JPH06294564A - Ice thickness measuring apparatus for ice heat storage apparatus - Google Patents

Ice thickness measuring apparatus for ice heat storage apparatus

Info

Publication number
JPH06294564A
JPH06294564A JP17652892A JP17652892A JPH06294564A JP H06294564 A JPH06294564 A JP H06294564A JP 17652892 A JP17652892 A JP 17652892A JP 17652892 A JP17652892 A JP 17652892A JP H06294564 A JPH06294564 A JP H06294564A
Authority
JP
Japan
Prior art keywords
ice
transfer tube
heat transfer
heat storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17652892A
Other languages
Japanese (ja)
Other versions
JP2530411B2 (en
Inventor
Senji Niwa
宣治 丹羽
Takashi Kameda
孝志 亀田
Seiichi Nakanishi
誠一 中西
Kiyokazu Oiko
潔一 老固
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4176528A priority Critical patent/JP2530411B2/en
Publication of JPH06294564A publication Critical patent/JPH06294564A/en
Application granted granted Critical
Publication of JP2530411B2 publication Critical patent/JP2530411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To provide an ice thickness measuring apparatus for an ice heat storage apparatus which enables the measuring of the thickness of ice to be formed on the surface of a heat-transfer tube at a high accuracy and continuously. CONSTITUTION:In an ice heat storage apparatus in which a heat-transfer tube 2 is set in a heat storage tank to make ice in the perimeter of the heat-transfer tube with a refrigerant passing through the heat-transfer tube 2 while melting the ice as cold heat source, a plurality of temperature detection elements 11 (11a-11b) are arranged on the surface of the heat-transfer tube 2. The thickness of the ice formed on the surface of the heat-transfer tube 2 is measured from temperature detection signals to be outputted from the temperature detection elements 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄熱槽内に設置した
伝熱管面に生成される氷厚を測定する氷蓄熱装置の氷厚
計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice thickness measuring device of an ice heat storage device for measuring the thickness of ice formed on the surface of a heat transfer tube installed in a heat storage tank.

【0002】[0002]

【従来の技術】電力需要の増大に伴って昼夜における電
力負荷の格差はますます拡大する傾向にある。この電力
負荷の平準化、およびスペースの有効利用対策として氷
蓄熱装置が採用されている。
2. Description of the Related Art As the demand for electric power increases, the difference in electric power load between day and night tends to increase. An ice heat storage device is adopted as a measure for leveling the electric power load and effectively using the space.

【0003】この氷蓄熱装置は、蓄熱槽内に伝熱管を設
置して槽内に製氷用水を貯留してなり、電力料金が夜間
割引とされる時間帯に伝熱管に冷媒を通して伝熱管周り
に製氷して冷熱蓄熱し、昼間に解氷して冷熱を取り出し
て冷房などに利用するものである。
In this ice heat storage device, a heat transfer tube is installed in a heat storage tank to store ice making water in the tank, and a refrigerant is passed through the heat transfer tube to a periphery of the heat transfer tube during a time period when the electricity charge is discounted at night. It is used to make ice, store cold heat, and then thaw the ice during the day to extract the cold and use it for cooling.

【0004】図6は氷蓄熱装置の概略構成図である。FIG. 6 is a schematic configuration diagram of an ice heat storage device.

【0005】図において、1は蓄熱槽、2は蓄熱槽1内
に配装した伝熱管で、この伝熱管2は蓄熱槽1内に貯留
される製氷用水3中に浸漬して蛇行する構成とされ、通
常、一つの蓄熱槽1に対して並列的に複数の伝熱管ブロ
ック2a〜2dを構成し、各伝熱管ブロック2a〜2d
ごとに伝熱管2に対して蓄熱槽1外に設置した冷媒供給
経路4を介して冷媒を供給循環させて伝熱管2周りに製
氷する。そして、解氷には、各伝熱管ブロック2a〜2
d間に冷却水を直列的に流動させ、熱交換器5を介して
冷熱を取り出し、この冷熱を負荷6に供給する。
In the figure, 1 is a heat storage tank, 2 is a heat transfer tube arranged in the heat storage tank 1, and the heat transfer tube 2 is soaked in the ice making water 3 stored in the heat storage tank 1 to meander. In general, a plurality of heat transfer tube blocks 2a to 2d are arranged in parallel with respect to one heat storage tank 1, and each heat transfer tube block 2a to 2d is formed.
Each time, the refrigerant is supplied and circulated to the heat transfer tube 2 through the refrigerant supply path 4 installed outside the heat storage tank 1 to make ice around the heat transfer tube 2. Then, for defrosting, each heat transfer tube block 2a-2
Cooling water is made to flow in series between d, cold heat is taken out via the heat exchanger 5, and this cold heat is supplied to the load 6.

【0006】ところで、上記する蓄熱槽1の各伝熱管ブ
ロック2a〜2dにおいて、当日の負荷状況により解氷
を充分実施しない場合、上流側ブロックと下流側ブロッ
クの伝熱管面の氷は、上流側では薄く、下流側では厚く
残存するようなことが起こる。
By the way, in each of the heat transfer tube blocks 2a to 2d of the heat storage tank 1 described above, when the ice is not sufficiently thawed due to the load condition on the day, the ice on the heat transfer tube surface of the upstream block and the downstream block is the upstream side. Then, it is thin and remains thick on the downstream side.

【0007】このような状況下で製氷を実施すると、上
流側ブロックと下流側ブロックで製氷量、すなわち、冷
熱蓄熱量に不均衡が生じ、必要な定格の冷熱蓄熱ができ
なくなる。時には下流側ブロックでブリッジング、つま
り、近接する伝熱管間において伝熱管周りの氷が橋渡し
的に結合する現象を生じてこれがさまざまな障害の原因
にもなる。
When ice making is performed under such a circumstance, the amount of ice making, that is, the amount of cold heat storage is imbalanced between the upstream block and the downstream block, and the required rated cold heat storage cannot be performed. Sometimes, the downstream block causes bridging, that is, a phenomenon in which the ice around the heat transfer tubes is connected in a bridging manner between adjacent heat transfer tubes, which causes various obstacles.

【0008】これを防止するために制御装置7が設けら
れる。図示例の制御装置7は、各伝熱管ブロック2a〜
2dごとに氷厚計測装置8を設けて伝熱管2面の氷厚を
計測し、この氷厚が定められた限界氷厚(設定氷厚)に
なれば、制御弁9を操作して該当ブロックへの冷媒の供
給を停止するような制御を行うものである。
A control device 7 is provided to prevent this. The control device 7 in the illustrated example includes the heat transfer tube blocks 2a to
An ice thickness measuring device 8 is provided for each 2d to measure the ice thickness on the surface of the heat transfer tube 2. When this ice thickness reaches a predetermined limit ice thickness (set ice thickness), the control valve 9 is operated to operate the corresponding block. The control is performed to stop the supply of the refrigerant to the.

【0009】[0009]

【発明が解決しようとする課題】ところで、エネルギー
の有効利用の向上、冷熱の安定供給、都市景観の向上な
どの目的のために設置される地域冷暖房プラントの氷蓄
熱装置にあっては、蓄熱槽全体の冷熱蓄熱量を把握する
必要がある。
By the way, in an ice heat storage device for a district heating and cooling plant installed for the purpose of improving effective use of energy, stable supply of cold heat, improvement of cityscape, etc. It is necessary to understand the total cold heat storage amount.

【0010】そこで、従来より、蓄熱槽の冷熱蓄熱量、
即ち、蓄熱槽内における氷量の測定には、上記するよう
に、伝熱管面に生成される氷厚から氷量を測定する方
法、蓄熱槽内に入った冷熱量から氷量を推定する方法、
また、蓄熱槽内における製氷用水の水位増加から氷量を
換算する方法、などが提案されている。
Therefore, conventionally, the cold heat storage amount of the heat storage tank,
That is, as described above, in the measurement of the amount of ice in the heat storage tank, a method of measuring the amount of ice from the thickness of ice generated on the heat transfer tube surface, a method of estimating the amount of ice from the amount of cold heat entering the heat storage tank ,
Moreover, a method of converting the amount of ice from the increase in the water level of the ice making water in the heat storage tank has been proposed.

【0011】しかし、上記する従来の蓄熱槽における氷
量の測定方法では、必ずしも満足できるような装置はな
く、実用上の改善が要求されている。
However, the above-mentioned conventional method for measuring the amount of ice in a heat storage tank does not always have a satisfactory apparatus, and practical improvement is required.

【0012】さて、蓄熱槽における氷量を把握するの
に、伝熱管面に生成される氷厚から氷量を測定する方法
は、最もポピュラーなもので、従来より、この種の氷厚
測定装置としては、電極棒や可動式のバーを伝熱管に当
ててその変位を読み取るものが知られている。この従来
の氷厚測定装置には、次のような課題がある。
In order to grasp the amount of ice in the heat storage tank, the method of measuring the amount of ice from the thickness of ice produced on the heat transfer tube surface is the most popular method, and conventionally, this type of ice thickness measuring device has been used. As such, there is known one in which an electrode rod or a movable bar is applied to a heat transfer tube and its displacement is read. This conventional ice thickness measuring device has the following problems.

【0013】(a) 電極棒を用いる方法では電極端子
の長さから氷厚の限界量を検知する方法であるため、連
続的には計測ができず、また、信頼性に欠ける。
(A) Since the method using the electrode rod is a method of detecting the limit amount of ice thickness from the length of the electrode terminal, continuous measurement cannot be performed and reliability is poor.

【0014】(b) 可動式のバーを用いる機械式のも
のは連続的計測が可能で正確さの面でも優れているが、
水中設備のために構造的に複雑で高価であり、故障も起
き易い。
(B) The mechanical type using a movable bar is capable of continuous measurement and is excellent in accuracy,
Due to the underwater equipment, it is structurally complicated and expensive, and failure is likely to occur.

【0015】(先行技術としては、例えば、特開昭63
−195551号公報がある。)この発明は、上述の点
に鑑みなされたものであって、氷蓄熱装置のより高効率
な運転を行うことを目的とし、また、ブリッジリングな
どによる障害を防止するために、伝熱管面に生成される
氷厚を高精度に、かつ、連続的に計測することを可能に
した氷蓄熱装置の氷厚計測装置を提供することを目的と
する。
(As the prior art, for example, Japanese Patent Laid-Open No. 63-63
There is a publication of 195551. ) The present invention has been made in view of the above points, and an object thereof is to operate the ice heat storage device with higher efficiency. Further, in order to prevent a failure due to a bridge ring or the like, a heat transfer pipe surface is provided. An object of the present invention is to provide an ice thickness measuring device for an ice heat storage device, which makes it possible to measure the generated ice thickness continuously with high accuracy.

【0016】[0016]

【課題を解決するための手段】上記の目的を達成するた
めのこの発明の第1の発明の要旨とするところは、蓄熱
槽内に伝熱管を設置し、該伝熱管に冷媒を通して伝熱管
周りに製氷し、これを解氷して冷熱源とする氷蓄熱装置
において、前記伝熱管面に支持部材を立設し、該支持部
材に、電熱管面からの距離を変えて複数個の検温素子を
配設し、各検温素子から出力される検温信号から伝熱管
面に生成される氷厚を測定することを特徴とする氷蓄熱
装置の氷厚計測装置にあり、第2の発明の要旨とすると
ころは、蓄熱槽内に伝熱管を設置し、該伝熱管に冷媒を
通して伝熱管周りに製氷し、これを解氷して冷熱源とす
る氷蓄熱装置において、前記伝熱管面に支持部材を立設
し、該支持部材に、管面からの距離を変えて複数個の電
極を等間隔に配設し、隣接各電極間における電圧降下か
ら伝熱管面に生成される氷厚を測定することを特徴とす
る氷蓄熱装置の氷厚計測装置にあり、第3の発明の要旨
とするところは、蓄熱槽内に伝熱管を設置し、該伝熱管
に冷媒を通して伝熱管周りに製氷し、これを解氷して冷
熱源とする氷蓄熱装置において、前記伝熱管面に一対の
計測電極を対向的に立設して計測電極対を設けるととも
に、該蓄熱槽中で製氷が完了しても凍結しない領域で水
没させて一対の補償電極を対向的に立設して補償電極対
を設け、計測電極対および補償電極対の全電極を接続し
て計測電極対における電圧降下から伝熱管面に生成され
る氷厚を測定することを特徴とする氷蓄熱装置の氷厚計
測装置にある。
To achieve the above object, the gist of the first invention of the present invention is that a heat transfer tube is installed in a heat storage tank, and a refrigerant is passed through the heat transfer tube to surround the heat transfer tube. In an ice heat storage device that makes ice and then uses it as a cold heat source, a support member is erected on the heat transfer tube surface, and a plurality of temperature detecting elements are provided on the support member while changing the distance from the electric heat tube surface. And an ice thickness measuring device for an ice heat storage device, wherein the ice thickness produced on the heat transfer tube surface is measured from a temperature detection signal output from each temperature detecting element. Where the heat transfer tube is installed in the heat storage tank, a refrigerant is passed through the heat transfer tube to make ice around the heat transfer tube, and the ice heat storage device is used as a cold heat source by defrosting the heat transfer tube, and a support member is provided on the heat transfer tube surface. Stand upright and arrange a plurality of electrodes on the support member at equal intervals by changing the distance from the tube surface. And an ice thickness measuring device for an ice heat storage device, characterized by measuring an ice thickness generated on a heat transfer tube surface from a voltage drop between adjacent electrodes. The gist of the third invention is a heat storage tank. In a heat storage device in which a heat transfer tube is installed, a refrigerant is passed through the heat transfer tube to make ice around the heat transfer tube, and the ice is thawed to serve as a cold heat source, a pair of measurement electrodes are erected opposite to each other on the heat transfer tube surface. A pair of compensating electrodes are installed by arranging a pair of compensating electrodes facing each other by submerging them in a region that does not freeze even if ice making is completed in the heat storage tank. An ice thickness measuring device for an ice heat storage device, characterized in that all the electrodes of a compensating electrode pair are connected to measure the ice thickness generated on the heat transfer tube surface from the voltage drop at the measuring electrode pair.

【0017】[0017]

【作用】伝熱管面に設置されて、伝熱管面に生成される
氷と製氷用水の境界を正確に検出し、伝熱管周りの製氷
厚が高精度で連続して測定できる。
The function is installed on the surface of the heat transfer tube to accurately detect the boundary between the ice generated on the surface of the heat transfer tube and the water for ice making, and the thickness of ice making around the heat transfer tube can be continuously measured with high accuracy.

【0018】[0018]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】この発明は上述の図6に示す氷蓄熱装置に
適用される。
The present invention is applied to the ice heat storage device shown in FIG.

【0020】以下の説明において、図6と対等もしくは
同一部分については同一符号を付けて説明する。
In the following description, the same or similar parts as those in FIG. 6 are designated by the same reference numerals.

【0021】第1の発明 図1はこの発明の第1の発明の実施例を示す要部の側面
図である。
First Invention FIG. 1 is a side view of an essential part showing an embodiment of the first invention of the present invention.

【0022】第1の発明では、伝熱管2面に支持部材1
0を立設し、該支持部材10に、伝熱管2面からの距離
を変えて複数個の検温素子11a〜11fを配設してな
る。
In the first invention, the support member 1 is provided on the surface of the heat transfer tube 2.
0 is erected, and a plurality of temperature detecting elements 11a to 11f are arranged on the supporting member 10 at different distances from the surface of the heat transfer tube 2.

【0023】この場合、最も伝熱管2面に近い検温素子
11aの位置は、伝熱管2面に接触または非接触を問わ
ない。
In this case, the position of the temperature detecting element 11a closest to the surface of the heat transfer tube 2 may be contact or non-contact with the surface of the heat transfer tube 2.

【0024】上記構成において、検温素子11a含む複
数個の検温素子が伝熱管2面に生成される氷中に埋まっ
てそれぞれが氷中検温信号を出力する。また、残りの検
温素子は製氷用水中にあってそれぞれに製氷用水中検温
信号を出力する。これらの各検温素子11a〜11fか
ら出力される検温信号は、増幅器12およびA/D変換
器13を経由してコンピュータ14に入力されて所定の
演算式に基づいて処理され、生成氷厚が算出される。
In the above structure, a plurality of temperature measuring elements including the temperature measuring element 11a are buried in ice generated on the surface of the heat transfer tube 2 and each outputs an ice temperature measuring signal. The remaining temperature measuring elements are in the ice making water and output the ice making water temperature detecting signal to each of them. The temperature detection signals output from each of the temperature detection elements 11a to 11f are input to the computer 14 via the amplifier 12 and the A / D converter 13 and processed based on a predetermined arithmetic expression to calculate the generated ice thickness. To be done.

【0025】図2は生成氷厚を算出するための説明図で
ある。
FIG. 2 is an explanatory diagram for calculating the produced ice thickness.

【0026】図において、氷中の二点、すなわち、伝熱
管2中心から半径r1 ,r2 (伝熱管外壁を含む)点の
温度をT1 ,T2 、生成氷厚をrice 、生成氷と製氷用
水の境界温度をTice とすると、
In the figure, the temperatures at two points in the ice, that is, points at radii r 1 and r 2 (including the outer wall of the heat transfer tube) from the center of the heat transfer tube 2 are T 1 and T 2 , and the produced ice thickness is r ice . If the boundary temperature of ice and ice making water is T ice ,

【0027】[0027]

【数1】 [Equation 1]

【0028】上記(1−2)式において、Tice =0℃
であるから、r1 ,r2 点における温度T1 ,T2 を計
測すると生成氷厚rice が求められる。
In the above formula (1-2), T ice = 0 ° C.
Since it is, r 1, the temperature at r 2 points T 1, and measuring the T 2 generation ice thickness r ice is obtained.

【0029】第2の発明 図3はこの発明の第2の発明の実施例を示す要部の概略
図である。
Second Invention FIG. 3 is a schematic view of the essential portions showing an embodiment of the second invention of the present invention.

【0030】第2の発明では、伝熱管2面に支持部材1
0を立設し、該支持部材10に、伝熱管2面からの距離
を変えて複数個の計測電極15a〜15gを規則的(等
間隔)に配設してなる。
In the second invention, the support member 1 is provided on the surface of the heat transfer tube 2.
0 is erected, and a plurality of measurement electrodes 15a to 15g are regularly (equally spaced) arranged on the support member 10 at different distances from the surface of the heat transfer tube 2.

【0031】この場合、最も伝熱管2面に近い計測電極
15aの位置は、伝熱管2面から離して近接させ、最も
離れた計測電極15gの位置は、設定氷厚より高い位置
にあって常に製氷用水中にあるようにする。
In this case, the position of the measurement electrode 15a closest to the surface of the heat transfer tube 2 is located close to the surface of the heat transfer tube 2 and the position of the measurement electrode 15g farthest away is always higher than the set ice thickness. Be in ice water.

【0032】上記構成において、氷の電気伝導度は水の
それに比して著しく小さいため、隣接する計測電極間に
電圧を印加すると、氷中に埋まる計測電極間の電圧降下
は製氷用水中にある計測電極間のそれよりも著しく大き
くなる。
In the above structure, since the electric conductivity of ice is significantly smaller than that of water, when a voltage is applied between the adjacent measuring electrodes, the voltage drop between the measuring electrodes buried in the ice is in the ice making water. It is significantly larger than that between the measuring electrodes.

【0033】従って、隣接する計測電極間に順次に電圧
を印加して隣接する計測電極間における電圧降下をそれ
ぞれに計測してコンピュータに入力して基準電圧と比較
演算すると、氷中に埋まる計測電極数から生成氷厚が算
出される。
Therefore, when a voltage is sequentially applied between the adjacent measuring electrodes to measure the voltage drop between the adjacent measuring electrodes and input to the computer for comparison calculation with the reference voltage, the measuring electrodes buried in the ice are measured. The produced ice thickness is calculated from the number.

【0034】すなわち、高周波電源16から隣接する各
計測電極間に順次に電圧を印加して隣接する計測電極間
におけるそれぞれの電圧降下(電圧出力)を、分配器1
7を経由して演算増幅器18に入力し、この増幅器18
からの出力を、隣接各計測電極のうち、氷中に埋まった
計測電極を含む回路の出力電圧を基準電圧より低くした
比較器19に入力すると、この比較器19では、隣接各
電極のうち、製氷用水中にある電極を含む回路からのみ
パルスが検出されるので、これを計数器20に入力して
生成氷厚を表示器21に表示させる。
That is, a voltage is sequentially applied between the adjacent measuring electrodes from the high frequency power source 16, and the respective voltage drops (voltage outputs) between the adjacent measuring electrodes are distributed.
Input to the operational amplifier 18 via 7, and the amplifier 18
When the output from is input to the comparator 19 in which the output voltage of the circuit including the measurement electrode buried in ice among the adjacent measurement electrodes is lower than the reference voltage, the comparator 19 outputs Since the pulse is detected only from the circuit including the electrode in the ice making water, the pulse is input to the counter 20 and the generated ice thickness is displayed on the display 21.

【0035】なお、計測電極に印加する電圧としては交
流を用いるが、周波数が低いと電極上で電極反応が進行
し、電極上に電気抵抗が生じ、また、周波数が高いと静
電容量による電気抵抗が発生し、いずれも回路に外乱が
生じるため、計測電極上に生ずる電極反応に基づく分極
作用と静電容量の発生に伴う外乱を除去するには、周波
数は1〜10KHz 程度の交流を用いるのが好ましい。
An alternating current is used as the voltage applied to the measuring electrode, but if the frequency is low, the electrode reaction proceeds on the electrode to generate an electric resistance on the electrode, and if the frequency is high, the electricity due to the capacitance is generated. Since resistance is generated and disturbance occurs in the circuit in both cases, in order to eliminate the disturbance caused by the polarization effect and the generation of electrostatic capacitance caused by the electrode reaction on the measurement electrode, an alternating current with a frequency of 1 to 10 KHz is used. Is preferred.

【0036】また、上記実施例では隣接する計測電極間
における電圧降下を求めたが、伝熱管2面に支持部材1
0に対向してこの支持部材10と略同一高さの共通電極
15oを立設し、この共通電極15oと各計測電極15
a〜15gとの間で順次に電圧を印加して共通電極15
oと各計測電極15a〜15g間における電圧降下を求
めるようにしてもよい。
Further, in the above embodiment, the voltage drop between the adjacent measurement electrodes was obtained, but the support member 1 is provided on the surface of the heat transfer tube 2.
A common electrode 15o having substantially the same height as the supporting member 10 is erected so as to face 0, and the common electrode 15o and each measurement electrode 15 are provided.
a to 15 g, a voltage is sequentially applied to the common electrode 15
The voltage drop between o and each of the measurement electrodes 15a to 15g may be obtained.

【0037】第3の発明 図4はこの発明の第3の発明の実施例を示す要部の概略
図である。
Third Invention FIG. 4 is a schematic view of the essential portions showing an embodiment of the third invention of the present invention.

【0038】第3の発明では、伝熱管2面に一対の計測
電極22a,22bを対向的に立設して計測電極対22
を設けるとともに、伝熱管2から離れて該蓄熱槽中で製
氷が完了しても凍結しない領域で水没させて適宜の固定
部材25面に一対の補償電極23a,23bを対向的に
立設して補償電極対23を設け、計測電極対22および
補償電極対23の全電極22a,22b,23a,23
bを接続して電極直列回路24(図5参照)を形成して
なる。
In the third invention, the pair of measuring electrodes 22a and 22b are erected on the surface of the heat transfer tube 2 so as to face each other, and the measuring electrode pair 22 is provided.
And a pair of compensating electrodes 23a and 23b are erected opposite to each other on the surface of an appropriate fixing member 25 by immersing in water in a region that does not freeze even if ice making is completed in the heat storage tank away from the heat transfer tube 2. Compensation electrode pair 23 is provided, and all electrodes 22a, 22b, 23a, 23 of measurement electrode pair 22 and compensation electrode pair 23 are provided.
b is connected to form an electrode series circuit 24 (see FIG. 5).

【0039】上記構成において、計測電極対22は、伝
熱管2面に生成される氷厚に比例して氷中に埋まる。従
って、氷の電気伝導度は水のそれに比して著しく小さい
ため、電極直列回路24に電圧を印加すると、氷厚に比
例して計測電極22a,22b間の電圧降下は大きくな
る。すなわち、計測電極22a,22bの電極の長さ
(高さ)をLx 、氷中に埋まっている部分の長さをxと
すれば、計測電極22a,22b間の電圧降下は(Lx
−x)に反比例し、この電圧降下を測定することにより
氷厚が測定できる。
In the above structure, the measurement electrode pair 22 is embedded in ice in proportion to the thickness of ice produced on the surface of the heat transfer tube 2. Therefore, since the electric conductivity of ice is significantly smaller than that of water, when a voltage is applied to the electrode series circuit 24, the voltage drop between the measurement electrodes 22a and 22b increases in proportion to the ice thickness. That is, if the electrode length (height) of the measurement electrodes 22a and 22b is L x and the length of the portion buried in ice is x , the voltage drop between the measurement electrodes 22a and 22b is (L x
Inversely proportional to -x), the ice thickness can be measured by measuring this voltage drop.

【0040】一方、水の電気伝導度は水中の電解質濃
度、温度などの変化により影響を受けるため、製氷が完
了しても蓄熱槽中で製氷が完了しても凍結しない領域で
水没して配設した補償電極対23を使用することにより
これらの影響を補償する。
On the other hand, since the electrical conductivity of water is affected by changes in the electrolyte concentration and temperature in water, it is submerged in a region that does not freeze even if ice making is completed or in the heat storage tank. These influences are compensated by using the compensation electrode pair 23 provided.

【0041】図5 (a) は、生成氷厚を算出する回路例
を説明する説明図である。
FIG. 5A is an explanatory view for explaining a circuit example for calculating the generated ice thickness.

【0042】図において、計測電極22a,22b間の
電気抵抗をRx 、補償電極23a,23b間の電気抵抗
をRw 、計測電極22a,22b間の電位差をVx 、補
償電極23a,23b間の電位差をVw 、電極直列回路
24に印加される電圧をV0、計測電極22a,22b
の長さ(高さ)をLx 、計測電極22a,22bの氷中
長さ(氷厚に相当する)をx、定数をkx 、kw とする
と、
In the figure, the electric resistance between the measuring electrodes 22a and 22b is R x , the electric resistance between the compensating electrodes 23a and 23b is R w , the potential difference between the measuring electrodes 22a and 22b is V x , and the compensating electrodes 23a and 23b are between. , V w , the voltage applied to the electrode series circuit 24 is V 0 , and the measurement electrodes 22a and 22b are
Is L x , the length of the measurement electrodes 22a and 22b in ice (corresponding to ice thickness) is x, and the constants are k x and k w .

【0043】[0043]

【数2】 [Equation 2]

【0044】(3−1)式および(3−2)式を(3−
3)式に代入して、
Expressions (3-1) and (3-2) are replaced with (3-
Substituting into 3) formula,

【0045】[0045]

【数3】 [Equation 3]

【0046】となり、Vx +Vw =V0 (一定)であ
り、定数kx 、kw の電解質濃度、温度などによる係数
は互いに打ち消され、これらの因子によらない定数Kが
式に残るだけであるから、Vx またはVw を計測すれ
ば、一義的に氷厚xが求められる。
Since V x + V w = V 0 (constant), the coefficients of the constants k x and k w due to the electrolyte concentration, temperature, etc. cancel each other out, and the constant K not depending on these factors remains in the equation. Therefore, if V x or V w is measured, the ice thickness x can be uniquely obtained.

【0047】図5 (b) は生成氷厚を算出する他の回路
例を説明する説明図である。
FIG. 5B is an explanatory diagram for explaining another circuit example for calculating the generated ice thickness.

【0048】図において、上述の図5 (a) における計
測電極対22に直列に固定抵抗26を接続し、また、補
償電極対23に直列に固定抵抗を接続する。固定抵抗2
6の抵抗値をRf1,電位差をVf1、固定抵抗27の抵抗
値をRf2,電位差をVf2とし、固定抵抗26,27を介
して一定の電圧V0 を計測電極対22および補償電極対
23に印加すると、
In the figure, a fixed resistor 26 is connected in series to the measurement electrode pair 22 in FIG. 5 (a), and a fixed resistor is connected in series to the compensation electrode pair 23. Fixed resistance 2
The resistance value of 6 is R f1 , the potential difference is V f1 , the resistance value of the fixed resistor 27 is R f2 , the potential difference is V f2, and a constant voltage V 0 is measured via the fixed resistors 26 and 27. When applied to pair 23,

【0049】[0049]

【数4】 [Equation 4]

【0050】(3−5)式および(3−6)式より、From equations (3-5) and (3-6),

【0051】[0051]

【数5】 [Equation 5]

【0052】となり、Vx +Vf1=V0 (一定)、ま
た、Vw +Vf2=V0 (一定)であり、定数kx 、kw
の電解質濃度、温度などによる係数は互いに打ち消さ
れ、これらの因子によらない定数Kが式に残るだけであ
るから、Vx およびVw 、または、Vf1およびVf2を計
測すれば、一義的に氷厚xが求められる。
Then, V x + V f1 = V 0 (constant) and V w + V f2 = V 0 (constant), and constants k x and k w
The coefficients due to the electrolyte concentration, temperature, etc. are canceled out, and the constant K not depending on these factors remains in the equation. Therefore, if V x and V w or V f1 and V f2 are measured, it is unique. The ice thickness x is calculated at.

【0053】[0053]

【発明の効果】以上、説明したように、この発明によれ
ば、伝熱管面に生成された氷厚を高精度に、かつ、連続
的に計測し、該氷厚に基づいて蓄熱槽内における氷量が
求められるので、冷凍機設備の発停、および伝熱管への
冷媒供給の発停などの制御が適切に行われる。また、製
氷用水中の電解質濃度、温度などの変化による影響を受
けることもなく、連続的に正確に氷量を計測することが
可能となるとともに、費用も少なく故障もないなどの効
果を奏する。
As described above, according to the present invention, the ice thickness generated on the heat transfer tube surface is continuously measured with high accuracy and in the heat storage tank based on the ice thickness. Since the amount of ice is required, the control such as the start / stop of the refrigerator equipment and the start / stop of the refrigerant supply to the heat transfer tube is appropriately performed. In addition, it is possible to continuously and accurately measure the amount of ice without being affected by changes in the electrolyte concentration and temperature in the ice making water, and at the same time, the cost is low and there is no failure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の第1の発明の実施例を示す要部の
側面図である。
FIG. 1 is a side view of an essential part showing an embodiment of a first invention of the present invention.

【図2】 生成氷厚を算出するための説明図である。FIG. 2 is an explanatory diagram for calculating a generated ice thickness.

【図3】 この発明の第2の発明の実施例を示す要部の
側面図である。
FIG. 3 is a side view of an essential part showing an embodiment of the second invention of the present invention.

【図4】 この発明の第3の発明の実施例を示す要部の
側面図である。
FIG. 4 is a side view of an essential part showing an embodiment of the third invention of the present invention.

【図5】 (a) , (b) は生成氷厚を算出する回路例
を説明する説明図である。
5A and 5B are explanatory diagrams illustrating an example of a circuit that calculates a generated ice thickness.

【図6】 氷蓄熱装置の概略構成図である。FIG. 6 is a schematic configuration diagram of an ice heat storage device.

【符号の説明】[Explanation of symbols]

1…蓄熱槽 2…伝熱管 10…支持部材 11…検温素子 15…計測電極 22…計測電極対 23…補償電極対 DESCRIPTION OF SYMBOLS 1 ... Heat storage tank 2 ... Heat transfer tube 10 ... Support member 11 ... Temperature measuring element 15 ... Measurement electrode 22 ... Measurement electrode pair 23 ... Compensation electrode pair

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月28日[Submission date] May 28, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 氷蓄熱装置の氷厚計測装置[Title of Invention] Ice thickness measuring device for ice heat storage device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄熱槽内に設置した
伝熱管面に生成される氷厚を測定する氷蓄熱装置の氷厚
計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice thickness measuring device of an ice heat storage device for measuring the thickness of ice formed on the surface of a heat transfer tube installed in a heat storage tank.

【0002】[0002]

【従来の技術】電力需要の増大に伴って昼夜における電
力負荷の格差はますます拡大する傾向にある。この電力
負荷の平準化、およびスペースの有効利用対策として氷
蓄熱装置が採用されている。
2. Description of the Related Art As the demand for electric power increases, the difference in electric power load between day and night tends to increase. An ice heat storage device is adopted as a measure for leveling the electric power load and effectively using the space.

【0003】この氷蓄熱装置は、蓄熱槽内に伝熱管を設
置して槽内に製氷用水を貯留してなり、電力料金が夜間
割引とされる時間帯に伝熱管に冷媒を通して伝熱管周り
に製氷して冷熱蓄熱し、昼間に解氷して冷熱を取り出し
て冷房などに利用するものである。
In this ice heat storage device, a heat transfer tube is installed in a heat storage tank to store ice making water in the tank, and a refrigerant is passed through the heat transfer tube to a periphery of the heat transfer tube during a time period when the electricity charge is discounted at night. It is used to make ice, store cold heat, and then thaw the ice during the day to extract the cold and use it for cooling.

【0004】図6は氷蓄熱装置の概略構成図である。FIG. 6 is a schematic configuration diagram of an ice heat storage device.

【0005】図において、1は蓄熱槽、2は蓄熱槽1内
に配装した伝熱管で、この伝熱管2は蓄熱槽1内に貯留
される製氷用水3中に浸漬して蛇行する構成とされ、通
常、一つの蓄熱槽1に対して並列的に複数の伝熱管ブロ
ック2a〜2dを構成し、各伝熱管ブロック2a〜2d
ごとに伝熱管2に対して蓄熱槽1外に設置した冷媒供給
経路4を介して冷媒を供給循環させて伝熱管2周りに製
氷する。そして、解氷には、各伝熱管ブロック2a〜2
d間に冷却水を直列的に流動させ、熱交換器5を介して
冷熱を取り出し、この冷熱を負荷6に供給する。
In the figure, 1 is a heat storage tank, 2 is a heat transfer tube arranged in the heat storage tank 1, and the heat transfer tube 2 is soaked in the ice making water 3 stored in the heat storage tank 1 to meander. In general, a plurality of heat transfer tube blocks 2a to 2d are arranged in parallel with respect to one heat storage tank 1, and each heat transfer tube block 2a to 2d is formed.
Each time, the refrigerant is supplied and circulated to the heat transfer tube 2 through the refrigerant supply path 4 installed outside the heat storage tank 1 to make ice around the heat transfer tube 2. Then, for defrosting, each heat transfer tube block 2a-2
Cooling water is made to flow in series between d, cold heat is taken out via the heat exchanger 5, and this cold heat is supplied to the load 6.

【0006】ところで、上記する蓄熱槽1の各伝熱管ブ
ロック2a〜2dにおいて、当日の負荷状況により解氷
を充分実施しない場合、上流側ブロックと下流側ブロッ
クの伝熱管面の氷は、上流側では薄く、下流側では厚く
残存するようなことが起こる。
By the way, in each of the heat transfer tube blocks 2a to 2d of the heat storage tank 1 described above, when the ice is not sufficiently thawed due to the load condition on the day, the ice on the heat transfer tube surface of the upstream block and the downstream block is the upstream side. Then, it is thin and remains thick on the downstream side.

【0007】このような状況下で製氷を実施すると、上
流側ブロックと下流側ブロックで製氷量、すなわち、冷
熱蓄熱量に不均衡が生じ、必要な定格の冷熱蓄熱ができ
なくなる。時には下流側ブロックでブリッジング、つま
り、近接する伝熱管間において伝熱管周りの氷が橋渡し
的に結合する現象を生じてこれがさまざまな障害の原因
にもなる。
When ice making is performed under such a circumstance, the amount of ice making, that is, the amount of cold heat storage is imbalanced between the upstream block and the downstream block, and the required rated cold heat storage cannot be performed. Sometimes, the downstream block causes bridging, that is, a phenomenon in which the ice around the heat transfer tubes is connected in a bridging manner between adjacent heat transfer tubes, which causes various obstacles.

【0008】これを防止するために制御装置7が設けら
れる。図示例の制御装置7は、各伝熱管ブロック2a〜
2dごとに氷厚計測装置8を設けて伝熱管2面の氷厚を
計測し、この氷厚が定められた限界氷厚(設定氷厚)に
なれば、制御弁9を操作して該当ブロックへの冷媒の供
給を停止するような制御を行うものである。
A control device 7 is provided to prevent this. The control device 7 in the illustrated example includes the heat transfer tube blocks 2a to
An ice thickness measuring device 8 is provided for each 2d to measure the ice thickness on the surface of the heat transfer tube 2. When this ice thickness reaches a predetermined limit ice thickness (set ice thickness), the control valve 9 is operated to operate the corresponding block. The control is performed to stop the supply of the refrigerant to the.

【0009】[0009]

【発明が解決しようとする課題】ところで、エネルギー
の有効利用の向上、冷熱の安定供給、都市景観の向上な
どの目的のために設置される地域冷暖房プラントの氷蓄
熱装置にあっては、蓄熱槽全体の冷熱蓄熱量を把握する
必要がある。
By the way, in an ice heat storage device for a district heating and cooling plant installed for the purpose of improving effective use of energy, stable supply of cold heat, improvement of cityscape, etc. It is necessary to understand the total cold heat storage amount.

【0010】そこで、従来より、蓄熱槽の冷熱蓄熱量、
即ち、蓄熱槽内における氷量の測定には、上記するよう
に、伝熱管面に生成される氷厚から氷量を測定する方
法、蓄熱槽内に入った冷熱量から氷量を推定する方法、
また、蓄熱槽内における製氷用水の水位増加から氷量を
換算する方法、などが提案されている。
Therefore, conventionally, the cold heat storage amount of the heat storage tank,
That is, as described above, in the measurement of the amount of ice in the heat storage tank, a method of measuring the amount of ice from the thickness of ice generated on the heat transfer tube surface, a method of estimating the amount of ice from the amount of cold heat entering the heat storage tank ,
Moreover, a method of converting the amount of ice from the increase in the water level of the ice making water in the heat storage tank has been proposed.

【0011】しかし、上記する従来の蓄熱槽における氷
量の測定方法では、必ずしも満足できるような装置はな
く、実用上の改善が要求されている。
However, the above-mentioned conventional method for measuring the amount of ice in a heat storage tank does not always have a satisfactory apparatus, and practical improvement is required.

【0012】さて、蓄熱槽における氷量を把握するの
に、伝熱管面に生成される氷厚から氷量を測定する方法
は、最もポピュラーなもので、従来より、この種の氷厚
測定装置としては、電極棒や可動式のバーを伝熱管に当
ててその変位を読み取るものが知られている。この従来
の氷厚測定装置には、次のような課題がある。
In order to grasp the amount of ice in the heat storage tank, the method of measuring the amount of ice from the thickness of ice produced on the heat transfer tube surface is the most popular method, and conventionally, this type of ice thickness measuring device has been used. As such, there is known one in which an electrode rod or a movable bar is applied to a heat transfer tube and its displacement is read. This conventional ice thickness measuring device has the following problems.

【0013】(a) 電極棒を用いる方法では電極端子
の長さから氷厚の限界量を検知する方法であるため、連
続的には計測ができず、また、信頼性に欠ける。
(A) Since the method using the electrode rod is a method of detecting the limit amount of ice thickness from the length of the electrode terminal, continuous measurement cannot be performed and reliability is poor.

【0014】(b) 可動式のバーを用いる機械式のも
のは連続的計測が可能で正確さの面でも優れているが、
水中設備のために構造的に複雑で高価であり、故障も起
き易い。
(B) The mechanical type using a movable bar is capable of continuous measurement and is excellent in accuracy,
Due to the underwater equipment, it is structurally complicated and expensive, and failure is likely to occur.

【0015】(先行技術としては、例えば、特開昭63
−195551号公報がある。)この発明は、上述の点
に鑑みなされたものであって、氷蓄熱装置のより高効率
な運転を行うことを目的とし、また、ブリッジリングな
どによる障害を防止するために、伝熱管面に生成される
氷厚を高精度に、かつ、連続的に計測することを可能に
した氷蓄熱装置の氷厚計測装置を提供することを目的と
する。
(As the prior art, for example, Japanese Patent Laid-Open No. 63-63
There is a publication of 195551. ) The present invention has been made in view of the above points, and an object thereof is to operate the ice heat storage device with higher efficiency. Further, in order to prevent a failure due to a bridge ring or the like, a heat transfer pipe surface is provided. An object of the present invention is to provide an ice thickness measuring device for an ice heat storage device, which makes it possible to measure the generated ice thickness continuously with high accuracy.

【0016】[0016]

【課題を解決するための手段】上記の目的を達成するた
めのこの発明の第1の発明の要旨とするところは、蓄熱
槽内に伝熱管を設置し、該伝熱管に冷媒を通して伝熱管
周りに製氷し、これを解氷して冷熱源とする氷蓄熱装置
において、前記伝熱管面に支持部材を立設し、該支持部
材に、伝熱管面からの距離を変えて複数個の検温素子を
配設し、各検温素子から出力される検温信号から前記伝
熱管面に生成される氷厚を測定することを特徴とする氷
蓄熱装置の氷厚計測装置にあり、第2の発明の要旨とす
るところは、蓄熱槽内に伝熱管を設置し、該伝熱管に冷
媒を通して伝熱管周りに製氷し、これを解氷して冷熱源
とする氷蓄熱装置において、前記伝熱管面に支持部材を
立設し、該支持部材に、管面からの距離を変えて複数個
の電極を等間隔に配設し、隣接各電極間における電圧降
下から前記伝熱管面に生成される氷厚を測定することを
特徴とする氷蓄熱装置の氷厚計測装置にあり、第3の発
明の要旨とするところは、蓄熱槽内に伝熱管を設置し、
該伝熱管に冷媒を通して伝熱管周りに製氷し、これを解
氷して冷熱源とする氷蓄熱装置において、前記伝熱管面
に一対の計測電極を対向的に立設して計測電極対を設け
るとともに、該蓄熱槽中で製氷が完了しても凍結しない
領域で水没させて一対の補償電極を対向的に立設して補
償電極対を設け、計測電極対および補償電極対の全電極
を接続して計測電極対における電圧降下から前記伝熱管
面に生成される氷厚を測定することを特徴とする氷蓄熱
装置の氷厚計測装置にある。
To achieve the above object, the gist of the first invention of the present invention is that a heat transfer tube is installed in a heat storage tank, and a refrigerant is passed through the heat transfer tube to surround the heat transfer tube. In an ice heat storage device that makes ice into the above, and thaws the ice as a cold heat source, a support member is provided upright on the heat transfer tube surface, and a plurality of temperature detecting elements are provided on the support member by changing the distance from the heat transfer tube surface. And an ice thickness measuring device for an ice heat storage device, wherein the ice thickness produced on the heat transfer tube surface is measured from a temperature detection signal output from each temperature detecting element. In the ice heat storage device in which a heat transfer tube is installed in the heat storage tank, a refrigerant is passed through the heat transfer tube to make ice around the heat transfer tube, and this is used as a cold heat source, a support member is provided on the heat transfer tube surface. Standing upright, and changing the distance from the tube surface on the support member to equip a plurality of electrodes at equal intervals. In the ice thickness measuring device of the ice heat storage device, which is provided, and measures the ice thickness generated on the heat transfer tube surface from the voltage drop between the adjacent electrodes, the gist of the third invention is , Install a heat transfer tube in the heat storage tank,
In an ice heat storage device in which a refrigerant is passed through the heat transfer tube to make ice around the heat transfer tube and the ice is thawed to serve as a cold heat source, a pair of measurement electrodes are provided upright on the surface of the heat transfer tube so as to face each other and a pair of measurement electrodes is provided. At the same time, the compensating electrode pair is installed by submerging the compensating electrode so that it is submerged in a region where it does not freeze even if ice making is completed in the heat storage tank, and all electrodes of the measuring electrode pair and the compensating electrode pair are connected. The ice thickness measuring device of the ice heat storage device is characterized in that the ice thickness generated on the heat transfer tube surface is measured from the voltage drop in the measurement electrode pair.

【0017】[0017]

【作用】伝熱管面に設置されて、伝熱管面に生成される
氷と製氷用水の境界を正確に検出し、伝熱管周りの製氷
厚が高精度で連続して測定できる。
The function is installed on the surface of the heat transfer tube to accurately detect the boundary between the ice generated on the surface of the heat transfer tube and the water for ice making, and the thickness of ice making around the heat transfer tube can be continuously measured with high accuracy.

【0018】[0018]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】この発明は上述の図6に示す氷蓄熱装置に
適用される。
The present invention is applied to the ice heat storage device shown in FIG.

【0020】以下の説明において、図6と対等もしくは
同一部分については同一符号を付けて説明する。
In the following description, the same or similar parts as those in FIG. 6 are designated by the same reference numerals.

【0021】第1の発明 図1はこの発明の第1の発明の実施例を示す要部の側面
図である。
First Invention FIG. 1 is a side view of an essential part showing an embodiment of the first invention of the present invention.

【0022】第1の発明では、伝熱管2面に支持部材1
0を立設し、該支持部材10に、伝熱管2面からの距離
を変えて複数個の検温素子11a〜11fを配設してな
る。
In the first invention, the support member 1 is provided on the surface of the heat transfer tube 2.
0 is erected, and a plurality of temperature detecting elements 11a to 11f are arranged on the supporting member 10 at different distances from the surface of the heat transfer tube 2.

【0023】この場合、最も伝熱管2面に近い検温素子
11aの位置は、伝熱管2面に接触または非接触を問わ
ない。
In this case, the position of the temperature detecting element 11a closest to the surface of the heat transfer tube 2 may be contact or non-contact with the surface of the heat transfer tube 2.

【0024】上記構成において、検温素子11aを含む
複数個の検温素子が伝熱管2面に生成される氷中に埋ま
ってそれぞれが氷中検温信号を出力する。また、残りの
検温素子は製氷用水中にあってそれぞれに製氷用水中検
温信号を出力する。これらの各検温素子11a〜11f
から出力される検温信号は、増幅器12およびA/D変
換器13を経由してコンピュータ14に入力されて所定
の演算式に基づいて処理され、生成氷厚が算出される。
In the above structure, a plurality of temperature measuring elements including the temperature measuring element 11a are buried in the ice generated on the surface of the heat transfer tube 2 and each outputs an ice temperature measuring signal. The remaining temperature measuring elements are in the ice making water and output the ice making water temperature detecting signal to each of them. Each of these temperature measuring elements 11a to 11f
The temperature detection signal output from the device is input to the computer 14 via the amplifier 12 and the A / D converter 13 and is processed based on a predetermined arithmetic expression to calculate the generated ice thickness.

【0025】図2は生成氷厚を算出するための説明図で
ある。
FIG. 2 is an explanatory diagram for calculating the produced ice thickness.

【0026】図において、氷中の二点、すなわち、伝熱
管2中心から半径r1 ,r2 (伝熱管外壁を含む)点の
温度をT1 ,T2 、生成氷厚をrice 、生成氷と製氷用
水の境界温度をTice とすると、
In the figure, the temperatures at two points in the ice, that is, points at radii r 1 and r 2 (including the outer wall of the heat transfer tube) from the center of the heat transfer tube 2 are T 1 and T 2 , and the produced ice thickness is r ice . If the boundary temperature of ice and ice making water is T ice ,

【0027】[0027]

【数1】 [Equation 1]

【0028】上記(1−2)式において、Tice =0℃
であるから、r1 ,r2 点における温度T1 ,T2 を計
測すると生成氷厚rice が求められる。
In the above formula (1-2), T ice = 0 ° C.
Since it is, r 1, the temperature at r 2 points T 1, and measuring the T 2 generation ice thickness r ice is obtained.

【0029】第2の発明 図3はこの発明の第2の発明の実施例を示す要部の概略
図である。
Second Invention FIG. 3 is a schematic view of the essential portions showing an embodiment of the second invention of the present invention.

【0030】第2の発明では、伝熱管2面に支持部材1
0を立設し、該支持部材10に、伝熱管2面からの距離
を変えて複数個の計測電極15a〜15gを規則的(等
間隔)に配設してなる。
In the second invention, the support member 1 is provided on the surface of the heat transfer tube 2.
0 is erected, and a plurality of measurement electrodes 15a to 15g are regularly (equally spaced) arranged on the support member 10 at different distances from the surface of the heat transfer tube 2.

【0031】この場合、最も伝熱管2面に近い計測電極
15aの位置は、伝熱管2面から離して近接させ、最も
離れた計測電極15gの位置は、設定氷厚より高い位置
にあって常に製氷用水中にあるようにする。
In this case, the position of the measurement electrode 15a closest to the surface of the heat transfer tube 2 is located close to the surface of the heat transfer tube 2 and the position of the measurement electrode 15g farthest away is always higher than the set ice thickness. Be in ice water.

【0032】上記構成において、氷の電気伝導度は水の
それに比して著しく小さいため、隣接する計測電極間に
電圧を印加すると、氷中に埋まる計測電極間の電圧降下
は製氷用水中にある計測電極間のそれよりも著しく大き
くなる。
In the above structure, since the electric conductivity of ice is significantly smaller than that of water, when a voltage is applied between the adjacent measuring electrodes, the voltage drop between the measuring electrodes buried in the ice is in the ice making water. It is significantly larger than that between the measuring electrodes.

【0033】従って、隣接する計測電極間に順次に電圧
を印加して隣接する計測電極間における電圧降下をそれ
ぞれに計測してコンピュータに入力して基準電圧と比較
演算すると、氷中に埋まる計測電極数から生成氷厚が算
出される。
Therefore, when a voltage is sequentially applied between the adjacent measuring electrodes to measure the voltage drop between the adjacent measuring electrodes and input to the computer for comparison calculation with the reference voltage, the measuring electrodes buried in the ice are measured. The produced ice thickness is calculated from the number.

【0034】すなわち、高周波電源16から隣接する各
計測電極間に順次に電圧を印加して隣接する計測電極間
におけるそれぞれの電圧降下(電圧出力)を、分配器1
7を経由して演算増幅器18に入力し、この増幅器18
からの出力を、隣接各計測電極のうち、氷中に埋まった
計測電極を含む回路の出力電圧を基準電圧より低くした
比較器19に入力すると、この比較器19では、隣接各
電極のうち、製氷用水中にある電極を含む回路からのみ
パルスが検出されるので、これを計数器20に入力して
生成氷厚を表示器21に表示させる。
That is, a voltage is sequentially applied between the adjacent measuring electrodes from the high frequency power source 16, and the respective voltage drops (voltage outputs) between the adjacent measuring electrodes are distributed.
Input to the operational amplifier 18 via 7, and the amplifier 18
When the output from is input to the comparator 19 in which the output voltage of the circuit including the measurement electrode buried in ice among the adjacent measurement electrodes is lower than the reference voltage, the comparator 19 outputs Since the pulse is detected only from the circuit including the electrode in the ice making water, the pulse is input to the counter 20 and the generated ice thickness is displayed on the display 21.

【0035】なお、計測電極に印加する電圧としては交
流を用いるが、周波数が低いと電極上で電極反応が進行
し、電極上に電気抵抗が生じ、また、周波数が高いと静
電容量による電気抵抗が発生し、いずれも回路に外乱が
生じるため、計測電極上に生ずる電極反応に基づく分極
作用と静電容量の発生に伴う外乱を除去するには、周波
数は1〜10KHz 程度の交流を用いるのが好ましい。
Although alternating current is used as the voltage applied to the measuring electrode, when the frequency is low, the electrode reaction proceeds on the electrode to generate an electric resistance on the electrode. Since a resistance is generated and a disturbance is generated in each circuit, an alternating current with a frequency of about 1 to 10 KHz is used to remove the disturbance caused by the polarization effect and the generation of electrostatic capacitance due to the electrode reaction occurring on the measurement electrode. Is preferred.

【0036】また、上記実施例では隣接する計測電極間
における電圧降下を求めたが、伝熱管2面に支持部材1
0に対向してこの支持部材10と略同一高さの共通電極
15oを立設し、この共通電極15oと各計測電極15
a〜15gとの間で順次に電圧を印加して共通電極15
oと各計測電極15a〜15g間における電圧降下を求
めるようにしてもよい。
Further, in the above embodiment, the voltage drop between the adjacent measurement electrodes was obtained, but the support member 1 is provided on the surface of the heat transfer tube 2.
A common electrode 15o having substantially the same height as the supporting member 10 is erected so as to face 0, and the common electrode 15o and each measurement electrode 15 are provided.
a to 15 g, a voltage is sequentially applied to the common electrode 15
The voltage drop between o and each of the measurement electrodes 15a to 15g may be obtained.

【0037】第3の発明 図4はこの発明の第3の発明の実施例を示す要部の概略
図である。
Third Invention FIG. 4 is a schematic view of the essential portions showing an embodiment of the third invention of the present invention.

【0038】第3の発明では、伝熱管2面に一対の計測
電極22a,22bを対向的に立設して計測電極対22
を設けるとともに、伝熱管2から離れて該蓄熱槽中で製
氷が完了しても凍結しない領域で水没させて適宜の固定
部材25面に一対の補償電極23a,23bを対向的に
立設して補償電極対23を設け、計測電極対22および
補償電極対23の全電極22a,22b,23a,23
bを接続して電極直列回路24(図5参照)を形成して
なる。
In the third invention, the pair of measuring electrodes 22a and 22b are erected on the surface of the heat transfer tube 2 so as to face each other, and the measuring electrode pair 22 is provided.
And a pair of compensating electrodes 23a and 23b are erected opposite to each other on the surface of an appropriate fixing member 25 by immersing in water in a region that does not freeze even if ice making is completed in the heat storage tank away from the heat transfer tube 2. Compensation electrode pair 23 is provided, and all electrodes 22a, 22b, 23a, 23 of measurement electrode pair 22 and compensation electrode pair 23 are provided.
b is connected to form an electrode series circuit 24 (see FIG. 5).

【0039】上記構成において、計測電極対22は、伝
熱管2面に生成される氷厚に比例して氷中に埋まる。従
って、氷の電気伝導度は水のそれに比して著しく小さい
ため、電極直列回路24に電圧を印加すると、氷厚に比
例して計測電極22a,22b間の電圧降下は大きくな
る。すなわち、計測電極22a,22bの電極の長さ
(高さ)をLx 、氷中に埋まっている部分の長さをxと
すれば、計測電極22a,22b間の電圧降下は(Lx
−x)に反比例し、この電圧降下を測定することにより
氷厚が測定できる。
In the above structure, the measurement electrode pair 22 is embedded in ice in proportion to the thickness of ice produced on the surface of the heat transfer tube 2. Therefore, since the electric conductivity of ice is significantly smaller than that of water, when a voltage is applied to the electrode series circuit 24, the voltage drop between the measurement electrodes 22a and 22b increases in proportion to the ice thickness. That is, if the electrode length (height) of the measurement electrodes 22a and 22b is L x and the length of the portion buried in ice is x , the voltage drop between the measurement electrodes 22a and 22b is (L x
Inversely proportional to -x), the ice thickness can be measured by measuring this voltage drop.

【0040】一方、水の電気伝導度は水中の電解質濃
度、温度などの変化により影響を受けるため、製氷が完
了しても蓄熱槽中で製氷が完了しても凍結しない領域で
水没して配設した補償電極対23を使用することにより
これらの影響を補償する。
On the other hand, since the electrical conductivity of water is affected by changes in the electrolyte concentration and temperature in water, it is submerged in a region that does not freeze even if ice making is completed or in the heat storage tank. These influences are compensated by using the compensation electrode pair 23 provided.

【0041】図5 (a) は、生成氷厚を算出する回路例
を説明する説明図である。
FIG. 5A is an explanatory view for explaining a circuit example for calculating the generated ice thickness.

【0042】図において、計測電極22a,22b間の
電気抵抗をRx 、補償電極23a,23b間の電気抵抗
をRw 、計測電極22a,22b間の電位差をVx 、補
償電極23a,23b間の電位差をVw 、電極直列回路
24に印加される電圧をV0、計測電極22a,22b
の長さ(高さ)をLx 、計測電極22a,22bの氷中
長さ(氷厚に相当する)をx、定数をkx 、kw とする
と、
In the figure, the electric resistance between the measuring electrodes 22a and 22b is R x , the electric resistance between the compensating electrodes 23a and 23b is R w , the potential difference between the measuring electrodes 22a and 22b is V x , and the compensating electrodes 23a and 23b are between. , V w , the voltage applied to the electrode series circuit 24 is V 0 , and the measurement electrodes 22a and 22b are
Is L x , the length of the measurement electrodes 22a and 22b in ice (corresponding to ice thickness) is x, and the constants are k x and k w .

【0043】[0043]

【数2】 [Equation 2]

【0044】(3−1)式および(3−2)式を(3−
3)式に代入して、
Expressions (3-1) and (3-2) are replaced with (3-
Substituting into 3) formula,

【0045】[0045]

【数3】 [Equation 3]

【0046】となり、Vx +Vw =V0 (一定)であ
り、定数kx 、kw の電解質濃度、温度などによる係数
は互いに打ち消され、これらの因子によらない定数Kが
式に残るだけであるから、Vx またはVw を計測すれ
ば、一義的に氷厚xが求められる。
Since V x + V w = V 0 (constant), the coefficients of the constants k x and k w due to the electrolyte concentration, temperature, etc. cancel each other out, and the constant K not depending on these factors remains in the equation. Therefore, if V x or V w is measured, the ice thickness x can be uniquely obtained.

【0047】図5 (b) は生成氷厚を算出する他の回路
例を説明する説明図である。
FIG. 5B is an explanatory diagram for explaining another circuit example for calculating the generated ice thickness.

【0048】図において、上述の図5 (a) における計
測電極対22に直列に固定抵抗26を接続し、また、補
償電極対23に直列に固定抵抗を接続する。固定抵抗2
6の抵抗値をRf1、電位差をVf1、固定抵抗27の抵抗
値をRf2、電位差をVf2とし、固定抵抗26,27を介
して一定の電圧V0 を計測電極対22および補償電極対
23に印加すると、
In the figure, a fixed resistor 26 is connected in series to the measurement electrode pair 22 in FIG. 5 (a), and a fixed resistor is connected in series to the compensation electrode pair 23. Fixed resistance 2
The resistance value of 6 is R f1 , the potential difference is V f1 , the resistance value of the fixed resistor 27 is R f2 , the potential difference is V f2, and a constant voltage V 0 is applied via the fixed resistors 26 and 27 to the measurement electrode pair 22 and the compensation electrode. When applied to pair 23,

【0049】[0049]

【数4】 [Equation 4]

【0050】(3−5)式および(3−6)式より、From equations (3-5) and (3-6),

【0051】[0051]

【数5】 [Equation 5]

【0052】となり、Vx +Vf1=V0 (一定)、ま
た、Vw +Vf2=V0 (一定)であり、定数kx 、kw
の電解質濃度、温度などによる係数は互いに打ち消さ
れ、これらの因子によらない定数Kが式に残るだけであ
るから、Vx およびVw 、または、Vf1およびVf2を計
測すれば、一義的に氷厚xが求められる。
Then, V x + V f1 = V 0 (constant) and V w + V f2 = V 0 (constant), and constants k x and k w
The coefficients due to the electrolyte concentration, temperature, etc. are canceled out, and the constant K not depending on these factors remains in the equation. Therefore, if V x and V w or V f1 and V f2 are measured, it is unique. The ice thickness x is calculated at.

【0053】[0053]

【発明の効果】以上、説明したように、この発明によれ
ば、伝熱管面に生成された氷厚を高精度に、かつ、連続
的に計測し、該氷厚に基づいて蓄熱槽内における氷量が
求められるので、冷凍機設備の発停、および伝熱管への
冷媒供給の発停などの制御が適切に行われる。また、製
氷用水中の電解質濃度、温度などの変化による影響を受
けることもなく、連続的に正確に氷量を計測することが
可能となるとともに、費用も少なく故障もないなどの効
果を奏する。
As described above, according to the present invention, the ice thickness generated on the heat transfer tube surface is continuously measured with high accuracy and in the heat storage tank based on the ice thickness. Since the amount of ice is required, the control such as the start / stop of the refrigerator equipment and the start / stop of the refrigerant supply to the heat transfer tube is appropriately performed. In addition, it is possible to continuously and accurately measure the amount of ice without being affected by changes in the electrolyte concentration and temperature in the ice making water, and at the same time, the cost is low and there is no failure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の第1の発明の実施例を示す要部の
側面図である。
FIG. 1 is a side view of an essential part showing an embodiment of a first invention of the present invention.

【図2】 生成氷厚を算出するための説明図である。FIG. 2 is an explanatory diagram for calculating a generated ice thickness.

【図3】 この発明の第2の発明の実施例を示す要部の
側面図である。
FIG. 3 is a side view of an essential part showing an embodiment of the second invention of the present invention.

【図4】 この発明の第3の発明の実施例を示す要部の
側面図である。
FIG. 4 is a side view of an essential part showing an embodiment of the third invention of the present invention.

【図5】 (a) , (b) は生成氷厚を算出する回路例
を説明する説明図である。
5A and 5B are explanatory diagrams illustrating an example of a circuit that calculates a generated ice thickness.

【図6】 氷蓄熱装置の概略構成図である。FIG. 6 is a schematic configuration diagram of an ice heat storage device.

【符号の説明】 1…蓄熱槽 2…伝熱管 10…支持部材 11…検温素子 15…計測電極 22…計測電極対 23…補償電極対[Explanation of Codes] 1 ... Heat storage tank 2 ... Heat transfer tube 10 ... Support member 11 ... Temperature measuring element 15 ... Measurement electrode 22 ... Measurement electrode pair 23 ... Compensation electrode pair

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 誠一 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 老固 潔一 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Seiichi Nakanishi Seiichi Nakanishi, 1-1 1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries Ltd. Kobe factory (72) Inventor Kiyoichi Ogo Kawasaki-cho, Akashi-shi, Hyogo No. 1 Kawasaki Heavy Industries Ltd. Akashi Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱槽内に伝熱管を設置し、該伝熱管に
冷媒を通して伝熱管周りに製氷し、これを解氷して冷熱
源とする氷蓄熱装置において、前記伝熱管面に支持部材
を立設し、該支持部材に、伝熱管面からの距離を変えて
複数個の検温素子を配設し、各検温素子から出力される
検温信号から伝熱管面に生成される氷厚を測定すること
を特徴とする氷蓄熱装置の氷厚計測装置。
1. An ice heat storage device in which a heat transfer tube is installed in a heat storage tank, a refrigerant is passed through the heat transfer tube to make ice around the heat transfer tube, and the ice is thawed to serve as a cold heat source. Standing up, and arranging a plurality of temperature measuring elements on the support member while changing the distance from the heat transfer tube surface, measure the ice thickness generated on the heat transfer tube surface from the temperature detection signal output from each temperature detecting element. An ice thickness measuring device for an ice heat storage device.
【請求項2】 蓄熱槽内に伝熱管を設置し、該伝熱管に
冷媒を通して伝熱管周りに製氷し、これを解氷して冷熱
源とする氷蓄熱装置において、前記伝熱管面に支持部材
を立設し、該支持部材に、管面からの距離を変えて複数
個の電極を等間隔に配設し、隣接各電極間における電圧
降下から伝熱管面に生成される氷厚を測定することを特
徴とする氷蓄熱装置の氷厚計測装置。
2. An ice heat storage device in which a heat transfer tube is installed in a heat storage tank, a refrigerant is passed through the heat transfer tube to make ice around the heat transfer tube, and the ice is thawed to serve as a cold heat source. A plurality of electrodes are arranged on the support member at different intervals from the tube surface at equal intervals, and the ice thickness produced on the heat transfer tube surface is measured from the voltage drop between adjacent electrodes. An ice thickness measuring device for an ice heat storage device, which is characterized in that
【請求項3】 蓄熱槽内に伝熱管を設置し、該伝熱管に
冷媒を通して伝熱管周りに製氷し、これを解氷して冷熱
源とする氷蓄熱装置において、前記伝熱管面に一対の計
測電極を対向的に立設して計測電極対を設けるととも
に、該蓄熱槽中で製氷が完了しても凍結しない領域で水
没させて一対の補償電極を対向的に立設して補償電極対
を設け、計測電極対および補償電極対の全電極を接続し
て計測電極対における電圧降下から伝熱管面に生成され
る氷厚を測定することを特徴とする氷蓄熱装置の氷厚計
測装置。
3. An ice heat storage device in which a heat transfer tube is installed in a heat storage tank, a refrigerant is passed through the heat transfer tube to make ice around the heat transfer tube, and the ice is thawed to serve as a cold heat source. The measurement electrodes are erected opposite to each other to provide a measurement electrode pair, and the pair of compensation electrodes are erected opposite to each other by submerging the measurement electrodes in a region that does not freeze even if ice making is completed in the heat storage tank. And an ice thickness measuring device for an ice heat storage device, wherein all the electrodes of the measurement electrode pair and the compensation electrode pair are connected to measure the ice thickness generated on the heat transfer tube surface from the voltage drop in the measurement electrode pair.
JP4176528A 1992-07-03 1992-07-03 Ice thickness measuring device for ice heat storage device Expired - Fee Related JP2530411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4176528A JP2530411B2 (en) 1992-07-03 1992-07-03 Ice thickness measuring device for ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4176528A JP2530411B2 (en) 1992-07-03 1992-07-03 Ice thickness measuring device for ice heat storage device

Publications (2)

Publication Number Publication Date
JPH06294564A true JPH06294564A (en) 1994-10-21
JP2530411B2 JP2530411B2 (en) 1996-09-04

Family

ID=16015193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4176528A Expired - Fee Related JP2530411B2 (en) 1992-07-03 1992-07-03 Ice thickness measuring device for ice heat storage device

Country Status (1)

Country Link
JP (1) JP2530411B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243857A (en) * 2008-03-31 2009-10-22 Mayekawa Mfg Co Ltd Ice thermal storage type cold/heat supply method and device
CN115265031A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265029A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold machine and have its cold chain system fills
CN115265026A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265025A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
CN115265028A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265027A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463770A (en) * 1987-09-02 1989-03-09 Daikin Ind Ltd Ice thickness detector for ice heat accumulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463770A (en) * 1987-09-02 1989-03-09 Daikin Ind Ltd Ice thickness detector for ice heat accumulator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243857A (en) * 2008-03-31 2009-10-22 Mayekawa Mfg Co Ltd Ice thermal storage type cold/heat supply method and device
CN115265031A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265029A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold machine and have its cold chain system fills
CN115265026A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265025A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
CN115265028A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265027A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same

Also Published As

Publication number Publication date
JP2530411B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US7726187B2 (en) Thermal type flow meter and engine control system using the same
CA2655153C (en) A power line temperature and sag monitor system
EP2800963B1 (en) Monitoring a conductive fluid conduit
CN111542760B (en) System and method for correcting current value of shunt resistor
JP2530411B2 (en) Ice thickness measuring device for ice heat storage device
US20160011239A1 (en) Interference compensating single point detecting current sensor for a multiplex busbar
KR100307267B1 (en) Liquid metering
US20110257897A1 (en) Combustible gas detection apparatus and combustible gas sensor control method
CN107636926A (en) Dynamic line rated value sensing equipment and its associated method
CN209495646U (en) A kind of monitoring device of substation GIS bus bar canister bellows telescopic displacement
US20130173205A1 (en) Thermal energy metering by measuring average tank temperature
CN105318935A (en) Wide-range mutual-induction type liquid metal liquidometer
KR101861838B1 (en) Actual effect precipitaion calculation apparatus and method for weighting precipitation-gauge
JPS60233521A (en) Internal temperature estimating method of power cable
Sylvia et al. Development of mutual inductance type sodium level detectors for PFBR
Klems et al. Large‐area, high‐sensitivity heat‐flow sensor
EP0137754B1 (en) Series-connected, skin-current heating pipe including current trouble detector
JPH0313705Y2 (en)
JP2013065715A (en) Photovoltaic power generation device
JP2002032419A (en) Management system for piping stress
JPH0348442B2 (en)
SU1093914A1 (en) Heat flow pickup
JP2628061B2 (en) Method and apparatus for estimating profile of heat medium temperature distribution
JPH0736039U (en) Abnormal overheat detector for gas insulated switchgear
JP2961831B2 (en) Oil leak detection method for OF cable line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees