JPH06294705A - Optical pulse tester - Google Patents

Optical pulse tester

Info

Publication number
JPH06294705A
JPH06294705A JP8093493A JP8093493A JPH06294705A JP H06294705 A JPH06294705 A JP H06294705A JP 8093493 A JP8093493 A JP 8093493A JP 8093493 A JP8093493 A JP 8093493A JP H06294705 A JPH06294705 A JP H06294705A
Authority
JP
Japan
Prior art keywords
signal light
optical
light
pulse
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8093493A
Other languages
Japanese (ja)
Other versions
JP3327416B2 (en
Inventor
Chikashi Izumida
史 泉田
Shinichi Furukawa
眞一 古川
Izumi Mikawa
泉 三川
Yahei Oyamada
弥平 小山田
Fumihiko Yamamoto
文彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP08093493A priority Critical patent/JP3327416B2/en
Publication of JPH06294705A publication Critical patent/JPH06294705A/en
Application granted granted Critical
Publication of JP3327416B2 publication Critical patent/JP3327416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To provide an otical pulse tester having wide dynamic range in which the test signal light incident on an optical amplification relayless line has an intensity substantially equal to that of a communication signal light and the fluctuation of intensity is suppressed. CONSTITUTION:A second signal light (c) emitted from a second light source section 2 and having a wavelength different from that of a test signal light is multiplexed on an optical test signal pulse (a) generated from a first light source section 1 by means of an optical multiplexer 6. This constitution realizes an optical pulse tester having wide dynamic range in which the test signal light has an intensity substatially equal to that of a communication signal light and the fluctuation of intensity is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光信号の伝送媒体であ
る光ファイバ及び光ファイバ線路の光損失等の特性を試
験する光パルス試験器に関し、特に、光増幅器を含む中
継系光線路の試験技術として適用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pulse tester for testing characteristics such as optical loss of an optical fiber which is a transmission medium of an optical signal and an optical fiber line, and more particularly to a repeater optical line including an optical amplifier. It is applied as a test technique.

【0002】[0002]

【従来の技術】経済的な光通信システムを実現するため
に、無中継の長距離光通信システムが検討されている。
これは、通信用の光ファイバ線路の間に光増幅器を配置
することによって、光ファイバを伝搬する間に減衰した
通信光を光増幅し、通信可能距離を長延化するものであ
る。通常、このような光通信システムにおいては、複数
個の光増幅器が通信用の光ファイバ線路の間に配置され
る。光増幅器としては、通信波長帯域で増幅度の大きい
エルビウム添加光増幅器(以下、EDFA(Erbium-dope
d fiber amplifier)と称する)がよく用いられている。
以下、このような光増幅器を複数個含む無中継光ファイ
バ線路を、光増幅無中継線路と言う。
In order to realize an economical optical communication system, a repeaterless long-distance optical communication system has been studied.
In this system, an optical amplifier is arranged between communication optical fiber lines to optically amplify communication light attenuated while propagating through an optical fiber, thereby extending the communicable distance. Usually, in such an optical communication system, a plurality of optical amplifiers are arranged between optical fiber lines for communication. As an optical amplifier, an erbium-doped optical amplifier (hereinafter, EDFA (Erbium-dope
d fiber amplifier) is often used.
Hereinafter, a repeaterless optical fiber line including a plurality of such optical amplifiers is referred to as an optical amplification repeaterless line.

【0003】高信頼で経済的な光増幅無中継線路を構築
するためには、この線路の特性を高信頼な試験器で全線
路を測定、試験する必要がある。
In order to construct a highly reliable and economical optical amplifier repeater line, it is necessary to measure and test the characteristics of this line with a highly reliable tester.

【0004】光パルス試験器(以下、OTDR(Optical
Time Domain Reflectometer) と称する)は、被試験光
ファイバに光パルスを送出し、光ファイバからの反射光
や後方散乱光を受信し、これを解析して光損失等の特性
をCRT等に表示する装置であり、光ファイバの片端か
らの光の入出力によって試験できることから非常に有用
な試験器とされている。そのため、従来からOTDRの
測定可能距離(これをダイナミックレンジと言う)を拡
大する研究開発がなされてきた。
Optical pulse tester (hereinafter referred to as OTDR (Optical
(Time Domain Reflectometer)) sends an optical pulse to the optical fiber under test, receives the reflected light and backscattered light from the optical fiber, analyzes this, and displays the characteristics such as optical loss on a CRT or the like. It is a device and can be tested by inputting / outputting light from one end of an optical fiber, and is regarded as a very useful tester. Therefore, research and development for expanding the measurable distance of OTDR (this is referred to as a dynamic range) has been conventionally performed.

【0005】ダイナミックレンジを拡大するためには、
主に被試験光ファイバへの送出光パルス強度を大きくす
る方法と、後方散乱光等の受信感度を向上する方法が用
いられている。送出光パルス強度を大きくする手法とし
てはEDFAによる光増幅技術等が用いられている。ま
た、受信感度を向上する方法としてはヘテロダインもし
くはホモダイン受信といったコヒーレント検波技術が用
いられている。これらの光増幅技術とコヒーレント検波
技術を組み合わせたOTDR(以下、光増幅コヒーレン
トOTDRと称する)は、35dB以上のダイナミックレン
ジを有する。これは、直接検波方式を用いた通常のOT
DRと比べて、15dB以上ダイナミックレンジが大きい。
In order to expand the dynamic range,
Mainly used are a method of increasing the intensity of a light pulse transmitted to the optical fiber under test and a method of improving the reception sensitivity of backscattered light. An optical amplification technique using an EDFA is used as a method for increasing the intensity of the transmitted light pulse. As a method for improving the reception sensitivity, coherent detection technology such as heterodyne or homodyne reception is used. An OTDR that combines these optical amplification technology and coherent detection technology (hereinafter, referred to as optical amplification coherent OTDR) has a dynamic range of 35 dB or more. This is a normal OT using the direct detection method.
Compared to DR, it has a large dynamic range of 15 dB or more.

【0006】光増幅無中継線路をOTDRを用いて試験
する場合、光増幅器によってOTDRの送出光パルスも
増幅される。従って、OTDRに最低限必要なダイナミ
ックレンジは光増幅器と光増幅器の間の光ファイバ線路
損失に相当する。通常、光増幅器の中継間隔は約100km
であるので、その損失に相当する約21dB以上のダイナミ
ックレンジが必要である。そこで、前記光増幅コヒーレ
ントOTDRの適用が考えられる。
When the optical amplification repeater line is tested by using the OTDR, the optical pulse transmitted by the OTDR is also amplified by the optical amplifier. Therefore, the minimum required dynamic range for OTDR corresponds to the optical fiber line loss between optical amplifiers. Normally, the repeater interval of optical amplifier is about 100km
Therefore, a dynamic range of about 21 dB or more, which is equivalent to the loss, is required. Therefore, application of the optical amplification coherent OTDR can be considered.

【0007】[0007]

【発明が解決しようとする課題】光増幅無中継線路で
は、EDFA内で出力強度の一部を受光器で測定し、帰
還回路を用いてEDFAの励起光源の出力強度を制御
し、増幅された後の通信用の信号光の出力強度を一定に
している。従って、EDFA内に通信用の出力光強度よ
り著しく大きい光が入射された場合、増幅された出力光
の強度の一部を測定している受光器が飽和し、前記帰還
回路によるEDFAの出力強度制御に異常を来たした
り、受光器を破壊するという問題点があった。また、E
DFAにパルス幅W、パルス周期Tの光パルスが入射さ
れた場合、その光パルスの増幅度は連続光に比べて、約
T/W倍大きくなり、EDFAの出力光の一部を測定し
ている受光器が破壊されるという問題点があった。従っ
て、前記光増幅コヒーレントOTDRのような高強度光
パルスを出力する試験器を光増幅無中継線路に適用する
ことは困難である。
In the optical amplification non-repeatered line, a part of the output intensity in the EDFA is measured by the photodetector, and the output intensity of the excitation light source of the EDFA is controlled by using the feedback circuit to be amplified. The output intensity of the signal light for the subsequent communication is kept constant. Therefore, when a light significantly higher than the output light intensity for communication enters the EDFA, the photodetector measuring a part of the intensity of the amplified output light is saturated, and the output intensity of the EDFA by the feedback circuit is saturated. There was a problem in that there was an abnormality in control and the light receiver was destroyed. Also, E
When an optical pulse with a pulse width W and a pulse period T is incident on the DFA, the amplification degree of the optical pulse is about T / W times larger than that of continuous light, and a part of the output light of the EDFA is measured. There was a problem that the existing light receiver was destroyed. Therefore, it is difficult to apply a tester that outputs a high-intensity optical pulse such as the optically amplified coherent OTDR to the optically amplified repeater line.

【0008】以上より、光増幅無中継線路の試験技術と
して、光増幅無中継線路に入射する試験信号光の強度変
動が小さく、その強度は通信用の信号光強度とはほぼ同
程度であり、かつダイナミックレンジの大きい光パルス
試験器が必要である。
From the above, as the test technique for the optical amplification non-repeatered line, the intensity fluctuation of the test signal light incident on the optical amplification non-repeatered line is small, and its intensity is almost the same as the signal light intensity for communication. Moreover, an optical pulse tester with a wide dynamic range is required.

【0009】本発明の目的は、上記の問題点に鑑み、光
増幅無中継線路に入射する試験信号光の強度変動が小さ
く、その強度は通信用の信号光強度とほぼ同程度であ
り、かつダイナミックレンジの大きい光パルス試験器を
提供することにある。
In view of the above problems, an object of the present invention is that the intensity fluctuation of the test signal light incident on the optical amplification repeater line is small, and its intensity is almost the same as the signal light intensity for communication, and It is to provide an optical pulse tester having a wide dynamic range.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の目的を
達成するために請求項1では、試験信号光及びローカル
信号光の信号光発生手段と、前記試験信号光を所定周期
毎にパルス化して試験信号光パルスを生成するととも
に、前記試験信号光パルスを被試験光ファイバに送出す
る光パルス生成手段と、被試験光ファイバから繰り返し
戻ってくる反射光及び後方散乱光と前記ローカル信号光
とを光学的に合波してビート信号光を得る光合波手段
と、このビート信号光を受光して電気信号に変換する光
電気変換手段と、この電気信号を加算処理等をする電気
信号処理手段と、この電気信号処理した結果に基づいて
前記反射光及び後方散乱光の波形を表示する表示手段と
を備えた光パルス試験器において、前記試験信号光とは
異なる波長の信号光を発生する第2の信号光発生手段を
有し、この第2の信号光発生手段で発生した第2の信号
光を前記光パルス生成手段で生成された前記試験信号光
パルスに重畳する光重畳手段を有するようにした。また
請求項2では、前記第2の信号光発生手段は、前記第2
の信号光の出力強度を制御する光出力強度制御手段を具
備するようにした。また請求項3では、前記光パルス生
成手段は音響光学スイッチで構成され、この音響光学ス
イッチは同時に前記光重畳手段を兼ねるようにした。ま
た請求項4では、前記光重畳手段からの信号光を増幅す
る光増幅手段を具備するようにした。
In order to achieve the above object, the present invention provides, in claim 1, a signal light generating means for the test signal light and the local signal light, and the test signal light is pulsed at predetermined intervals. Optical pulse generating means for transmitting the test signal light pulse to the optical fiber under test, the reflected light and the backscattered light repeatedly returning from the optical fiber under test, and the local signal light. Optically combining means for optically combining and the beat signal light, opto-electric converting means for receiving the beat signal light and converting it to an electric signal, and electric signal processing for performing addition processing of the electric signal In the optical pulse tester comprising means and display means for displaying the waveforms of the reflected light and the backscattered light based on the result of the electric signal processing, a signal light having a wavelength different from that of the test signal light is supplied. Optical superimposing means for generating a second signal light generating means, and superimposing the second signal light generated by the second signal light generating means on the test signal light pulse generated by the optical pulse generating means. To have. Further, in claim 2, the second signal light generating means is the second signal light generating means.
The optical output intensity control means for controlling the output intensity of the signal light is used. Further, in claim 3, the optical pulse generating means is composed of an acousto-optic switch, and the acousto-optic switch simultaneously serves as the light superimposing means. Further, in claim 4, the optical amplification means for amplifying the signal light from the optical superposition means is provided.

【0011】[0011]

【作用】本発明の請求項1によれば、光パルス生成手段
の光パルスに、光重畳手段によって試験信号光とは異な
る波長の第2の信号光を重畳するため、試験信号光の強
度変動が小さく、その強度は通信用の信号光強度とほぼ
同程度に調整できる。従って、光増幅無中継線路のED
FAの出力強度制御に異常を来たさずに試験ができる。
According to the first aspect of the present invention, since the second signal light having a wavelength different from that of the test signal light is superimposed on the light pulse of the light pulse generation means by the light superimposing means, the intensity fluctuation of the test signal light is caused. Is small, and its intensity can be adjusted to almost the same level as the signal light intensity for communication. Therefore, the ED of the optical amplification unrepeatered line
The test can be performed without any abnormality in the FA output intensity control.

【0012】また、請求項2によれば、光出力強度制御
手段によって第2の信号光の出力強度を調整できるた
め、試験信号光の強度変動を所定量に設定できる。
Further, according to the second aspect, since the output intensity of the second signal light can be adjusted by the optical output intensity control means, the intensity fluctuation of the test signal light can be set to a predetermined amount.

【0013】また、請求項3によれば、音響光学スイッ
チで光パルス生成手段と光重畳手段を兼ねることができ
るため、装置を小さくできる。
According to the third aspect of the invention, the acousto-optic switch can serve both as the light pulse generating means and the light superimposing means, so that the device can be made smaller.

【0014】また、請求項4によれば、光増幅手段によ
って試験信号光を増幅できるため、増幅度の調整によっ
て、通信用の信号光強度が大きい場合でも、同程度の強
度に調整することができる。
According to the present invention, the test signal light can be amplified by the optical amplifying means. Therefore, even if the signal light intensity for communication is large, the intensity can be adjusted to the same level by adjusting the amplification degree. it can.

【0015】[0015]

【実施例】本発明の第1の実施例を図1に基づいて説明
する。
EXAMPLE A first example of the present invention will be described with reference to FIG.

【0016】1は第1の光源部である。コヒーレント検
波を行なうには数KHz といった狭線幅スペクトルの光を
発生する光源が不可欠であり、これを実現するために、
光源部1は分布帰還型半導体レーザ21(以下、DFB
−LDと記す)と狭線幅化用光ファイバ22と光アイソ
レータ23とで構成されている。DFB−LD21の出
力端に長さ1km程度の狭線幅化用光ファイバ22を融着
接続し、この光ファイバ22からの後方散乱光を利用し
て狭線幅化を行なっており、このときの線幅は10KHz 以
下である。また、DFB−LD21は波長制御器24に
よって所定周期で光源部1の出力光の波長を変化させる
ことができる。以下、この光源部1からの出力光の波長
をλ1(光周波数領域ではf1)、波長可変量をΔλ1
(光周波数領域ではΔf1)と表記する。
Reference numeral 1 is a first light source section. In order to perform coherent detection, a light source that emits light with a narrow linewidth spectrum of several KHz is indispensable. To realize this,
The light source unit 1 is a distributed feedback semiconductor laser 21 (hereinafter referred to as DFB
-LD), an optical fiber 22 for narrowing the line width, and an optical isolator 23. At the output end of the DFB-LD 21, an optical fiber 22 for narrowing the line width of about 1 km is fusion-spliced, and the backscattered light from the optical fiber 22 is used to narrow the line width. The line width of is less than 10KHz. Further, the DFB-LD 21 can change the wavelength of the output light of the light source unit 1 at a predetermined cycle by the wavelength controller 24. Hereinafter, the wavelength of the output light from the light source unit 1 is λ1 (f1 in the optical frequency range), and the wavelength tunable amount is Δλ1.
([Delta] f1 in optical frequency domain).

【0017】2は第2の光源部である。この光源部2か
らの出力光は、第1の光源部1の出力光の波長とは異な
る波長の光cを出力する。この光源部2はDFB−LD
31と駆動回路32と波長制御器33で構成されてい
る。光源部2からの出力強度は駆動回路32によって調
整され、出力光の波長は波長制御器33によって調整さ
れる。以下、この光源部2からの出力光の波長をλ2
(光周波数領域ではf2)と表記する。
Reference numeral 2 is a second light source section. The output light from the light source unit 2 outputs a light c having a wavelength different from the wavelength of the output light from the first light source unit 1. This light source unit 2 is a DFB-LD
It is composed of 31, a drive circuit 32 and a wavelength controller 33. The output intensity from the light source unit 2 is adjusted by the drive circuit 32, and the wavelength of the output light is adjusted by the wavelength controller 33. Hereinafter, the wavelength of the output light from the light source unit 2 will be λ2
It is written as (f2 in the optical frequency domain).

【0018】本発明では、第1の光源部1からの出力光
を2つに分けて、試験信号光とローカル信号光として用
いる。3は第1の光合分波器であり、第1の光源部1の
出力光を試験信号光aとローカル信号光bに分岐する。
4は分岐した試験信号光aを一定の周期でパルス化する
と共に光周波数変調する音響光学スイッチ(以下、AO
スイッチと称する)である。このときのAOスイッチの
光変調周波数は120MHzである。5は1/2 波長板と1/4 波
長板の2個の位相板が直列接続された回転位相板方式の
偏波状態制御器であり、各波長板を回転させることによ
って任意の偏波状態を持つ光を出力できる。
In the present invention, the output light from the first light source section 1 is divided into two and used as test signal light and local signal light. A first optical multiplexer / demultiplexer 3 branches the output light of the first light source unit 1 into a test signal light a and a local signal light b.
Reference numeral 4 denotes an acousto-optical switch (hereinafter, referred to as AO) for pulsating the branched test signal light a at a constant cycle and modulating the optical frequency.
It is called a switch). The optical modulation frequency of the AO switch at this time is 120 MHz. Reference numeral 5 is a rotary phase plate type polarization state controller in which two phase plates, a half wave plate and a quarter wave plate, are connected in series. By rotating each wave plate, an arbitrary polarization state can be obtained. Can output light.

【0019】6は光重畳器であり、前記第2の光源部2
からの出力光cを前記試験信号光パルスaに重畳する。
重畳された試験信号光(a+c)は、第2の光合分岐器
7によって試験光ファイバ8に入射される。また、この
被試験光ファイバ8からの反射光及び後方散乱光dは、
第2の光合分岐器7を介して、第3の光合分岐器9に導
かれる。この光合分岐器9は、前記反射光及び後方散乱
光dと前記ローカル信号光bとを合波する。10は合波
された反射光及び後方散乱光とローカル信号光とのビー
ト信号光eを光/電気変換する受光器である。
Reference numeral 6 denotes an optical superimposing device, which is used for the second light source section 2
The output light c from the above is superposed on the test signal light pulse a.
The superimposed test signal light (a + c) is incident on the test optical fiber 8 by the second optical multiplexer / demultiplexer 7. The reflected light and the backscattered light d from the optical fiber 8 under test are
It is guided to the third optical coupler / splitter 9 via the second optical coupler / splitter 7. The optical multiplexer / demultiplexer 9 multiplexes the reflected light and the backscattered light d with the local signal light b. Reference numeral 10 denotes a photodetector for converting the beat signal light e of the reflected light and the backscattered light, which are combined, and the local signal light, into electric signals.

【0020】11はビート信号をベースバンド信号に変
換すると共に、低周波数域透過電気フィルタ(以下、L
PFと称する)を含む信号変換器である。このときのL
PFの遮断周波数をBとすると、本光パルス試験器の受
信帯域はBとなる。12は所定周期でA/D変換した後
に自乗変換し、SN比改善のために所定周期でこの自乗
変換された信号を加算する自乗加算処理器である。13
は加算処理した信号からオフセット電力値を引いて対数
変換し、反射光および後方散乱光dのそれぞれの強度の
長手方向分布(以下、OTDR波形と称する)を表示す
る信号処理器である。14は試験信号光aを一定周期で
パルス化したり、加算処理をするためのタイミング発生
器である。主制御部15は、波長制御器24、駆動回路
32と波長制御器33、偏波状態制御器5及びタイミン
グ発生器14を制御する。
Reference numeral 11 converts a beat signal into a baseband signal, and a low frequency band transmission electric filter (hereinafter, L).
A signal converter including a PF). L at this time
When the cutoff frequency of the PF is B, the reception band of the optical pulse tester is B. Reference numeral 12 denotes a square addition processor that performs A / D conversion in a predetermined cycle, then performs square conversion, and adds the square-converted signals in a predetermined cycle to improve the SN ratio. Thirteen
Is a signal processor that subtracts the offset power value from the added signal, performs logarithmic conversion, and displays the longitudinal distribution of the intensities of the reflected light and the backscattered light d (hereinafter referred to as the OTDR waveform). Reference numeral 14 is a timing generator for pulsing the test signal light a at a constant cycle and for performing addition processing. The main controller 15 controls the wavelength controller 24, the drive circuit 32, the wavelength controller 33, the polarization state controller 5, and the timing generator 14.

【0021】次に、本発明の動作について説明する。Next, the operation of the present invention will be described.

【0022】図2に上述した第1の光源部1と第2の光
源部2の出力光を第2の光合分岐器6で合波した試験信
号光(a+c)を示す。AOスイッチ4のパルス幅を
W、パルスを出力する所定周期をTとする。周期Tで繰
り返し、パルス幅Wの時間(時間領域1)だけ波長λ1
とλ2の2波長の光が出力され、その他の時間(時間領
域2)は波長λ2の光だけが出力される。この試験信号
光の出力強度は、第2の光源部2の強度を調整すること
によって、時間領域1と時間領域2のときの強度の変動
を抑えた。
FIG. 2 shows a test signal light (a + c) obtained by combining the output lights of the first light source unit 1 and the second light source unit 2 described above by the second optical multiplexer / demultiplexer 6. It is assumed that the pulse width of the AO switch 4 is W, and the predetermined period for outputting the pulse is T. Repeated at the cycle T, and the wavelength λ1
And the light of two wavelengths λ2 are output, and only the light of the wavelength λ2 is output during the other time (time region 2). The output intensity of the test signal light is adjusted by adjusting the intensity of the second light source unit 2 to suppress the variation of the intensity in the time region 1 and the time region 2.

【0023】また、第1の光源部1の出力光aの波長
は、波長制御器24によって所定周期毎に波長を変化さ
せることができ、試験信号光パルスaの偏波状態は、偏
波状態制御器5によって任意の偏波状態に調整できる。
これらを用いて、加算処理中に試験信号光の波長(つま
り光周波数)と偏波状態を変化させることによって、狭
線幅光源を用いてコヒーレント検波する場合に生じるフ
ェージングノイズを除去することができる(詳細は特願
平3-195317及び特願平3-196491参照)。
The wavelength of the output light a of the first light source section 1 can be changed by the wavelength controller 24 at every predetermined cycle, and the polarization state of the test signal light pulse a is the polarization state. The controller 5 can adjust to any polarization state.
By using these, by changing the wavelength (that is, the optical frequency) and the polarization state of the test signal light during the addition process, it is possible to remove fading noise that occurs when coherent detection is performed using a narrow linewidth light source. (For details, see Japanese Patent Application No. 3-195317 and Japanese Patent Application No. 3-196491).

【0024】前記試験信号光(a+c)は、波長領域で
考えると、波長λ1の試験光パルスと波長λ2の連続光
を波長多重したものである。従って、この試験信号光
(a+c)を被試験光ファイバ8に入射した場合、波長
λ1と波長λ2の後方散乱光が戻ってくる。波長λ1の
試験信号光はパルスであるので、波長λ1の後方散乱光
だけを分離して検波すれば、被試験光ファイバ8の損失
及び反射の分布を表すOTDR波形が得られる。しか
し、波長λ2の試験信号光は連続光であるため、その後
方散乱光は被試験光ファイバ8の損失等を表すOTDR
波形とはならない。その後方散乱光強度は約T/W倍大
きいので、波長λ2の後方散乱光を分離せずに受信する
と、波長λ1を受信する感度が劣化し、OTDRのダイ
ナミックレンジが小さくなる。
Considering in the wavelength region, the test signal light (a + c) is the wavelength-division multiplexed test light pulse of wavelength λ1 and continuous light of wavelength λ2. Therefore, when this test signal light (a + c) is incident on the optical fiber 8 under test, the backscattered light of wavelength λ1 and wavelength λ2 returns. Since the test signal light of wavelength λ1 is a pulse, if only the backscattered light of wavelength λ1 is separated and detected, an OTDR waveform representing the distribution of loss and reflection of the optical fiber 8 under test can be obtained. However, since the test signal light of the wavelength λ2 is continuous light, its backscattered light indicates the loss of the optical fiber 8 under test, etc.
It does not have a waveform. Since the intensity of the backscattered light is about T / W times larger, if the backscattered light of the wavelength λ2 is received without being separated, the sensitivity of receiving the wavelength λ1 is deteriorated and the dynamic range of the OTDR is reduced.

【0025】そこで、本発明では第2の光源部2の出力
光の光周波数f2を、 |f1−f2|+Δf1>2B (1) で表される条件式(1) を満たすように調整する。このと
き、波長λ2(光周波数f2)の後方散乱光は、信号変
換器11でベースバンド信号に変換する際、高周波数成
分としてLPFで除去される。つまり、波長λ2の後方
散乱光は受信器の受信帯域から外れ、波長λ1の後方散
乱光のみが受信されることになる。
Therefore, in the present invention, the optical frequency f2 of the output light of the second light source unit 2 is adjusted so as to satisfy the conditional expression (1) represented by | f1-f2 | + Δf1> 2B (1). At this time, the backscattered light of wavelength λ2 (optical frequency f2) is removed by the LPF as a high frequency component when converted into a baseband signal by the signal converter 11. That is, the backscattered light of wavelength λ2 is out of the reception band of the receiver, and only the backscattered light of wavelength λ1 is received.

【0026】本発明の効果を実験的に確認した結果につ
いて説明する。
The results of experimentally confirming the effects of the present invention will be described.

【0027】図1に示した本発明の光パルス試験器を構
成して、被試験光ファイバ8を測定した。ここで用いた
第1の光源部1の出力光の波長λ1は、1.551 μm(f
1=193.426THz) 、波長変化量Δλ1は約2nm(Δf1=0.2
50THz)である。第2の光源部2の出力光の波長λ2は1.
554 μm(f2=193.050THz) である。従って、条件式(1)
を十分に満たしている。AOスイッチ4のパルス幅Wは
1μsパルス周期4msである。被試験光ファイバ8への
試験信号光強度は約-5dBm である。加算回数は2の18
乗回である。フェージングノイズ低減のため、加算処理
中にλ1を1.552 μmから1.550 μmへ変化させ、偏波
状態は2の16乗の加算回数毎に4通り変化させた。10
0km の被試験光ファイバ8を測定した結果、ダイナミッ
クレンジ約24dBが得られた。以上より、試験信号光の強
度の時間領域1と時間領域2の間の変動が小さく、かつ
ダイナミックレンジの大きい光パルス試験器が得られ、
本発明の有効性が確認できた。
The optical pulse tester of the present invention shown in FIG. 1 was constructed to measure the optical fiber 8 under test. The wavelength λ1 of the output light of the first light source unit 1 used here is 1.551 μm (f
1 = 193.426THz), the wavelength variation Δλ1 is about 2 nm (Δf1 = 0.2
50 THz). The wavelength λ2 of the output light of the second light source unit 2 is 1.
It is 554 μm (f2 = 193.050THz). Therefore, conditional expression (1)
Is fully satisfied. The pulse width W of the AO switch 4 is 1 μs and the pulse period is 4 ms. The intensity of the test signal light to the optical fiber under test 8 is about -5 dBm. The number of additions is 2 of 18
It is a ride. In order to reduce fading noise, λ1 was changed from 1.552 μm to 1.550 μm during the addition process, and the polarization state was changed in four ways every 2 16th addition. Ten
As a result of measuring the optical fiber 8 under test at 0 km, a dynamic range of about 24 dB was obtained. From the above, it is possible to obtain an optical pulse tester having a small fluctuation in the intensity of the test signal light between the time domain 1 and the time domain 2 and a large dynamic range.
The effectiveness of the present invention was confirmed.

【0028】第2の実施例の構成を図3に示す。この実
施例においては、以下に述べる点の他は実施例1と同様
の構成、作用効果を有する。第2の光源部2からの出力
光cはAOスイッチ4の0次側の入力ポートから入射
し、第1の光源部1からの出力光aと合波する。このと
きの試験信号の光強度の時間領域1と時間領域2の間の
変動は約0.3dB であり、光無中継線路に入射される試験
信号光の強度変動として十分小さい。
The configuration of the second embodiment is shown in FIG. This embodiment has the same configuration, function and effect as those of the first embodiment except the points described below. The output light c from the second light source unit 2 enters from the 0th-order side input port of the AO switch 4, and is combined with the output light a from the first light source unit 1. At this time, the fluctuation of the light intensity of the test signal between time region 1 and time region 2 is about 0.3 dB, which is sufficiently small as the fluctuation of the intensity of the test signal light incident on the optical unrepeatered line.

【0029】実施例1で示した条件のもとで100km の被
試験光ファイバ8を測定した結果、ダイナミックレンジ
は約24.5dBであった。この実施例では、図1における光
重畳器6をAOスイッチ4が兼ねているため、部品点数
が減り、構成が簡単になる。第3の実施例の構成を図4
に示す。この実施例では、第2の実施例の偏波状態制御
器5の後に、エルビウム添加光ファイバ増幅器(以下、
EDFAと称する)41を挿入した。その他の構成は、
前述の実施例と同様である。このEDFA41の増幅度
を調整して、試験信号光強度を光無中継線路の通信光強
度とほぼ同じ強度の約6dBmとした。このときの試験信号
光の強度の時間領域1と時間領域2の間の変動は約0.3d
B であった。
As a result of measuring the optical fiber 8 under test of 100 km under the conditions shown in Example 1, the dynamic range was about 24.5 dB. In this embodiment, since the AO switch 4 also serves as the optical superimposing device 6 in FIG. 1, the number of parts is reduced and the structure is simplified. The configuration of the third embodiment is shown in FIG.
Shown in. In this embodiment, after the polarization state controller 5 of the second embodiment, an erbium-doped optical fiber amplifier (hereinafter,
41 referred to as EDFA). Other configurations are
This is similar to the above-mentioned embodiment. The amplification degree of the EDFA 41 was adjusted so that the test signal light intensity was about 6 dBm, which was almost the same as the communication light intensity of the optical repeater line. At this time, the fluctuation of the intensity of the test signal light between time domain 1 and time domain 2 is about 0.3d.
It was B.

【0030】図5に、実施例1で示した条件のもとで、
140km の被試験光ファイバ8を測定したOTDR波形を
示す。図5からダイナミックレンジ約30dBが得られたこ
とが分かる。
In FIG. 5, under the conditions shown in the first embodiment,
The OTDR waveform which measured the optical fiber 8 under test of 140 km is shown. It can be seen from FIG. 5 that a dynamic range of about 30 dB was obtained.

【0031】以上より、試験信号光の強度変動が小さ
く、かつダイナミックレンジの大きい光パルス試験器が
得られ、本発明の有効性が確認できた。
From the above, an optical pulse tester with a small variation in the intensity of the test signal light and a large dynamic range was obtained, and the effectiveness of the present invention was confirmed.

【0032】また、本発明の光パルス試験器は、第2の
光源部2の駆動回路32をオフの状態にすると、従来の
光増幅コヒーレントOTDRとして用いることができ、
35dB以上のダイナミックレンジを有する。
The optical pulse tester of the present invention can be used as a conventional optical amplification coherent OTDR when the drive circuit 32 of the second light source section 2 is turned off.
Has a dynamic range of 35 dB or more.

【0033】[0033]

【発明の効果】以上説明した如く、本発明の請求項1,
2又は4によれば、試験信号光の強度変動が小さく、し
かもその強度は通信用の信号光強度と同程度であり、か
つダイナミックレンジの大きい光パルス試験器を提供で
きる。また、請求項3によれば、前述の効果に加え、部
品点数が減り、構成が簡単になる利点がある。
As described above, the claims 1 and 2 of the present invention are as follows.
According to 2 or 4, it is possible to provide an optical pulse tester in which the fluctuation of the intensity of the test signal light is small, the intensity is almost the same as the signal light intensity for communication, and the dynamic range is large. Further, according to claim 3, in addition to the above effects, there is an advantage that the number of parts is reduced and the configuration is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すブロック図FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の試験信号光を示す図FIG. 2 is a diagram showing a test signal light of the present invention.

【図3】本発明の第2の実施例を示すブロック図FIG. 3 is a block diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示すブロック図FIG. 4 is a block diagram showing a third embodiment of the present invention.

【図5】本発明によるOTDR波形を示す図FIG. 5 is a diagram showing an OTDR waveform according to the present invention.

【符号の説明】[Explanation of symbols]

1…第1の光源部、2…第2の光源部、3…第1の光合
分岐器、4…音響光学スイッチ、5…偏波状態制御器、
6…光重畳器、7…第2の光合分岐器、8…被試験光フ
ァイバ、9…第3の合分岐器、10…受光器、11…信
号変換器、12…自乗加算処理器、13…信号処理器、
14…タイミング発生器、15…主制御部、21…分布
帰還型半導体レーザ、22…狭線幅化用光ファイバ、2
3…光アイソレータ、24…波長制御器、31…DFB
−LD、32…駆動回路、33…波長制御器、41…E
DFA。
DESCRIPTION OF SYMBOLS 1 ... 1st light source part, 2 ... 2nd light source part, 3 ... 1st optical multiplexer / demultiplexer, 4 ... Acousto-optic switch, 5 ... Polarization state controller,
6 ... Optical superimposing device, 7 ... 2nd optical combining / branching device, 8 ... Optical fiber under test, 9 ... 3rd combining / branching device, 10 ... Light receiving device, 11 ... Signal converter, 12 ... Square addition processing device, 13 ... signal processor,
14 ... Timing generator, 15 ... Main control unit, 21 ... Distributed feedback semiconductor laser, 22 ... Optical fiber for narrowing line width, 2
3 ... Optical isolator, 24 ... Wavelength controller, 31 ... DFB
-LD, 32 ... Driving circuit, 33 ... Wavelength controller, 41 ... E
DFA.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山田 弥平 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 山本 文彦 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yahei Koyamada 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Fumihiko Yamamoto 1-1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試験信号光及びローカル信号光の信号光
発生手段と、前記試験信号光を所定周期毎にパルス化し
て試験信号光パルスを生成するとともに、前記試験信号
光パルスを被試験光ファイバに送出する光パルス生成手
段と、被試験光ファイバから繰り返し戻ってくる反射光
及び後方散乱光と前記ローカル信号光とを光学的に合波
してビート信号光を得る光合波手段と、このビート信号
光を受光して電気信号に変換する光電気変換手段と、こ
の電気信号を加算処理等をする電気信号処理手段と、こ
の電気信号処理した結果に基づいて前記反射光及び後方
散乱光の波形を表示する表示手段とを備えた光パルス試
験器において、 前記試験信号光とは異なる波長の信号光を発生する第2
の信号光発生手段を有し、この第2の信号光発生手段で
発生した第2の信号光を前記光パルス生成手段で生成さ
れた前記試験信号光パルスに重畳する光重畳手段を有す
ることを特徴とする光パルス試験器。
1. A signal light generating means for the test signal light and the local signal light, and a pulse of the test signal light for each predetermined period to generate a test signal light pulse, and the test signal light pulse is applied to the optical fiber under test. Optical pulse generation means for sending to the optical fiber, an optical multiplexing means for optically multiplexing reflected light and backscattered light repeatedly returning from the optical fiber under test with the local signal light to obtain beat signal light, and the beat Opto-electric conversion means for receiving the signal light and converting it into an electric signal, electric signal processing means for performing addition processing of the electric signal, and waveforms of the reflected light and the backscattered light based on the result of the electric signal processing. An optical pulse tester provided with a display unit for displaying a second signal light having a wavelength different from that of the test signal light.
And a light superimposing means for superimposing the second signal light generated by the second signal light generating means on the test signal light pulse generated by the light pulse generating means. Characteristic optical pulse tester.
【請求項2】 前記第2の信号光発生手段は、前記第2
の信号光の出力強度を制御する光出力強度制御手段を具
備することを特徴とする請求項1記載の光パルス試験
器。
2. The second signal light generating means is the second signal light generating means.
2. The optical pulse tester according to claim 1, further comprising an optical output intensity control means for controlling the output intensity of the signal light.
【請求項3】 前記光パルス生成手段は音響光学スイッ
チで構成され、この音響光学スイッチは同時に前記光重
畳手段を兼ねることを特徴とする請求項1又は2記載の
光パルス試験器。
3. The optical pulse tester according to claim 1, wherein the optical pulse generation means is composed of an acousto-optic switch, and the acousto-optic switch also serves as the optical superposition means at the same time.
【請求項4】 前記光重畳手段からの信号光を増幅する
光増幅手段を具備することを特徴とする請求項1、2又
は3記載の光パルス試験器。
4. The optical pulse tester according to claim 1, further comprising an optical amplification means for amplifying the signal light from the optical superposition means.
JP08093493A 1993-04-07 1993-04-07 Optical pulse tester Expired - Lifetime JP3327416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08093493A JP3327416B2 (en) 1993-04-07 1993-04-07 Optical pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08093493A JP3327416B2 (en) 1993-04-07 1993-04-07 Optical pulse tester

Publications (2)

Publication Number Publication Date
JPH06294705A true JPH06294705A (en) 1994-10-21
JP3327416B2 JP3327416B2 (en) 2002-09-24

Family

ID=13732289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08093493A Expired - Lifetime JP3327416B2 (en) 1993-04-07 1993-04-07 Optical pulse tester

Country Status (1)

Country Link
JP (1) JP3327416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122802A (en) * 2012-12-20 2014-07-03 Nippon Telegr & Teleph Corp <Ntt> Optical pulse test device and optical pulse test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122802A (en) * 2012-12-20 2014-07-03 Nippon Telegr & Teleph Corp <Ntt> Optical pulse test device and optical pulse test method

Also Published As

Publication number Publication date
JP3327416B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP3033677B2 (en) Optical fiber characteristics measurement device
US5521751A (en) Noise measurement for optical amplifier and a system therefor
JP3391341B2 (en) Optical transmission line monitoring system, its monitoring device and its monitoring method
US20020122171A1 (en) Chromatic dispersion distribution measuring apparatus and measuring method thereof
US6414775B1 (en) Method and apparatus for measuring gain shape in an optical repeater using FM modulation
US5764359A (en) Laser linewidth measuring apparatus utilizing stimulated brillouin scattering
JP3306819B2 (en) Optical pulse tester
CN111928938A (en) Long-distance distributed optical fiber vibration detection system
JP2005055441A (en) Method and system for determining optical characteristics of device under to be tested
JP3236661B2 (en) Optical pulse tester
JP3327416B2 (en) Optical pulse tester
JP2001165808A (en) Measuring method of back-scattering light, and its apparatus
CN112104415A (en) System for detecting Rayleigh scattering signal intensity by adopting EDFA (erbium doped fiber amplifier)
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JP2731320B2 (en) Optical pulse tester
JP4898555B2 (en) Optical pulse test equipment
JP5212878B2 (en) Optical fiber characteristic measuring device
JP3088031B2 (en) Optical pulse tester
Lin et al. System design and optimization of optically amplified WDM-TDM hybrid polarization-insensitive fiber-opticmichelson interferometric sensor
JP2515018B2 (en) Backscattered light measurement method and device
JP2002509612A (en) Wavelength measurement system
JPH08184502A (en) Light waveform measuring equipment
US11415481B2 (en) Line monitoring system having heterodyne coherent detection
KR100327006B1 (en) Wavelength converter with increased extinction ratio and conversion bandwidth
JP3248559B2 (en) Optical fiber zero dispersion wavelength distribution measuring method and measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11