JPH0348442B2 - - Google Patents

Info

Publication number
JPH0348442B2
JPH0348442B2 JP16262880A JP16262880A JPH0348442B2 JP H0348442 B2 JPH0348442 B2 JP H0348442B2 JP 16262880 A JP16262880 A JP 16262880A JP 16262880 A JP16262880 A JP 16262880A JP H0348442 B2 JPH0348442 B2 JP H0348442B2
Authority
JP
Japan
Prior art keywords
ice
layer thickness
electrode rod
frozen
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16262880A
Other languages
Japanese (ja)
Other versions
JPS5786705A (en
Inventor
Wahei Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP16262880A priority Critical patent/JPS5786705A/en
Publication of JPS5786705A publication Critical patent/JPS5786705A/en
Publication of JPH0348442B2 publication Critical patent/JPH0348442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • G01B7/085Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means for measuring thickness of coating

Description

【発明の詳細な説明】 本発明は結氷管面に成長する結氷層厚の測定装
置に係り、被冷却水と結氷管面にたてた導電棒と
の間の絶縁皮膜で生ずる静電容量が、結氷層の厚
みにしたがい増減することにより、結氷層厚を連
続して測定することの出来る結氷層厚測定装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the thickness of a layer of ice that grows on the surface of a freezing tube. This invention relates to an ice layer thickness measuring device that can continuously measure the ice layer thickness by increasing and decreasing the ice layer thickness according to the thickness of the ice layer.

例えば、アイスバンクと称せられる冷却水の冷
却装置に於ては、その冷却面に成長する結氷層厚
を連続的に監視し、これにより結氷層厚の定値制
御、或は経済運転に於ける結氷層厚の制御、更に
アイスバンク槽内の冷蓄熱量の連続測定のための
平均結氷層厚の演算等を必要とするものである
が、従来は目測による結氷層厚の測定、或は目盛
を有する触針を間歇的に結氷面に接触させるよう
な機械的機構等で測定が行われた程度である。こ
れはアイスバンクの周囲に於ける温度、湿度、構
造等の環境の悪条件のために、その測定装置に多
くの問題が残されていたものである。
For example, in a cooling water cooling device called an ice bank, the thickness of the ice layer that grows on the cooling surface is continuously monitored, and this is used to control the ice layer thickness at a fixed value or to prevent ice formation during economical operation. This requires control of the layer thickness and calculation of the average ice layer thickness for continuous measurement of the amount of cold heat stored in the ice bank tank. At most, measurements were performed using a mechanical mechanism that brought a stylus into contact with the frozen surface intermittently. This is due to the adverse environmental conditions surrounding the ice bank, such as temperature, humidity, structure, etc., which left many problems with the measuring device.

本発明は此の点に鑑み行われたもので、冷却管
面にたてられた電極棒に於ける導電棒と被冷却水
との間の絶縁皮膜を介して両者間の静電容量が結
氷層の厚みにしたがい増減することにより、結氷
層厚の連続測定を可能にしたものである。
The present invention was made in view of this point, and the electrostatic capacitance between the conductive rod and the water to be cooled is reduced by freezing through the insulation film between the conductive rod and the water to be cooled. By increasing and decreasing according to the thickness of the layer, it is possible to continuously measure the thickness of the frozen layer.

第1図はその原理を示す略図で、1は結氷管、
2は結氷管面にたてられた電極棒で、その電極棒
2の詳細を第2図に示す。3は導電棒で、その表
面は誘電率が高く薄い絶縁皮膜4で覆われ、電極
棒2を構成する。導電棒3、或はその表面を覆う
皮膜よりなる電極棒2の見かけ上の熱電導率は氷
の熱伝導率の2K.cal/m,h,℃に近似した値に
設計されることが必要である。若し前記導電棒を
銅とした場合には、銅の熱伝導率は約335K.cal/
m.h.℃であり、結氷初期に於ては被冷却水の結氷
管1を取り巻く被冷却水10の温度勾配で冷却さ
れにくく、電極棒2に取りまく結氷が遅れ勝ちと
なり、結氷の終期に於ては電極棒2の熱伝導率が
氷のそれより大きいために結氷が早期に行われて
しまい、真の結氷面の成長、融解に対応しなくな
るので、このためには熱伝導の低い金属棒、或は
樹脂製棒の表面に鍍金などを施して導電性を与え
るようにしたものである。次に電極棒2の長さは
常に被冷却水10の中に浸漬する程度の一定の長
さがあることが必要で、これは被冷却水10の水
面の変動などで電極棒2の結氷層厚みに対する真
の静電容量に影響されないようにするためのもの
である。
Figure 1 is a schematic diagram showing the principle, 1 is a freezing tube,
Reference numeral 2 denotes an electrode rod erected on the surface of the freezing tube, and the details of the electrode rod 2 are shown in FIG. Reference numeral 3 denotes a conductive rod, the surface of which is covered with a thin insulating film 4 having a high dielectric constant, and constitutes the electrode rod 2. The apparent thermal conductivity of the conductive rod 3 or the electrode rod 2 made of a film covering its surface must be designed to a value close to the thermal conductivity of ice, 2 K.cal/m, h, °C. It is. If the conductive rod is made of copper, the thermal conductivity of copper is approximately 335K.cal/
mh°C, and in the early stages of freezing, it is difficult to cool the water due to the temperature gradient of the water to be cooled 10 surrounding the freezing pipe 1, and the freezing surrounding the electrode rod 2 is delayed, and in the final stage of freezing. Since the thermal conductivity of the electrode rod 2 is higher than that of ice, freezing occurs early and does not correspond to the growth and melting of a true frozen surface.For this purpose, a metal rod with low thermal conductivity or This is a resin rod whose surface is plated to give it electrical conductivity. Next, the length of the electrode rod 2 must be constant enough to be immersed in the water to be cooled 10, and this is due to changes in the surface of the water to be cooled 10. This is to avoid being influenced by the true capacitance with respect to thickness.

次に電極棒2に接続される口出芯線5を含む絶
縁導線6に接する被冷却水10を電気的に模擬化
した理想的対向電極10′とすれば、被冷却水1
0と導電棒3、芯線5との間に静電容量が形成さ
れ、この両者3,5と10′に交流電源9で交流
電圧を印加すれば、前記静電容量を通して交流電
流が流れ、これを電流計のような指示計8で測定
することが出来る。この場合に結氷層11の成長
により、電極棒2は次第にこの中に埋没する。こ
れは電極棒2に対向する対向電極10′の対向面
積が縮小することになり、静電容量も変化し、こ
れを通る交流電流の値より結氷層厚を表示させる
ことが出来るものである。結氷層厚の成長に対す
る指示の減少は標準電圧との電橋出力で指示を同
一方向化することの出来ることは周知のことであ
り省略する。
Next, if the ideal counter electrode 10' is an electrical simulation of the cooled water 10 in contact with the insulated conductor 6 including the lead wire 5 connected to the electrode rod 2, then the cooled water 1
0, the conductive rod 3, and the core wire 5, and when an AC voltage is applied to both 3, 5, and 10' from the AC power supply 9, an AC current flows through the capacitance, and this can be measured with an indicator 8 such as an ammeter. In this case, due to the growth of the frozen layer 11, the electrode rod 2 is gradually buried therein. This results in a reduction in the opposing area of the counter electrode 10' facing the electrode rod 2, and a change in capacitance, making it possible to display the ice layer thickness from the value of the alternating current passing through this. It is well known that the instruction for decreasing the growth of the ice layer thickness can be made in the same direction by the electric bridge output as the standard voltage, so the explanation will be omitted.

結氷層厚に対する静電容量の変化は原理的に直
線性を有するもので、結氷層厚の測定には重要な
ことであり最適である。
The change in capacitance with respect to the ice layer thickness is linear in principle, which is important and optimal for measuring the ice layer thickness.

第3図は電極棒2を結氷管1面上に傾斜されて
取りつけた場合の断面図で接地電極12で被冷却
水に通電される。電極棒2と結氷管1との取付角
度をθ、結氷層厚をh、電極棒のこれに対応する
長さをlとすればl/h=tanθとなり、結氷層厚
さ(h)の変化が微少の場合に電極棒(l)を長
くすることにより、その感度を大ならしめること
が出来るもので測定精度の向上に役立つものであ
る。
FIG. 3 is a cross-sectional view of the electrode rod 2 installed obliquely on the surface of the freezing tube 1, and the water to be cooled is energized by the ground electrode 12. If the mounting angle between the electrode rod 2 and the freezing tube 1 is θ, the thickness of the frozen layer is h, and the corresponding length of the electrode rod is l, then l/h = tan θ, and the change in the frozen layer thickness (h). By lengthening the electrode rod (l) when the amount of light is small, the sensitivity can be increased, which is useful for improving measurement accuracy.

第4図は結氷管1面の平均結氷層厚の測定を示
す略図である。結氷管1の必要箇処に前記の電極
棒2を複数個21,22,23…並設される。一
般に冷却管1面の結氷層11の厚みの一様性につ
いては前記冷却管1内の冷媒の流れ、冷却管1を
取りまく被冷却水10の流れの状態、其の他の各
種の要因等に影響される。特にアイスバンクなど
で結氷、融解が繰り返され、その潜熱が利用され
る場合に於ては、氷の潜熱としての蓄熱量を常に
把握して結氷状態を制御する必要がある。このた
めに複数固の電極棒21,22,23−よりの電
気信号の総和を求めて平均し、或はそれぞれの信
号に重みをつけるなどしてその平均値を演算器1
3で演算を行わせ、指示計8に指示させ、全結氷
量、或は全蓄熱量を求めることが出来るものであ
る。
FIG. 4 is a schematic diagram showing the measurement of the average ice layer thickness on one surface of the ice tube. A plurality of the electrode rods 2 21, 22, 23, . . . are arranged in parallel at necessary locations on the freezing tube 1. Generally, the uniformity of the thickness of the frozen layer 11 on the surface of the cooling pipe 1 depends on the flow of the refrigerant in the cooling pipe 1, the flow state of the water to be cooled 10 surrounding the cooling pipe 1, and various other factors. affected. In particular, when freezing and melting occurs repeatedly in an ice bank and the latent heat thereof is utilized, it is necessary to constantly grasp the amount of heat stored as the latent heat of the ice and control the freezing state. For this purpose, the sum of the electric signals from the plurality of electrode rods 21, 22, 23- is calculated and averaged, or each signal is weighted and the average value is calculated by the calculator 1.
3, the total amount of ice formation or the total amount of heat storage can be determined by causing the indicator 8 to give an instruction.

本発明は以上のように、結氷管面上の結氷層厚
の測定に於て、氷の熱伝導率に近似させ、且つ誘
電率の高い絶縁皮膜で被覆された電極棒と被冷却
水との間の静電容量が結氷層厚みに伴い増減する
ことを利用しているので、その指示特性も優れて
おり、結氷層厚を電気的に容易に指示、測定或は
制御することが出来るので、アイスバンクなどの
自動運転、管理に欠かすことの出来ないものであ
る。
As described above, the present invention enables the measurement of the thickness of the frozen layer on the surface of the freezing tube by using a method that approximates the thermal conductivity of ice, and which connects the electrode rod coated with an insulating film with a high dielectric constant and the water to be cooled. Since it utilizes the fact that the capacitance between It is indispensable for automated operation and management of ice banks and other facilities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定の原理を示す略図で、第
2図は電極棒の断面図、第3図は感度向上のため
の電極棒の取付略図、第4図は平均結氷層厚測定
の略線図。 1…冷却管、2…電極棒、8…結氷層厚指示
計、9…交流電源、10…被冷却水、11…結氷
層、12…接地電極、13…演算器。
Figure 1 is a schematic diagram showing the measurement principle of the present invention, Figure 2 is a cross-sectional view of the electrode rod, Figure 3 is a schematic diagram of the attachment of the electrode rod to improve sensitivity, and Figure 4 is a diagram showing the measurement of the average ice layer thickness. Schematic diagram. DESCRIPTION OF SYMBOLS 1... Cooling pipe, 2... Electrode rod, 8... Ice layer thickness indicator, 9... AC power source, 10... Water to be cooled, 11... Ice layer, 12... Ground electrode, 13... Arithmetic unit.

Claims (1)

【特許請求の範囲】 1 見かけ上の熱伝導率を氷の熱伝導率に近似さ
せた結氷層厚測定用の電極棒において、表面を大
きな誘電率特性を持つ薄い皮膜で被覆された導電
棒で電極棒を構成し、結氷管面に前記電極棒をた
て、被冷却水に浸漬し、これと導電棒との間の静
電容量が結氷層の厚みにしたがい増減することに
より、前記結氷層厚さを測定することを特徴とす
る結氷層厚測定装置。 2 電極棒を結氷管面に傾斜させて取りつけ、結
氷層厚さを測定することを特徴とする特許請求範
囲第1項記載の結氷層厚測定装置。 3 結氷管面の必要箇所に複数の前記電極棒を並
設し、結氷槽内の平均結氷層厚、総結氷量による
冷蓄熱量の演算を行はせることを特徴とする特許
請求範囲第1項記載の結氷層厚測定装置。
[Scope of Claims] 1. An electrode rod for measuring ice layer thickness whose apparent thermal conductivity approximates that of ice, which is a conductive rod whose surface is coated with a thin film having a large dielectric constant property. The frozen layer is formed by forming an electrode rod, standing the electrode rod on the surface of the freezing tube, immersing it in water to be cooled, and increasing or decreasing the capacitance between the electrode rod and the conductive rod according to the thickness of the frozen layer. An ice layer thickness measuring device characterized by measuring thickness. 2. The ice layer thickness measuring device according to claim 1, wherein the electrode rod is attached to the surface of the ice tube at an angle to measure the ice layer thickness. 3. Claim 1, characterized in that a plurality of the electrode rods are arranged in parallel at necessary locations on the surface of the freezing tube, and the amount of cold heat storage is calculated based on the average frozen layer thickness and the total amount of frozen ice in the freezing tank. The ice layer thickness measuring device described in Section 1.
JP16262880A 1980-11-20 1980-11-20 Device for measuring thickness of frozen layer Granted JPS5786705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16262880A JPS5786705A (en) 1980-11-20 1980-11-20 Device for measuring thickness of frozen layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16262880A JPS5786705A (en) 1980-11-20 1980-11-20 Device for measuring thickness of frozen layer

Publications (2)

Publication Number Publication Date
JPS5786705A JPS5786705A (en) 1982-05-29
JPH0348442B2 true JPH0348442B2 (en) 1991-07-24

Family

ID=15758219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16262880A Granted JPS5786705A (en) 1980-11-20 1980-11-20 Device for measuring thickness of frozen layer

Country Status (1)

Country Link
JP (1) JPS5786705A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189844U (en) * 1984-05-26 1985-12-16 トヨタ自動車株式会社 Sensor for detecting the amount of particulate matter deposited in exhaust gas
CN108195281B (en) * 2017-12-22 2020-11-13 太原理工大学 Ice layer thickness measuring device based on piezomagnetic material
CN109990743A (en) * 2019-05-07 2019-07-09 辽宁科技大学 It is high and cold to freeze depth measurement device and method rich in water outdoor copper mine mining area rock stratum

Also Published As

Publication number Publication date
JPS5786705A (en) 1982-05-29

Similar Documents

Publication Publication Date Title
US20140238968A1 (en) Intelligent heating cable having a smart function and method for manufacturing same
CN1831546B (en) Desuper propagation rate measuring method of high-temp superconductor band
WO2023103278A1 (en) Online monitoring method for position information of conducting wire of power transmission line based on electromagnetic signal of ground wire
CA1244658A (en) Meter for intergrating the operating time of a steam trap
JPH0348442B2 (en)
JPS60233521A (en) Internal temperature estimating method of power cable
Burke et al. Current density probes
US2238015A (en) Resistance thermometer and method of manufacturing the same
JP2530411B2 (en) Ice thickness measuring device for ice heat storage device
US20040105635A1 (en) Fiber optic transmission conductor and distributed temperature sensing of fiber optic transmission conductor
Shi et al. A measurement method of ice layer thickness based on resistance-capacitance circuit for closed loop external melt ice storage tank
Latham et al. The influence of impact velocity and ice specimen geometry on the charge transfer associated with temperature gradients in ice
US3605494A (en) Heat flow calorimeter
US2542944A (en) Dew point meter
JPS6324267B2 (en)
JPS6351253B2 (en)
SU992671A1 (en) Apparatus for determining ice thickness
JPH0131121B2 (en)
RU2537754C1 (en) Manufacturing method of temperature sensors and heat flow (versions)
CN110044966B (en) Insulator contamination state evaluation method and device
Sayah et al. Optimization of water terminations for testing of solid dielectric cable
CN108195281B (en) Ice layer thickness measuring device based on piezomagnetic material
CN111339603B (en) Large-volume concrete temperature value prediction and control method
RU2122267C1 (en) Method for determining end of ice melting
Kissabekova et al. Investigation of the operation of a thermoelectric converter