JP2764335B2 - Alkaline battery separator - Google Patents

Alkaline battery separator

Info

Publication number
JP2764335B2
JP2764335B2 JP2057238A JP5723890A JP2764335B2 JP 2764335 B2 JP2764335 B2 JP 2764335B2 JP 2057238 A JP2057238 A JP 2057238A JP 5723890 A JP5723890 A JP 5723890A JP 2764335 B2 JP2764335 B2 JP 2764335B2
Authority
JP
Japan
Prior art keywords
fiber
component
components
fibers
vinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2057238A
Other languages
Japanese (ja)
Other versions
JPH03257755A (en
Inventor
公紀 重田
耕治 真野
智美 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Original Assignee
Daiwa Boseki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK filed Critical Daiwa Boseki KK
Priority to JP2057238A priority Critical patent/JP2764335B2/en
Publication of JPH03257755A publication Critical patent/JPH03257755A/en
Application granted granted Critical
Publication of JP2764335B2 publication Critical patent/JP2764335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルカリ電池用のセパレータに関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a separator for an alkaline battery.

(従来の技術) 従来からアルカリ電池用セパレータとして耐久性に優
れたポリアミド繊維やポリオレフィン繊維の不織布が広
く使用されているが、近年においては電解液との親和性
および液保持性の向上を目的としてポリオレフィン繊維
よりも親水性に優れ、かつポリアミド繊維よりも耐久性
に優れたエチレンビニルアルコール系共重合体成分を具
備した繊維が用いられるに至っている。その代表例とし
て特開昭63-39849号公報、同64-81165号公報が挙げら
れ、前者には耐アルカリ性繊維、例えばポリオレフィン
系繊維の表面を、含浸による手段またはシン・サヤ複合
繊維を用いることによってエチレンビニルアルコール共
重合体樹脂で被覆し、この被覆繊維でもって形成したア
ルカリ電池用セパレータが記載され、また後者にはエチ
レンビニルアルコール系共重合体繊維よりなる電池用セ
パレータ不織布が記載されている。
(Prior art) Conventionally, nonwoven fabrics of polyamide fibers and polyolefin fibers having excellent durability have been widely used as separators for alkaline batteries, but in recent years, with the aim of improving affinity with an electrolytic solution and liquid retention. Fibers having an ethylene-vinyl alcohol-based copolymer component that is more hydrophilic than polyolefin fibers and more durable than polyamide fibers have been used. As typical examples thereof, JP-A-63-39849 and JP-A-64-81165 are cited, and the former uses an alkali-resistant fiber, for example, a surface of a polyolefin fiber, by impregnation means or using a syn-saya composite fiber. And a separator for an alkaline battery formed with the coated fibers.The latter describes a non-woven fabric for a battery separator made of an ethylene-vinyl alcohol copolymer fiber. .

(発明が解決しようとする課題) ところがエチレンビニルアルコール系樹脂を含浸手段
により被覆するには大量のエチレンビニルアルコール系
樹脂を必要とするばかりでなく被覆工程が繁雑となる。
また耐アルカリ性繊維を芯成分としエチレンビニルアル
コール共重合体を鞘成分とした複合繊維や後者のエチレ
ンビニルアルコール共重合体の細繊度繊維は、エチレン
ビニルアルコール共重合体成分のみが電解液と接触する
ことになり、エチレンビニルアルコール共重合体中のビ
ニルアルコールは、一次、二次電池内で室温80℃付近ま
での電解液中での激しい電池反応に対する耐熱アルカリ
性に劣ることから早期に劣化現象が現れ、ビニルアルコ
ールの長所である保液性が低下し、特に充放電を繰り返
す二次電池用セパレータとしては長期の保液性が期待で
きず、耐久性の低下が免れない。
(Problems to be Solved by the Invention) However, coating with an ethylene vinyl alcohol-based resin by impregnation means not only requires a large amount of ethylene vinyl alcohol-based resin but also complicates the coating process.
In addition, in the case of composite fibers having an alkali-resistant fiber as a core component and an ethylene-vinyl alcohol copolymer as a sheath component, and the fineness fibers of the latter ethylene-vinyl alcohol copolymer, only the ethylene-vinyl alcohol copolymer component comes into contact with the electrolytic solution. Therefore, the vinyl alcohol in the ethylene vinyl alcohol copolymer has an early deterioration phenomenon because it is inferior to the heat-resistant alkali resistance to the violent battery reaction in the electrolyte up to room temperature around 80 ° C in the primary and secondary batteries. In addition, the liquid retention property, which is an advantage of vinyl alcohol, is reduced. In particular, a long-term liquid retention property cannot be expected as a separator for a secondary battery that repeats charging and discharging, and a decrease in durability is inevitable.

本発明は、ポリオレフィンの耐薬品性とエチレンビニ
ルアルコール共重合体の親水性とを効率よく発揮させ、
保液性並びに耐久性に優れたアルカリ電池用のセパレー
タを提供するものである。
The present invention efficiently exhibits the chemical resistance of polyolefin and the hydrophilicity of ethylene vinyl alcohol copolymer,
An object of the present invention is to provide a separator for an alkaline battery having excellent liquid retention properties and durability.

(課題を解決するための手段) 本発明は不織布タイプのアルカリ電池用セパレータで
あって、MFR10〜100のポリオレフィン重合体(A成分)
と、MFR20〜100のエチレン含有量20〜45モル%、ケン化
度98%以上のエチレンビニルアルコール共重合体(B成
分)とが複合比(容積比)35/65〜65/35で複合紡糸され
た繊維であって、繊維断面においてA、B両成分のうち
の一方の成分が他方の成分の間に介在して少なくとも2
個以上に分割されて各々が繊維断面の構成単位となって
おり、隣接している各構成単位のA、B両成分の一部が
繊維表面に露出している分割型複合繊維が各構成単位に
分割されることによって形成された極細繊維を少なくと
も35%以上含有し、かつ不織布を構成する繊維同士が絡
合している不織布から構成されるものである。
(Means for Solving the Problems) The present invention relates to a non-woven fabric type separator for an alkaline battery, wherein the polyolefin polymer having an MFR of 10 to 100 (component A)
And an ethylene vinyl alcohol copolymer (component B) having an MFR of 20 to 100 and an ethylene content of 20 to 45 mol% and a saponification degree of 98% or more, and a composite spinning at a composite ratio (volume ratio) of 35/65 to 65/35 In which at least one of the A and B components intervenes between the other components in the fiber cross section.
Each of the split type composite fibers is divided into a plurality of pieces, each of which is a constituent unit of a fiber cross section, and a part of both A and B components of each adjacent constituent unit is exposed on the fiber surface. It is composed of a nonwoven fabric containing at least 35% or more of ultrafine fibers formed by being divided, and in which the fibers constituting the nonwoven fabric are entangled.

上記セパレータは、ポリオレフィン重合体とエチレン
ビニルアルコール共重合体とを含み、耐久性と保液性に
優れたものである。また、上記セパレータは、分割型複
合繊維が分割されることによって形成された極細繊維を
含み、かつ不織布中の構成繊維同士が絡合しているか
ら、セパレータにおいて微細な繊維間空隙が多数形成さ
れ、その結果、殊に保液性が優れたものとなる。
The separator contains a polyolefin polymer and an ethylene vinyl alcohol copolymer, and has excellent durability and liquid retention. In addition, the separator contains ultrafine fibers formed by splitting the splittable conjugate fibers, and since the constituent fibers in the nonwoven fabric are entangled, a large number of fine interfiber voids are formed in the separator. As a result, the liquid retention property is particularly excellent.

上記A成分として用いるポリオレフィン重合体として
は、ポリプロピレン、ポリエチレンが挙げられる。また
B成分として用いるエチレンビニルアルコール共重合体
は、エチレン含有量が20〜45モル%のものが好ましく、
エチレン含有量が20モル%未満の場合は紡糸性が悪くな
り、45モル%を越えると親水性が低下し保液性が損なわ
れる。
Examples of the polyolefin polymer used as the component A include polypropylene and polyethylene. The ethylene vinyl alcohol copolymer used as the component B preferably has an ethylene content of 20 to 45 mol%,
If the ethylene content is less than 20 mol%, the spinnability will be poor, and if it exceeds 45 mol%, the hydrophilicity will be reduced and the liquid retention will be impaired.

エチレンビニルアルコール共重合体はエチレンと酢酸
ビニルの共重合体をケン化して得ることができ、そのケ
ン化度は紡糸性の点から98%以上であることが望まし
い。
The ethylene vinyl alcohol copolymer can be obtained by saponifying a copolymer of ethylene and vinyl acetate, and the degree of saponification is desirably 98% or more from the viewpoint of spinnability.

なおMFR(メルトフロレイト)は、JIS-K7210、温度21
0℃にて測定したものである。
MFR (Melt flow rate) is JIS-K7210, temperature 21
It was measured at 0 ° C.

分割型複合繊維はその断面においてA、B成分のうち
一方が少なくとも2個以上に分割され、他の成分と隣接
して配列されてその各構成単位は長さ方向に連続し全構
成単位の一部は必ず繊維表面に現れている。AB両成分の
複合比率は目的に応じて変えることができ、親水性(保
液性)の大きいセパレータを欲するときにはB成分の比
率高め、逆に耐久性をより良くするにはA成分の比率を
大きくするとよいが、紡糸工程における紡糸作業性や電
解液に対する親和性を考慮すると、A成分:B成分は35:6
5〜65:35程度が好ましい。
In the splittable conjugate fiber, one of the components A and B is divided into at least two or more in its cross section, and the components are arranged adjacent to the other components. The part always appears on the fiber surface. The compounding ratio of both AB components can be changed according to the purpose. If you want a separator with high hydrophilicity (liquid retention), increase the ratio of B component, and conversely, improve the durability by increasing the ratio of A component. Although it is good to make it large, considering the spinning workability in the spinning process and the affinity for the electrolytic solution, the component A: component B is 35: 6.
About 5 to 65:35 is preferable.

第1〜5図は分割型複合繊維の代表的な断面形状を示
している。
1 to 5 show typical cross-sectional shapes of splittable conjugate fibers.

上記分割型複合繊維単独で不織布となしても、また他
の熱可塑性繊維を混合して不織布となしてもよい。
The splittable conjugate fiber may be used alone to form a nonwoven fabric, or another thermoplastic fiber may be mixed to form a nonwoven fabric.

不織布はカード法、クロスレイヤー法、ランダムウェ
バー法、スパンボンド法、湿式抄造法、乾熱または湿熱
接着法、ニードルパンチ法など公知の方法によって製造
することができる。
The nonwoven fabric can be manufactured by a known method such as a card method, a cross layer method, a random weber method, a spun bond method, a wet papermaking method, a dry heat or wet heat bonding method, and a needle punch method.

また、上記分割型複合繊維を分割させ、かつ繊維同士
を絡合させる方法としては、不織布に高圧水流を噴射す
る方法、即ち高圧水流法が最も好ましい。かかる方法に
よれば、分割と絡合を同時に行うことができ効率がよ
い。また、湿式叩解法や超音波法によって分割型複合繊
維を分割させた後、高圧水流法やニードルパンチ法を行
い、分割と絡合を別個に行ってもよい。
As a method of dividing the splittable conjugate fibers and intertwining the fibers with each other, a method of spraying a high-pressure water flow onto a nonwoven fabric, that is, a high-pressure water flow method is most preferable. According to such a method, the division and the entanglement can be performed simultaneously, and the efficiency is high. Further, after splitting the splittable conjugate fiber by a wet beating method or an ultrasonic method, the splitting and entanglement may be performed separately by performing a high-pressure water flow method or a needle punch method.

(作用) 分割型複合繊維におけるA成分は電解液のアルカリや
電解酸素にも侵されず、セパレータとしての機能を持続
させる。そしてB成分のうちのビニルアルコール部分は
電解液との親和性を良くしてセパレータに保液性を付与
し、エチレン部分は撥水性を示し耐久性向上に寄与す
る。
(Action) The component A in the splittable conjugate fiber is not affected by the alkali or electrolytic oxygen of the electrolytic solution and maintains the function as a separator. The vinyl alcohol portion of the B component improves affinity with the electrolytic solution to impart liquid retention to the separator, and the ethylene portion exhibits water repellency and contributes to improvement in durability.

(実施例) 参考例1 MFR(測定温度230℃)が40の結晶性ポリプ
ロピレンをA成分とし、エチレン含有量が38モル%、MF
Rが40のエチレンビニルアルコール共重合体(ケン化度9
9.6%)をB成分として複合紡糸機を用い、紡糸温度250
℃で溶融紡糸し、得られた未延伸糸を150℃で4.8倍に延
伸して単繊維繊度が2.3デニールの第5図に示すごとき
分割型複合繊維を得た。図中(1)はA成分、(2)は
B成分であり、両成分の容積比率は50:50である。
(Examples) Reference Example 1 A crystalline polypropylene having an MFR (measuring temperature 230 ° C) of 40 was used as an A component, an ethylene content of 38 mol%, and a MF.
An ethylene vinyl alcohol copolymer having a R of 40 (saponification degree 9
9.6%) as a B component using a spinning machine at a spinning temperature of 250
The obtained undrawn yarn was drawn 4.8 times at 150 ° C. to obtain a splittable conjugate fiber having a single fiber fineness of 2.3 denier as shown in FIG. In the figure, (1) is the component A, (2) is the component B, and the volume ratio of both components is 50:50.

この分割型複合繊維に油剤処理、捲縮付与処理および
熱処理を施して51mmの繊維長に切断した。この切断繊維
単独でクロスレイヤー法により目付75g/m2のウエブを作
成し、まず該ウエブに噴霧器でもって水分付与率100%
の状態に水を付与し、次いで180℃の熱カレンダーロー
ルを通して繊維中のエチレンビニルアルコール共重合体
をゲル化しながら圧着させて厚さ0.20mmの不織布とな
し、しかるのち切断してアルカリ電池用セパレータとな
した。
The splittable conjugate fiber was subjected to an oil treatment, a crimping treatment, and a heat treatment, and cut into a fiber length of 51 mm. A web having a basis weight of 75 g / m 2 was prepared by the cross-layer method using the cut fibers alone, and the water was first applied to the web with a sprayer at a water application rate of 100%.
Water, and then pressed through a hot calender roll at 180 ° C while gelling the ethylene vinyl alcohol copolymer in the fiber to form a non-woven fabric having a thickness of 0.20 mm. And

実施例1 上記参考例1の手法によりえられたウエブを
高圧水流法によって繊維の分割処理(分割後の繊度平均
0.14デニール)および絡合処理を行い、乾燥並びにカレ
ンダーロール処理をして厚さ0.21mmの不織布となし、切
断してセパレータとなした。
Example 1 The web obtained by the method of the above-mentioned Reference Example 1 was subjected to a fiber splitting process (average fineness after splitting) by a high-pressure water flow method.
0.14 denier), entanglement treatment, drying and calender roll treatment to obtain a 0.21 mm-thick nonwoven fabric, which was cut into a separator.

参考例2 参考例1で使用した分割型複合繊維60部に対
し、ポリプロピレンが芯成分で高密度ポリエチレンが鞘
成分の熱接着性複合繊維(芯鞘の容積比率50:50、繊度
1.5デニール、繊維長45mm)を40部の割合で混合し、こ
の混合繊維で目付76g/m2のウエブを作成した。そしてこ
のウエブを熱風加工機でもって高密度ポリエチレンの融
点以上ポリプロピレンおよびエチレンビニルアルコール
共重合体の融点以下の温度で加熱して繊維間を熱接着
し、ポリエチレンが未だ軟化状態にある間にカレンダー
ロール処理を行って厚さ0.21mmの不織布となし、切断し
てセパレータとなした。
REFERENCE EXAMPLE 2 A heat-adhesive conjugate fiber having a core component of polypropylene and a sheath component of high-density polyethylene (volume ratio of core and sheath: 50:50, fineness: 60 parts of the splittable composite fiber used in Reference Example 1)
1.5 denier and a fiber length of 45 mm) were mixed at a ratio of 40 parts, and a web having a basis weight of 76 g / m 2 was prepared from the mixed fibers. The web is heated by a hot air processing machine at a temperature not lower than the melting point of high-density polyethylene and not higher than the melting point of polypropylene and ethylene vinyl alcohol copolymer to thermally bond the fibers, and calender rolls while the polyethylene is still in a softened state. After the treatment, a non-woven fabric having a thickness of 0.21 mm was formed, and cut to form a separator.

比較例1.参考例1のA成分を芯としB成分を鞘とした芯
鞘型複合繊維(両成分の容積比率50:50、単繊維繊度2.3
デニール、繊維長51mm)を単独で使用してクロスレイヤ
ー法により目付75g/m2のウエブを作成し、このウエブを
実施例1と同様の方法で加工してセパレータとなした。
Comparative Example 1. A core-in-sheath type conjugate fiber having a core of component A and a sheath of component B of Reference Example 1 (volume ratio of both components: 50:50, fineness of single fiber 2.3
Using a single layer of denier and a fiber length of 51 mm), a web having a basis weight of 75 g / m 2 was prepared by a cross-layer method, and this web was processed in the same manner as in Example 1 to form a separator.

比較例2.上記比較例1で使用した芯鞘型複合繊維60部に
対し参考例2で使用した熱接着性複合繊維を40部の割合
で混合して目付78g/m2のウエブとなし、その後は参考例
2と同様の方法で加工してセパレータとなした。
Comparative Example 2. The heat-adhesive conjugate fiber used in Reference Example 2 was mixed with 60 parts of the core-sheath conjugate fiber used in Comparative Example 1 at a ratio of 40 parts to give a web having a basis weight of 78 g / m 2 . Thereafter, it was processed in the same manner as in Reference Example 2 to form a separator.

上記実施例1、参考例1.2、及び比較例1.2のそれぞれ
のセパレータの実験比較結果を次表に示す。
The experimental comparison results of the respective separators of Example 1, Reference Example 1.2, and Comparative Example 1.2 are shown in the following table.

なお前表における試験方法は次の通りである。 The test methods in the preceding table are as follows.

電解液吸収速度(親水性) 各試料の長さ方向から2.5×18cmの試験片を3枚採取
し、40±5℃のもとに予備乾燥を行い、公定水分率以下
にしたのち試料を標準温室度状態の試験室に放置し、そ
の後試料を1時間以上の間隔で計量し、その前後の質量
差が後の質量の0.1%以内になった状態(この状態を水
分平衡状態という)とする。次に試験片を20±2℃にお
ける比重1.30(20℃)の苛性カリ(KOH)溶液を入れた
水槽上に所定高さの水平棒を設置し、各試料をこの水平
棒にその下端を揃えてピンで止めて各試料を垂れ下げ、
水平棒を降下して各試験片の下端が5cmだけ液中に漬か
った状態となし、30分間後に毛細管現象によりKOH溶液
が上昇した高さを測定した。
Electrolyte absorption rate (hydrophilicity) Take three test pieces of 2.5 × 18cm from the length direction of each sample, pre-dry at 40 ± 5 ℃, make the water content below the official moisture content, and use the sample as standard Leave the sample in a greenhouse test room, and then weigh the sample at intervals of 1 hour or more. The mass difference before and after the measurement is within 0.1% of the subsequent mass (this state is called a water equilibrium state). . Next, a horizontal bar having a predetermined height is placed on a water tank containing a caustic potassium (KOH) solution having a specific gravity of 1.30 (20 ° C.) at 20 ± 2 ° C., and each sample is aligned with the lower end of the horizontal bar. Stop with a pin and hang each sample.
The horizontal bar was lowered to make the lower end of each test piece immersed in the liquid by 5 cm. After 30 minutes, the height at which the KOH solution rose due to capillary action was measured.

電解液保液率(保液性) 各試料から10cm×10cmの大きさの試験片を3枚採取
し、水分平衡状態となしたときの重量を(Wmg)測定す
る。次に上記KOH溶液中に試験片を広げて浸漬し、1時
間以上放置したのち液中から取り出して試験片の一つの
角をクリップして吊り下げ、10分後に重量(W1mg)を
測定し、次の式により初期の電解液保液率(%)を算出
した。
Electrolyte retention rate (liquid retention) Three test pieces of 10 cm x 10 cm in size are sampled from each sample, and the weight (Wmg) when water equilibrium is established is measured. Next, the test piece is spread and immersed in the above KOH solution, left for at least 1 hour, taken out of the solution, clipped at one corner of the test piece, suspended, and measured the weight (W 1 mg) after 10 minutes. Then, the initial electrolyte retention rate (%) was calculated by the following equation.

電解液保液率(%)=(W−W1)/W×100 耐アルカリ性試験 各試料から10cm×10cmの大きさの試験片を3枚採取し
て水分平衡状態となし、そのときの重量を(Wmg)測定
したのち電解液に相当する30%濃度のKOH溶液に浸漬し
て80±2℃の雰囲気中で7日間保存する。その後取り出
した試料を中和点に達するまで水洗乾燥し、再び水分平
衡状態となした時の重量(W1mg)を測定し、次の式に
より先ずアルカリ処理後の減量率(%)を求めた。
Electrolyte solution holding ratio (%) = (W-W 1) / W × 100 alkali resistance test Each sample from the 10 cm × 10 cm size of the specimen three taken to moisture equilibrium with pear, weight at that time (Wmg), and then immersed in a 30% KOH solution corresponding to the electrolytic solution, and stored in an atmosphere at 80 ± 2 ° C. for 7 days. Thereafter, the removed sample was washed with water and dried until it reached the neutralization point, and the weight (W 1 mg) when the water was equilibrated again was measured, and the weight loss (%) after the alkali treatment was first determined by the following equation. Was.

アルカリ処理後の減量率(%)=(W−W1)/W×100 次いでこのアルカリ処理後の試料を用いて前記電解液
保液率の測定法と同様の方法でもってアルカリ処理後の
電解液保液率(%)を求め、しかるのち次式によって保
液性の低下率(%)を算出した。
Weight loss rate after alkali treatment (%) = (W−W 1 ) / W × 100 Next, using the sample after the alkali treatment, the electrolysis after the alkali treatment was carried out in the same manner as the above-mentioned method for measuring the electrolyte retention rate. The liquid retention rate (%) was determined, and then the reduction rate (%) of the liquid retention was calculated by the following equation.

保液性の低下率(%)=(A−B)/A×100 :Aは初期電解液保液率(%) :Bはアルカリ処理後の電解液保液率(%) 耐酸化性試験 各試料から10cm×10cmの大きさの試験片を3枚採取し
て水分平衡状態となし、そのときの重量を(Wmg)測定
したの5%KMnO4溶液250ccに30%濃度のKOH溶液を50cc
加えた混合溶液中に浸漬して50±2℃の雰囲気中1時間
放置する。その後取り出した試料を中和点に達するまで
水洗乾燥し、再び水分平衡となした状態時の重量(W1m
g)を測定し、次の式により先ず酸化処理後の減量率
(%)を求めた。
Reduction rate of liquid retention (%) = (AB) / A x 100: A is initial electrolyte retention rate (%): B is electrolyte retention rate after alkali treatment (%) Oxidation resistance test Three test pieces of 10 cm × 10 cm in size were collected from each sample to establish a water equilibrium state, and the weight (Wmg) was measured (250 mg of a 5% KMnO 4 solution and 50 cc of a 30% KOH solution).
It is immersed in the added mixed solution and left in an atmosphere at 50 ± 2 ° C. for 1 hour. Thereafter, the sample taken out was washed with water and dried until it reached the neutralization point, and the weight (W 1 m) in a state where water equilibrium was established again
g) was measured, and the weight loss rate (%) after the oxidation treatment was first determined by the following equation.

酸化処理後の減量率(%)=(W−W1)/W×100 次いでこの酸化処理後の試料を用いて前記電解液保液
率の測定法と同様の方法でもって酸化処理後の電解液保
液率(%)を求め、しかるのち次式によって保液性の低
下率(%)を算出した。
Weight loss rate after oxidation treatment (%) = (W−W 1 ) / W × 100 Next, using the sample after the oxidation treatment, the electrolytic solution after the oxidation treatment was measured in the same manner as the method for measuring the electrolyte solution retention ratio. The liquid retention rate (%) was determined, and then the reduction rate (%) of the liquid retention was calculated by the following equation.

保液性の低下率(%)=(A−B)/A×100 :Aは初期電解液保液率(%) :Bは酸化処理後の電解液保液率(%) (発明の効果) このように本発明によるアルカリ電池用セパレータ即
ち、MFR10〜100のポリオレフィン重合体(A成分)と、
MFR20〜100のエチレン含有量20〜45モル%、ケン化度98
%以上のエチレンビニルアルコール共重合体(B成分)
とが複合比(容積比)35/65〜65/35で複合紡糸された繊
維であって、繊維断面においてA、B両成分のうちの一
方の成分が他方の成分の間に介在して少なくとも2個以
上に分割されて各々が繊維断面の構成単位となってお
り、隣接している各構成単位のA、B両成分の一部が繊
維表面に露出している分割型複合繊維が各構成単位に分
割されることによって形成された極細繊維を少なくとも
35%以上含有し、かつ不織布を構成する繊維同士が絡合
している不織布からなる電池セパレータは、A成分とB
成分がともに電解液と接触するので、保液性および耐久
性のバランスが良好となる。また、不織布中には、分割
型複合繊維が分割されることによって形成された極細繊
維を含む構成繊維同士の絡合により微細な繊維間空隙が
多数形成されており、その空隙において電解液が保持さ
れやすくなるため、これを用いたセパレータは殊に保液
性が向上したものとなる。
Reduction rate of liquid retention (%) = (AB) / A × 100: A is initial electrolyte retention rate (%): B is electrolyte retention rate after oxidation treatment (%) (Effect of the invention) Thus, the separator for an alkaline battery according to the present invention, that is, a polyolefin polymer (A component) having an MFR of 10 to 100,
MFR 20-100, ethylene content 20-45 mol%, saponification degree 98
% Or more of ethylene vinyl alcohol copolymer (component B)
Are composite spun fibers at a composite ratio (volume ratio) of 35/65 to 65/35, and at least one of the A and B components is interposed between the other components at least in the fiber cross section. The splittable conjugate fiber is divided into two or more, each of which is a constituent unit of the fiber cross section, and a part of both the A and B components of each adjacent constituent unit is exposed on the fiber surface. At least the ultrafine fibers formed by being divided into units
A battery separator composed of a nonwoven fabric containing 35% or more and in which the fibers constituting the nonwoven fabric are intertwined,
Since both components are in contact with the electrolytic solution, a good balance between liquid retention and durability is achieved. Further, in the nonwoven fabric, a large number of fine inter-fiber voids are formed by entanglement of constituent fibers including ultrafine fibers formed by dividing the splittable conjugate fiber, and the electrolyte is held in the voids. Therefore, the separator using this is particularly improved in liquid retention.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第5図は本発明で適用される分割型複合繊維の
A、B成分の構成単位の配置例を示したそれぞれ繊維断
面拡大図である。 (1)はA成分、(2)はB成分
FIGS. 1 to 5 are enlarged cross-sectional views each showing an example of the arrangement of the constituent units of the A and B components of the splittable conjugate fiber applied in the present invention. (1) is A component, (2) is B component

───────────────────────────────────────────────────── フロントページの続き 審査官 青木 千歌子 (56)参考文献 特開 昭59−201366(JP,A) 特開 昭63−261670(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/16 D04H 1/54────────────────────────────────────────────────── ─── Continuation of the front page Examiner Chikako Aoki (56) References JP-A-59-201366 (JP, A) JP-A-63-261670 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 2/16 D04H 1/54

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】MFR10〜100のポリオレフィン重合体(A成
分)と、MFR20〜100のエチレン含有量20〜45モル%、ケ
ン化度98%以上のエチレンビニルアルコール共重合体
(B成分)とが複合比(容積比)35/65〜65/35で複合紡
糸された繊維であって、繊維断面においてA、B両成分
のうちの一方の成分が他方の成分の間に介在して少なく
とも2個以上に分割されて各々が繊維断面の構成単位と
なっており、隣接している各構成単位のA、B両成分の
一部が繊維表面に露出している分割型複合繊維が各構成
単位に分割されることによって形成された極細繊維を少
なくとも35%以上含有し、かつ不織布を構成する繊維同
士が絡合していることを特徴とする不織布からなるアル
カリ電池用セパレータ。
A polyolefin polymer having an MFR of 10 to 100 (component A) and an ethylene vinyl alcohol copolymer having an MFR of 20 to 100 and an ethylene content of 20 to 45 mol% and a saponification degree of 98% or more (component B). A composite spun fiber having a composite ratio (volume ratio) of 35/65 to 65/35, wherein at least two of the A and B components are interposed between the other components in the fiber cross section. Divided into the above, each is a constituent unit of the fiber cross section, and a splittable conjugate fiber in which a part of both A and B components of each adjacent constituent unit is exposed on the fiber surface is included in each constituent unit. An alkaline battery separator comprising a nonwoven fabric, comprising at least 35% or more of ultrafine fibers formed by splitting, and wherein fibers constituting the nonwoven fabric are entangled with each other.
JP2057238A 1990-03-07 1990-03-07 Alkaline battery separator Expired - Lifetime JP2764335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2057238A JP2764335B2 (en) 1990-03-07 1990-03-07 Alkaline battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057238A JP2764335B2 (en) 1990-03-07 1990-03-07 Alkaline battery separator

Publications (2)

Publication Number Publication Date
JPH03257755A JPH03257755A (en) 1991-11-18
JP2764335B2 true JP2764335B2 (en) 1998-06-11

Family

ID=13049953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057238A Expired - Lifetime JP2764335B2 (en) 1990-03-07 1990-03-07 Alkaline battery separator

Country Status (1)

Country Link
JP (1) JP2764335B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192714A (en) * 1993-12-27 1995-07-28 Kanai Hiroyuki Separator for alkaline storage battery and alkaline storage battery using this separator
JP3499930B2 (en) * 1994-10-07 2004-02-23 三洋電機株式会社 Alkaline storage battery
US6030727A (en) * 1997-04-03 2000-02-29 Japan Vilene Company, Ltd. Alkaline battery separator and process for producing the same
KR100802860B1 (en) 2001-07-19 2008-02-12 마쯔시다덴기산교 가부시키가이샤 Alkaline dry battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201366A (en) * 1983-04-27 1984-11-14 Kanai Hiroyuki Separator for alkaline battery
JPS63261670A (en) * 1987-04-20 1988-10-28 Sanyo Electric Co Ltd Alkaline zinc storage battery

Also Published As

Publication number Publication date
JPH03257755A (en) 1991-11-18

Similar Documents

Publication Publication Date Title
JPH0219223B2 (en)
EP1149424A4 (en) Durable hydrophilic nonwoven mat for rechargeable alkaline batteries
CN109706623A (en) A kind of reusable quick water suction producing technology of non-woven fabrics
JPH07122164B2 (en) Battery separator and manufacturing method thereof
JP5337599B2 (en) Battery separator, battery and split type composite fiber
JP5126463B2 (en) Maleic anhydride-containing fiber
JP2764335B2 (en) Alkaline battery separator
JP2984561B2 (en) Battery separator and manufacturing method thereof
JP2004115980A (en) Non-woven fabric and separator for lithium-ion secondary battery
CN113725556B (en) Nonwoven fabric and battery separator
JPH11283602A (en) Separator for battery
JP2960284B2 (en) Battery separator and manufacturing method thereof
JP3063074B2 (en) Mixed fiber nonwoven
JP2622744B2 (en) Water-retaining nonwoven
JP3372321B2 (en) Method for producing non-woven fabric for alkaline battery separator
JP3372317B2 (en) Method for producing non-woven fabric for alkaline battery separator
JP3775814B2 (en) Battery separator, manufacturing method thereof, and alkaline storage battery
JP3372346B2 (en) Non-woven fabric for alkaline battery separator and method for producing the same
JP3403647B2 (en) Battery separator, method of manufacturing the same, and battery
JP2003109569A (en) Separator for battery
JP3510156B2 (en) Battery separator and battery
JP4061012B2 (en) Battery separator and battery using the same
JP7219418B2 (en) Crimped moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2000282330A (en) Sheath-core type fiber, fiber sheet using the fiber and separator for battery using the fiber
JPH08212995A (en) Nonwoven fabric for alkaline battery separator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

EXPY Cancellation because of completion of term