nozzle of the third head has a nozzle diameter of 100 μm, nozzle spacing is 0.3 mm, and 1 row is 125 mm.
It is kgf / cm 2 . The entanglement was performed on one side first, and then on the back side under the same conditions. The non-woven fabric thus obtained is 8
Dry with 0 degree hot air dryer, then temperature 60 degree, linear pressure 4
A calendar roll treatment was performed at 15 kg / cm to form a nonwoven fabric having a thickness of about 130 μm, which was cut to obtain a separator. Various performance tests were conducted on this separator. The results are shown in Table 1.

【0027】実施例2 繊維径5.4μm、繊維長8mm(アスペクト比が14
81)の金属イオン付加アクリル繊維を使用した以外
は、実施例1と同様の方法でセパレータを得た。このセ
パレータについて各種性能試験を行った。その結果を表
1に示す。
Example 2 Fiber diameter 5.4 μm, fiber length 8 mm (aspect ratio 14
A separator was obtained in the same manner as in Example 1 except that the metal ion-added acrylic fiber of 81) was used. Various performance tests were conducted on this separator. The results are shown in Table 1.

【0028】実施例3 繊維径5.4μm、繊維長10.5mm(アスペクト比
が1944)の金属イオン付加アクリル繊維を使用した
以外は、実施例1と同様の方法でセパレータを得た。こ
のセパレータについて各種性能試験を行った。その結果
を表1に示す。
Example 3 A separator was obtained in the same manner as in Example 1, except that a metal ion-added acrylic fiber having a fiber diameter of 5.4 μm and a fiber length of 10.5 mm (aspect ratio 1944) was used. Various performance tests were conducted on this separator. The results are shown in Table 1.

【0029】実施例4 繊維径3.1μm、繊維長6mm(アスペクト比が19
35)の金属イオン付加アクリル繊維を使用した以外
は、実施例1と同様の方法でセパレータを得た。このセ
パレータについて各種性能試験を行った。その結果を表
1に示す。
Example 4 Fiber diameter 3.1 μm, fiber length 6 mm (aspect ratio 19
A separator was obtained in the same manner as in Example 1 except that the metal ion-added acrylic fiber of 35) was used. Various performance tests were conducted on this separator. The results are shown in Table 1.

【0030】実施例5 維径6.9μm、繊維長12mm(アスペクト比が17
39)の金属イオン付加アクリル繊維を使用した以外
は、実施例1と同様の方法でセパレータを得た。このセ
パレータについて各種性能試験を行った。その結果を表
1に示す。
Example 5 Fiber diameter 6.9 μm, fiber length 12 mm (aspect ratio 17
A separator was obtained in the same manner as in Example 1 except that the metal ion-added acrylic fiber of 39) was used. Various performance tests were conducted on this separator. The results are shown in Table 1.

【0031】実施例6 維径9.8μm、繊維長15mm(アスペクト比が15
31)の金属イオン付加アクリル繊維を使用した以外
は、実施例1と同様の方法でセパレータを得た。このセ
パレータについて各種性能試験を行った。その結果を表
1に示す。
Example 6 Fiber diameter 9.8 μm, fiber length 15 mm (aspect ratio 15
A separator was obtained in the same manner as in Example 1 except that the metal ion-added acrylic fiber of 31) was used. Various performance tests were conducted on this separator. The results are shown in Table 1.

【0032】実施例7 金属イオン付加アクリル繊維として、アクリル系繊維に
架橋結合を導入し、加水分解反応により3.5m mo
l/gのカルボキシル基と残部にアミド基を導入し、次
いで2価のZn金属イオンで架橋を形成させて得られる
繊維径5.6μm、繊維長6mm(アスペクト比が11
11)の金属イオン付加アクリル繊維を使用した以外
は、実施例1と同様の方法でセパレ−タを得た。このセ
パレータについて各種性能試験を行った。その結果を表
1に示す。
Example 7 As a metal ion-added acrylic fiber, a cross-linking bond was introduced into an acrylic fiber, and a hydrolysis reaction was carried out at 3.5 m mo.
A fiber diameter of 5.6 μm and a fiber length of 6 mm (aspect ratio of 11 is obtained by introducing 1 / g of a carboxyl group and an amide group into the balance, and then forming a crosslink with a divalent Zn metal ion.
A separator was obtained in the same manner as in Example 1 except that the metal ion-added acrylic fiber of 11) was used. Various performance tests were conducted on this separator. The results are shown in Table 1.

【0033】比較例1 繊維径5.4μm、繊維長5mm(アスペクト比が92
5)の金属イオン付加アクリル繊維を使用した以外は、
実施例1と同様の方法でセパレータを得た。このセパレ
ータについて各種性能試験を行った。その結果を表2に
示す。
Comparative Example 1 Fiber diameter 5.4 μm, fiber length 5 mm (aspect ratio 92
Other than using the metal ion-added acrylic fiber of 5),
A separator was obtained in the same manner as in Example 1. Various performance tests were conducted on this separator. The results are shown in Table 2.

【0034】比較例2 繊維径5.4μm、繊維長12mm(アスペクト比が2
222)の金属イオン付加アクリル繊維を使用した以外
は、実施例1と同様の方法でセパレータを得た。 この
セパレータについて各種性能試験を行った。その結果を
表2に示す。
Comparative Example 2 Fiber diameter 5.4 μm, fiber length 12 mm (aspect ratio 2
A separator was obtained in the same manner as in Example 1, except that the metal ion-added acrylic fiber 222) was used. Various performance tests were conducted on this separator. The results are shown in Table 2.

【0035】比較例3 繊維径2.8μm、繊維長3mm(アスペクト比が10
87)の金属イオン付加アクリル繊維を使用した以外
は、実施例1と同様の方法でセパレータを得た。このセ
パレータについて各種性能試験を行った。その結果を表
2に示す。
Comparative Example 3 Fiber diameter 2.8 μm, fiber length 3 mm (aspect ratio 10
A separator was obtained in the same manner as in Example 1 except that the metal ion-added acrylic fiber of 87) was used. Various performance tests were conducted on this separator. The results are shown in Table 2.

【0036】比較例4 繊維径3.1μm、繊維長3mm(アスペクト比が97
0)の金属イオン付加アクリル繊維を使用した以外は、
実施例1と同様の方法でセパレータを得た。このセパレ
ータについて各種性能試験を行った。その結果を表2に
示す。
Comparative Example 4 Fiber diameter 3.1 μm, fiber length 3 mm (aspect ratio 97
0) except that the metal ion-added acrylic fiber of 0) is used,
A separator was obtained in the same manner as in Example 1. Various performance tests were conducted on this separator. The results are shown in Table 2.

【0037】比較例5 繊維径11.1μm、繊維長25mm(アスペクト比が
2252)の金属イオン付加アクリル繊維を使用した以
外は、実施例1と同様の方法でセパレータを得た。この
セパレータについて各種性能試験を行った。その結果を
表2に示す。
Comparative Example 5 A separator was obtained in the same manner as in Example 1 except that a metal ion-added acrylic fiber having a fiber diameter of 11.1 μm and a fiber length of 25 mm (aspect ratio: 2252) was used. Various performance tests were conducted on this separator. The results are shown in Table 2.

【0038】比較例6 アクリロニトリル91部、アクリル酸メチル9部を共重
合してなる繊維径3.5μm、繊維長6.0mm(アス
ペクト比が1714)のアクリル繊維を使用した以外
は、実施例1と同様の方法でセパレータを得た。このセ
パレータについて各種性能試験を行った。その結果を表
2に示す。
Comparative Example 6 Example 1 was repeated except that an acrylic fiber having a fiber diameter of 3.5 μm and a fiber length of 6.0 mm (aspect ratio 1714) obtained by copolymerizing 91 parts of acrylonitrile and 9 parts of methyl acrylate was used. A separator was obtained in the same manner as in. Various performance tests were conducted on this separator. The results are shown in Table 2.

【0039】比較例7 ナイロン製乾式不織布(溶融紡糸タイプ)のセパレ−タ
について各種性能試験を行った。その結果を表2に示
す。
Comparative Example 7 Various performance tests were conducted on a nylon dry-type nonwoven fabric (melt spinning type) separator. The results are shown in Table 2.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】なお、実施例及び比較例における性能試験
方法は次の通りである。不織布の強度の評価としては、
極板に巻き付ける際に、引っ張りながら巻き付けるの
で、縦(流れ方向)の引張強度(kg/2cm幅)を測
定した。引張強度は、JIS−8113により、セパレ
ータを幅2cm、長さ20cmに裁断し、テンシロン測
定機(オリエンテック社製、HTM−100)を用い
て、フルスケール10kgで破断時の荷重を10回測定
し、その平均値を示した。
The performance test methods in Examples and Comparative Examples are as follows. As the evaluation of the strength of the non-woven fabric,
When winding on the electrode plate, since it is wound while pulling, the longitudinal (flow direction) tensile strength (kg / 2 cm width) was measured. Tensile strength was measured according to JIS-8113 by cutting the separator into a width of 2 cm and a length of 20 cm, and using a tensilon measuring machine (manufactured by Orientec, HTM-100), measuring the load at break 10 times with a full scale of 10 kg. The average value was shown.

【0043】正極側から発生する酸素が不織布を経て負
極側への透過するしやすさの評価としては、フラジール
通気度(cc/cm2/sec)を測定した。フラジー
ル通気度は、JIS−L−1096により、フラジール
形通気度試験機を用いて、試験片を通過する空気量を5
回測定し、その平均値を示した。
The Frazier air permeability (cc / cm 2 / sec) was measured as an evaluation of the ease with which oxygen generated from the positive electrode side permeates the negative electrode side through the nonwoven fabric. The Frazier air permeability was measured according to JIS-L-1096 using a Frazier type air permeability tester to measure the amount of air passing through the test piece to 5
The measurement was performed once and the average value was shown.

【0044】また、正極側から発生する酸素の負極側へ
の透過性と不織布が短絡するかどうかの評価としては、
ポア径(μm)を測定した。ポア径は、ASTM−F−
316記載のバブルポイント法及びミ−ンフロ−法によ
り、最大ポア径、平均ポア径を求めた。
Further, as the evaluation of the permeability of oxygen generated from the positive electrode side to the negative electrode side and whether or not the nonwoven fabric is short-circuited,
The pore diameter (μm) was measured. Pore diameter is ASTM-F-
The maximum pore diameter and the average pore diameter were determined by the bubble point method and the mean flow method described in 316.

【0045】不織布への電解液の染み込み易さ(初期の
濡れ性)の評価としては、電解液吸液速度(30分後の
cm)を測定した。電解液吸液速度は、各試料の長さ方
向から2.5cm×20cmの試験片を3枚採取し、4
0±5℃のもとに予備乾燥を行い、公定水分率以下にし
た後、試料を標準温室度状態の試験室に放置し、その後
試料を1時間以上の間隔で計量し、その前後の質量差が
後の質量の0.1%以内になった状態(この状態を水分
平衡状態という)とする。次に、試験片を20±2℃に
おける比重1.3(20℃)の苛性カリ(KOH)溶液
を入れた水槽上に所定高さの水平棒を設置し、各試料を
この水平棒にその下端を揃えてピンで止めて各試料を垂
れ下げ、水平棒を降下して各試験片の下端が5cmだけ
液中に漬かった状態となし、30分後に毛細管現象によ
りKOH溶液が上昇した高さを測定した。
To evaluate the ease of impregnation of the non-woven fabric with the electrolytic solution (initial wettability), the electrolytic solution absorption rate (cm after 30 minutes) was measured. The electrolyte absorption rate was set to 4 by taking three 2.5 cm x 20 cm test pieces from the length direction of each sample.
After pre-drying at 0 ± 5 ° C to make it less than the official moisture content, leave the sample in the standard greenhouse condition test room, and then weigh the sample at intervals of 1 hour or more, and the mass before and after that. It is assumed that the difference is within 0.1% of the subsequent mass (this state is called a water equilibrium state). Next, the test piece was placed on a horizontal tank of a predetermined height on a water tank containing a caustic potash (KOH) solution having a specific gravity of 1.3 (20 ° C) at 20 ± 2 ° C, and each sample was placed on this horizontal bar at its lower end. Align each other and fix with a pin to hang down each sample, and lower the horizontal bar so that the lower end of each test piece was immersed in the liquid for 5 cm, and after 30 minutes, the height at which the KOH solution rose due to the capillary phenomenon was measured. It was measured.

【0046】不織布の電解液の保液性の評価としては、
電解液保持率(%)を測定した。電解液保持率は、各試
料から10cm×10cmの大きさの試験片を3枚採取
し、水分平衡状態となしたときの重量W(mg)を測定
する。次に、上記KOH溶液中に試験片を広げて浸漬
し、1時間以上放置したのち液中から取り出して試験片
の一つの角をクリップして吊り下げ、10分後に重量W
1(mg)を測定し、次の数1により、初期の電解液保
液率(%)を算出した。
The evaluation of the liquid retaining property of the non-woven fabric is as follows.
The electrolytic solution retention rate (%) was measured. The electrolytic solution retention rate is obtained by collecting three test pieces each having a size of 10 cm × 10 cm from each sample and measuring the weight W (mg) when the water equilibrium state is established. Then, the test piece is spread and immersed in the KOH solution, left for 1 hour or more, taken out of the solution, and one corner of the test piece is clipped and hung down, and after 10 minutes, the weight W
1 (mg) was measured, and the initial electrolytic solution retention rate (%) was calculated by the following formula 1.

【0047】[0047]

【数1】 電解液保液率(%)=(W1−W)/W×100[Formula 1] Electrolytic solution retention rate (%) = (W 1 −W) / W × 100

【0048】不織布の耐アルカリ性の評価としては、ア
ルカリ処理後の減量率(%)を測定した。アルカリ処理
後の減量率は、各試料から10cm×10cmの大きさ
の試験片を3枚採取し、水分平衡状態となしたときの重
量W(mg)を測定したのち、電解液に相当する30%
濃度のKOH溶液に浸漬して、80±2℃の雰囲気中で
7日間保存する。その後取り出した試料を中和点に達す
るまで水洗乾燥し、再び水分平衡状態となした時の重量
2(mg)を測定し、次の数2によりアルカリ処理後
の減量率(%)を求めた。
For the evaluation of the alkali resistance of the nonwoven fabric, the weight loss rate (%) after the alkali treatment was measured. The weight loss rate after alkali treatment corresponds to the electrolytic solution after measuring three weights W (mg) at the time of water equilibrium by collecting three test pieces of 10 cm × 10 cm from each sample. %
It is immersed in a KOH solution having a concentration and stored in an atmosphere of 80 ± 2 ° C. for 7 days. After that, the sample taken out was washed with water and dried until it reached the neutralization point, and the weight W 2 (mg) at the time of reaching the water equilibrium state again was measured, and the weight loss rate (%) after the alkali treatment was calculated by the following formula 2. It was

【0049】[0049]

【数2】アルカリ処理後の減量率(%)=(W−W2
/W×100
[Number 2] weight loss rate after alkali treatment (%) = (W-W 2)
/ W x 100

【0050】表1の実施例1〜7に示すように、本発明
のアルカリ電池セパレ−タ用不織布は、繊維同士の強固
な交絡により、流れ方向の引張強度が強く、また、耐ア
ルカリ性に優れる等、セパレ−タとして必要な諸性質を
併せ持ち、特に、電解液の濡れ性と保液性に優れてい
る。
As shown in Examples 1 to 7 in Table 1, the non-woven fabric for an alkaline battery separator of the present invention has a strong tensile strength in the flow direction due to the strong entanglement of fibers, and is also excellent in alkali resistance. It also has various properties required as a separator, and is particularly excellent in wettability of electrolyte and liquid retention.

【0051】表1の実施例1〜3に示すように、本発明
の不織布は、繊維径が本発明の範囲内であれば、アスペ
クト比が大きくなるほど、引張強度が強くなる。
As shown in Examples 1 to 3 of Table 1, in the nonwoven fabric of the present invention, the tensile strength becomes stronger as the aspect ratio becomes larger as long as the fiber diameter is within the range of the present invention.

【0052】表1の実施例1と実施例7に示すように、
金属イオン付加アクリル繊維からなる不織布の電解液の
濡れ性と保液性の効果は、1価の金属イオンを付加した
場合と2価の金属イオンを架橋した場合とでほとんど変
わらない。また、引張強度等も1価の金属イオンを付加
した場合と2価の金属イオンを架橋した場合とでほとん
ど変わらない。
As shown in Examples 1 and 7 of Table 1,
The effect of the electrolyte solution wettability and liquid retention of the nonwoven fabric made of the metal ion-added acrylic fiber is almost the same when the monovalent metal ion is added and when the divalent metal ion is crosslinked. Further, the tensile strength and the like are almost the same when the monovalent metal ion is added and when the divalent metal ion is crosslinked.

【0053】表2の比較例1〜2、4〜5に示すよう
に、繊維径が本発明の範囲内であっても、アスペクト比
が1000より小さい場合、繊維同士を絡み合わせるこ
とが困難で、不織布の引張強度が非常に弱くなる。ま
た、アスペクト比が2000を超える場合、交絡前の抄
紙機で抄造したウェブは、繊維の未離解部分や結束が多
くみられ、これが原因で、交絡が不十分になり、交絡後
の不織布の引張強度も弱くなる。さらに、地合、面質も
劣ったものであるため、最大ポア径をコントロ−ルでき
ない。
As shown in Comparative Examples 1 to 2 and 4 to 5 in Table 2, even if the fiber diameter is within the range of the present invention, if the aspect ratio is smaller than 1000, it is difficult to entangle the fibers. , The tensile strength of the non-woven fabric becomes very weak. Further, when the aspect ratio exceeds 2000, the web made by the paper machine before the entanglement has many undisaggregated portions and binding of the fibers, which causes insufficient entanglement, and the tensile strength of the nonwoven fabric after the entanglement. The strength also becomes weak. Further, since the texture and surface quality are inferior, the maximum pore diameter cannot be controlled.

【0054】表2の比較例3に示すように、アスペクト
比が本発明の範囲内であっても、繊維径が3μmより細
いと、繊維自体の強度が弱く、また、繊維同士の絡み合
いも不十分となり、不織布の引張強度が弱くなる。
As shown in Comparative Example 3 in Table 2, even if the aspect ratio is within the range of the present invention, if the fiber diameter is smaller than 3 μm, the strength of the fiber itself is weak and the entanglement between the fibers is also unsatisfactory. It becomes sufficient, and the tensile strength of the nonwoven fabric becomes weak.

【0055】表2の比較例6に示すように、アクリル系
繊維に架橋結合を導入し、加水分解し、金属イオンで架
橋、又は付加しないアクリル繊維からなる不織布では、
電解液の初期の濡れ性及び保液性は、ナイロン製乾式不
織布のものとほとんど変わらず、金属イオン付加アクリ
ル繊維からなる不織布に比べるとかなり劣ったものであ
る。
As shown in Comparative Example 6 in Table 2, in the case of a non-woven fabric made of an acrylic fiber in which a crosslinking bond is introduced into an acrylic fiber, which is hydrolyzed and is not crosslinked or added with a metal ion,
The initial wettability and liquid retention of the electrolytic solution are almost the same as those of the nylon dry-type nonwoven fabric, which is considerably inferior to the nonwoven fabric made of the metal ion-added acrylic fiber.

【0056】表2の比較例7に示すように、溶融紡糸タ
イプのナイロン製乾式不織布では、地合が悪いために、
坪量を大きくしなければならず、また、通気性と耐アル
カリ性が著しく劣り、電解液の濡れ性及び保液性も本発
明の不織布に比較すると、かなり劣ったものである。
As shown in Comparative Example 7 of Table 2, the melt-spun type dry nonwoven fabric made of nylon has poor texture,
The basis weight must be increased, the air permeability and alkali resistance are remarkably inferior, and the wettability and liquid retention of the electrolytic solution are considerably inferior to the nonwoven fabric of the present invention.

【0057】[0057]

【発明の効果】本発明の不織布は、金属イオン付加アク
リル繊維からなるので、繊維自体の強度、耐アルカリ性
が高く、また吸水性も優れている。そのため、耐電解液
性及び耐電気化学的酸化性が高く、電解液に濡れやすく
その保持量が大きい。さらに、この繊維で製造した本発
明の不織布は、低目付けでありかつポア径が均一である
ため、従来より小さいポア径で従来と同等の通気性を得
ることもできる。そのため、不織布の厚さをさらに薄型
にし軽量化することができる。その結果、本発明によ
り、アルカリ電池セパレ−タに必要な諸性能を併せ持
ち、特に初期濡れ性と電解液の保液性に優れた不織布、
およびその製造方法を提供することが可能になり、高容
量、長寿命、高信頼性等の高度の特性の必要なコ−ドレ
ス機器のアルカリ電池用として好適に使用することがで
きる。
Since the nonwoven fabric of the present invention comprises the metal ion-added acrylic fiber, the fiber itself has high strength and alkali resistance and is also excellent in water absorption. Therefore, the electrolytic solution resistance and the electrochemical oxidation resistance are high, and the electrolytic solution is easily wetted and the retained amount is large. Furthermore, since the nonwoven fabric of the present invention produced from this fiber has a low basis weight and a uniform pore diameter, it is possible to obtain the same air permeability as the conventional one with a pore diameter smaller than the conventional one. Therefore, the thickness of the non-woven fabric can be further reduced and the weight can be reduced. As a result, according to the present invention, a non-woven fabric having various performances required for an alkaline battery separator, particularly excellent in initial wettability and electrolyte retention.
Further, it becomes possible to provide a method for producing the same, and it can be suitably used for an alkaline battery of a cordless device which requires high characteristics such as high capacity, long life and high reliability.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1種類以上の繊維径が3〜1
0μmの短繊維で、且つ繊維長Lと繊維径Dの比(L/
D、アスペクト比)が1000〜2000である金属イ
オン付加アクリル繊維からなるアルカリ電池セパレータ
用不織布。
1. At least one type of fiber having a diameter of 3 to 1
A short fiber of 0 μm and a ratio of the fiber length L to the fiber diameter D (L /
D, aspect ratio) is a non-woven fabric for an alkaline battery separator made of a metal ion-added acrylic fiber of 1000 to 2000.
【請求項2】 請求項1に記載のアルカリ電池セパレー
タ用不織布の製造方法であって、少なくとも1種類以上
の繊維径が3〜10μmの短繊維で、且つ繊維長Lと繊
維径Dの比(L/D、アスペクト比)が1000〜20
00である金属イオン付加アクリル繊維を水に分散して
スラリーとし、該スラリーを湿式抄造してウェブを形成
し、次いで該ウェブを水流交絡法により交絡結合後、熱
圧加工することを特徴とするアルカリ電池セパレータ用
不織布の製造方法。
2. The method for producing a non-woven fabric for an alkaline battery separator according to claim 1, wherein at least one or more types of short fibers having a fiber diameter of 3 to 10 μm and a ratio of the fiber length L to the fiber diameter D ( L / D, aspect ratio) 1000 to 20
A metal ion-added acrylic fiber of No. 00 is dispersed in water to form a slurry, the slurry is wet-paper-formed to form a web, and then the web is entangled by a hydroentangling method and then hot pressed. A method for manufacturing a nonwoven fabric for an alkaline battery separator.
JP5079828A 1993-04-06 1993-04-06 Nonwoven fabric for alkaline battery separator and manufacture thereof Pending JPH06295715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5079828A JPH06295715A (en) 1993-04-06 1993-04-06 Nonwoven fabric for alkaline battery separator and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5079828A JPH06295715A (en) 1993-04-06 1993-04-06 Nonwoven fabric for alkaline battery separator and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06295715A true JPH06295715A (en) 1994-10-21

Family

ID=13701075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5079828A Pending JPH06295715A (en) 1993-04-06 1993-04-06 Nonwoven fabric for alkaline battery separator and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06295715A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020505A1 (en) * 1994-12-28 1996-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell
WO1996025771A1 (en) * 1995-02-17 1996-08-22 Mitsubishi Paper Mills Limited Nonwoven fabric for an alkaline battery separator and method for producing the same
WO2014045586A1 (en) * 2012-09-24 2014-03-27 パナソニック株式会社 Thin cell and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020505A1 (en) * 1994-12-28 1996-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell
US5888916A (en) * 1994-12-28 1999-03-30 Asahi Kasei Kogyo Kabushiki Kaisha Wet-laid nonwoven fabric for battery separator, its production method and sealed type secondary battery
WO1996025771A1 (en) * 1995-02-17 1996-08-22 Mitsubishi Paper Mills Limited Nonwoven fabric for an alkaline battery separator and method for producing the same
US6080471A (en) * 1995-02-17 2000-06-27 Mitsubishi Paper Mills Limited Non-woven fabric for alkali cell separator and process for producing the same
CN1310353C (en) * 1995-02-17 2007-04-11 三菱制纸株式会社 Non-woven fibric for alkaline cell isolator and producing method thereof
WO2014045586A1 (en) * 2012-09-24 2014-03-27 パナソニック株式会社 Thin cell and method for manufacturing same

Similar Documents

Publication Publication Date Title
US7405172B2 (en) Non-woven fabric for separator of alkali cell and method for production thereof
JPH07122164B2 (en) Battery separator and manufacturing method thereof
JPH06295715A (en) Nonwoven fabric for alkaline battery separator and manufacture thereof
JP3372317B2 (en) Method for producing non-woven fabric for alkaline battery separator
JP2984561B2 (en) Battery separator and manufacturing method thereof
JPH117936A (en) Battery separator and battery
JP2002266217A (en) Carbon fiber nonwoven fabric and method for producing the same
JP3372321B2 (en) Method for producing non-woven fabric for alkaline battery separator
JPH11283602A (en) Separator for battery
JPH10284040A (en) Battery separator
JP4965039B2 (en) Battery separator
JP2001176483A (en) Battery separator and battery
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP3372346B2 (en) Non-woven fabric for alkaline battery separator and method for producing the same
JPH11219693A (en) Separator for battery
JP2764335B2 (en) Alkaline battery separator
JPH07238463A (en) Production of nonwoven fabric for alkali battery separator
JP3403647B2 (en) Battery separator, method of manufacturing the same, and battery
JPH06251760A (en) Nonwoven fabric for alkaline battery separator and manufacture thereof
JPH117937A (en) Manufacture of battery separator, battery separator and battery
TW412881B (en) Battery separator, its manufacture, and battery
JPH10326607A (en) Battery separator and its manufacture
JP2000164193A (en) Separator for battery and battery
JPH11312507A (en) Separator for battery, and battery
JP3080675B2 (en) Alkaline battery separator