JP2628061B2 - Method and apparatus for estimating profile of heat medium temperature distribution - Google Patents

Method and apparatus for estimating profile of heat medium temperature distribution

Info

Publication number
JP2628061B2
JP2628061B2 JP3390788A JP3390788A JP2628061B2 JP 2628061 B2 JP2628061 B2 JP 2628061B2 JP 3390788 A JP3390788 A JP 3390788A JP 3390788 A JP3390788 A JP 3390788A JP 2628061 B2 JP2628061 B2 JP 2628061B2
Authority
JP
Japan
Prior art keywords
heat medium
temperature
position side
heat
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3390788A
Other languages
Japanese (ja)
Other versions
JPH01210832A (en
Inventor
仁 玉手
Original Assignee
横河ジョンソンコントロールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河ジョンソンコントロールズ株式会社 filed Critical 横河ジョンソンコントロールズ株式会社
Priority to JP3390788A priority Critical patent/JP2628061B2/en
Publication of JPH01210832A publication Critical patent/JPH01210832A/en
Application granted granted Critical
Publication of JP2628061B2 publication Critical patent/JP2628061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蓄熱槽内の熱媒体の温度分布のプロフィー
ルを推定する方法及びその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for estimating a profile of a temperature distribution of a heat medium in a heat storage tank.

[従来の技術] 従来の蓄熱槽は、第3図に示すように、まず、蓄熱槽
である冷水槽1の高温側端末槽(図面右側)から1次冷
水ポンプ4で汲み上げた冷水を、1次冷水流量計6で、
その1次冷水流量WRを計測し、そして、冷凍機2によっ
て冷却して、冷水槽1の低温側端末槽(図面左側)に戻
し、一方、冷水槽1の低温側端末槽から2次冷水ポンプ
5によって汲み上げた冷水を、2次冷水流量計7で、負
荷流量WLを計測し、そして、負荷装置3で吸熱させて高
温側端末槽に戻している。即ち、1次冷水流量WRは、冷
凍機2の運転状況によって決定され、また、負荷流量WL
は、負荷装置3の運転状況及びその負荷量によって決定
される。従って、両者の差が、冷水槽の槽内流量WTを生
じることになる。しかも、冷水槽1は、一般に、互いに
連通する複数の隔壁(図示せず)によって仕切られた複
数の水槽群によって構成されているため、冷水の温度は
不連続的に推移している。
[Prior Art] As shown in FIG. 3, a conventional heat storage tank first cools cold water pumped by a primary cold water pump 4 from a high-temperature side terminal tank (right side in the drawing) of a cold water tank 1 as a heat storage tank. Next chilled water flow meter 6,
The primary chilled water flow rate WR is measured and cooled by the refrigerator 2 and returned to the low-temperature terminal tank of the chilled water tank 1 (left side in the drawing). The cold water pumped up by 5 is used to measure the load flow rate WL by the secondary chilled water flow meter 7 and then absorbed by the load device 3 to return to the high temperature side terminal tank. That is, the primary chilled water flow rate WR is determined by the operation state of the refrigerator 2 and the load flow rate WL
Is determined by the operation state of the load device 3 and the load amount. Therefore, the difference between the two causes the flow rate WT in the cold water tank. Moreover, since the chilled water tank 1 is generally configured by a plurality of water tank groups partitioned by a plurality of partition walls (not shown) communicating with each other, the temperature of the chilled water changes discontinuously.

よって、冷水槽1内の冷却水の水温を測定する場合
は、単に、冷水槽1の槽内の一ヶ所の冷水温度を測定し
ただけでは、熱媒体の温度を正確に把握することができ
ないことから、複数の熱媒体温度検出器を必要としてい
た。
Therefore, when measuring the temperature of the cooling water in the cold water tank 1, it is not possible to accurately grasp the temperature of the heat medium simply by measuring the temperature of the cold water at one location in the tank of the cold water tank 1. Therefore, a plurality of heat medium temperature detectors were required.

[発明が解決しようとする課題] しかしながら、本来、蓄熱槽に蓄えられた熱媒体の正
確な温度の測定には、全槽に亘って、その熱媒体の温度
を測定することが好ましいが、取付け場所の制約及び費
用等により、実現困難であるのが実状であり、一方、そ
の熱媒体温度検出器の数を減らせば、正確な熱媒体温度
の把握が不可能であるという二律背反した問題がある。
[Problems to be Solved by the Invention] However, in order to accurately measure the temperature of the heat medium stored in the heat storage tank, it is preferable to measure the temperature of the heat medium over the entire tank. In reality, it is difficult to realize due to location restrictions and costs, but on the other hand, if the number of heat medium temperature detectors is reduced, it is impossible to accurately grasp the heat medium temperature. .

しかも、近年、熱源装置とその負荷装置は、互いに時
間的にずらして運転稼働される場合が多く、例えば、冷
水等の熱媒体を生産する冷凍機を深夜運転し、そのエネ
ルギーを蓄熱槽に蓄えて、空調機の昼間の運転時に吸熱
させて、熱源として活用することにより、料金の安価な
深夜電力を有効に利用する試みがある。このため、蓄熱
運転時、放熱運転時、及び蓄熱・放熱同時運転時におい
て、熱源装置を最適運転制御するためには、その蓄熱槽
に蓄えられた熱媒体の温度分布のプロフィールを、予
め、正確に把握しなければならないという強い要請があ
る。
Moreover, in recent years, the heat source device and its load device are often operated with a time lag from each other. For example, a refrigerator that produces a heat medium such as cold water is operated at midnight, and the energy is stored in a heat storage tank. Attempts have been made to effectively use late-night electricity at low cost by absorbing heat during the daytime operation of the air conditioner and utilizing it as a heat source. Therefore, in the heat storage operation, the heat radiation operation, and the simultaneous operation of the heat storage and the heat radiation, in order to perform the optimal operation control of the heat source device, the profile of the temperature distribution of the heat medium stored in the heat storage tank must be accurately determined in advance. There is a strong demand that we have to grasp.

そこで、本発明の技術的課題は、上記欠点に鑑み、蓄
熱槽内で不連続な分布を示す熱媒体のプロフィールを正
確に把握し、しかも、従来に較べて熱媒体温度検出器の
設置数を著しく低減した蓄熱槽の温度推定方式及びその
推定装置を提供することである。
In view of the above drawbacks, the technical problem of the present invention is to accurately grasp the profile of the heat medium exhibiting a discontinuous distribution in the heat storage tank, and to further reduce the number of heat medium temperature detectors installed compared to the related art. It is an object of the present invention to provide a method for estimating a temperature of a heat storage tank which is significantly reduced and an apparatus for estimating the temperature.

[課題を解決する手段] 本発明によれば、蓄熱槽内を第1の位置から第2の位
置へ流動する熱媒体の温度プロフィールを推定する熱媒
体温度分布のプロフィール推定方法において、互いに隣
接する熱媒体のうちのより前記第2の位置側に位置する
熱媒体の現時点の温度を、前記互いに隣接する熱媒体の
うちのより前記第1の位置側に位置する熱媒体の過去の
温度とみなし、前記互いに隣接する熱媒体のうちのより
前記第2の位置側に位置する熱媒体の現時点の温度が、
当該熱媒体温度の実測値として与えられるときは、該実
測値を当該現時点の温度とすることを特徴とする熱媒体
温度分布のプロフィール推定方法が得られる。
[Means for Solving the Problems] According to the present invention, in a method for estimating a temperature profile of a heat medium temperature distribution for estimating a temperature profile of a heat medium flowing from a first position to a second position in a heat storage tank, adjacent to each other. The current temperature of the heat medium located closer to the second position than the heat medium is regarded as the past temperature of the heat medium located closer to the first position than the adjacent heat medium. The current temperature of the heat medium located closer to the second position out of the heat medium adjacent to each other,
When given as the actual measured value of the heat medium temperature, a method for estimating a profile of the temperature distribution of the heat medium characterized by using the actual measured value as the current temperature is obtained.

更に,本発明によれば、熱媒体を蓄える蓄熱槽と、該
蓄熱槽の第1及び第2の位置に位置する熱媒体の温度を
夫々実測する第1及び第2の端末槽熱媒体温度検出器
と、該第1及び第2の位置間に位置する熱媒体の温度を
実測する1以上の中間熱媒体温度検出器と、前記第1の
位置に位置する熱媒体に負荷を与えて前記第2の位置側
に流し込む負荷部と、前記第2の位置側に位置する熱媒
体を冷却又は加熱して前記第1の位置側に流し込む熱源
部と、前記熱源部より流し込まれた熱源流量を計測する
熱源流量計測部と、前記負荷部より流し込まれた負荷流
量を計測する負荷流量計測部と、前記熱源流量と負荷流
量との単位時間当りの流量差を算出する流量差演算部
と、後流動差を累積して累積流量差を算出する累積流量
差演算部と、該累積流量差が所定容量を越えた時に当該
累積流量差に基づいて前記蓄熱槽内の前記第1及び第2
の位置間における熱媒体の流動方向を判定する流動方向
判定部と、該流動方向が前記第1の位置側から第2の位
置側に向かっている場合は、互いに隣接する熱媒体のう
ちのより前記第2の位置側に位置する熱媒体の現時点の
温度を、前記互いに隣接する熱媒体のうちのより前記第
1の位置側に位置する熱媒体の過去の温度と推定し、前
記流動方向が前記第2の位置側から第1の位置側に向か
っている場合は、互いに隣接する熱媒体のうちのより前
記第1の位置側に位置する熱媒体の現時点の温度を、前
記互いに隣接する熱媒体のうちのより前記第2の位置側
に位置する熱媒体の過去の温度と推定する熱媒体温度推
定部と、前記熱媒体温度推定部により推定された熱媒体
の現時点の温度のうちの前記第1及び第2の熱媒体温度
検出器と前記中間熱媒体温度検出器とにより実測される
各地点の現時点の温度を、現時点の各実測値に変更する
推定温度変更部とを有することを特徴とする熱媒体温度
分布のプロフィール推定装置が得られる。
Furthermore, according to the present invention, a heat storage tank for storing a heat medium, and first and second terminal tank heat medium temperature detections for actually measuring the temperatures of the heat medium located at the first and second positions of the heat storage tank, respectively. A heating medium, one or more intermediate heating medium temperature detectors for measuring the temperature of the heating medium located between the first and second positions, and a load applied to the heating medium located at the first position. A load section flowing into the second position side, a heat source section cooling or heating the heat medium positioned in the second position side to flow into the first position side, and measuring a heat source flow rate flowing from the heat source section. A heat source flow measuring unit, a load flow measuring unit that measures a load flow flowing from the load unit, a flow difference calculating unit that calculates a flow difference per unit time between the heat source flow and the load flow, and a post-flow. An accumulative flow difference calculating unit for accumulating the difference to calculate an accumulative flow difference; There the first and second said storage tank based on the cumulative flow rate difference when exceeding the predetermined capacity
A flow direction determining unit that determines the flow direction of the heat medium between the positions, and when the flow direction is from the first position side to the second position side, the flow direction of the heat medium adjacent to each other The current temperature of the heat medium located on the second position side is estimated as the past temperature of the heat medium located on the first position side among the heat media adjacent to each other, and the flow direction is When moving from the second position side to the first position side, the current temperature of the heat medium located closer to the first position among the heat mediums adjacent to each other is changed to the temperature of the heat medium adjacent to the adjacent heat medium. A heat medium temperature estimating unit for estimating a past temperature of the heat medium located on the second position side from among the medium, and the heat medium temperature estimating unit estimated by the heat medium temperature estimating unit; First and second heat medium temperature detectors and the intermediate The temperature of the current local points to be actually measured by the medium temperature detector, profile estimator of the heat medium temperature distribution is obtained which is characterized by having the estimated temperature changing unit that changes with each measured value of current.

[作用] 本発明は、各地点の熱媒体の温度が熱媒体自身の流動
方向にしたがって変動することに着目するものである。
即ち、熱媒体の流動方向に対して、一つ手前の地点の一
時点過去の熱媒体温度をもって、現時点の現在の熱媒体
温度と推定し、しかも、数箇所の熱媒体温度の実測値
は、常にその地点の現在の温度として、順次繰り返され
ることにより、全地点の熱媒体の温度を一々実測するこ
となく、最低限の実測地点の温度をもって、順次他の地
点の推定温度を訂正することになる。
[Operation] The present invention focuses on the fact that the temperature of the heat medium at each point varies according to the flow direction of the heat medium itself.
That is, with respect to the flow direction of the heat medium, the heat medium temperature at one point in the past one point before is estimated as the current heat medium temperature at the present time, and the measured values of the heat medium temperatures at several points are: By always repeating the current temperature at that point in sequence, without actually measuring the temperature of the heat medium at all points one by one, correcting the estimated temperature at other points in sequence with the minimum measured point temperature. Become.

これにより、蓄熱槽内で不連続的なプロフィールを示
す熱媒体の温度分布に適した推定を行うことができる。
This makes it possible to perform estimation suitable for the temperature distribution of the heat medium having a discontinuous profile in the heat storage tank.

[実施例] 次に、本発明の一実施例について図面を参照して説明
する。
Example Next, an example of the present invention will be described with reference to the drawings.

なお、本実施例は、第3図に示した従来例の冷水槽1
をも参照して説明する。
In this embodiment, the conventional cold water tank 1 shown in FIG.
This will be described with reference to FIG.

まず、第2図に示すように、冷水槽1は、互いに連通
した複数の隔壁11,11,…によって仕切られた複数の水槽
群によって構成され、各水槽群の容量は夫々同一ではな
い。そこで、これら複数の水槽群からなる冷水槽1を一
つの大きな器とみなして、これを複数の水槽群に拘ら
ず、均等に50分割する。分割した1槽当りの容量をWOと
し、低温側末端槽(図面左側)から高温側末端槽(図面
右側)へ順に番号#1〜#50を付した50個の仮想水槽を
設定した。そして、低温側端末槽熱媒体温度検出器8と
高温側端末槽熱媒体温度検出器9とを、低温側末端槽#
1及び高温側末端槽#50に夫々設置し、さらに、冷水槽
1の規模に応じて、数槽から10槽置きに、複数の中間熱
媒体温度検出器10を設置した。
First, as shown in FIG. 2, the chilled water tank 1 is composed of a plurality of water tank groups partitioned by a plurality of partition walls 11, 11,... Communicating with each other, and the capacity of each water tank group is not the same. Therefore, the cold water tank 1 composed of the plurality of water tank groups is regarded as one large vessel, and this is equally divided into 50 regardless of the plurality of water tank groups. The capacity per divided tank is WO, and 50 virtual water tanks numbered # 1 to # 50 are set in order from the low-temperature terminal tank (left side in the drawing) to the high-temperature terminal tank (right side in the drawing). Then, the low-temperature terminal tank heat medium temperature detector 8 and the high-temperature terminal tank heat medium temperature detector 9 are connected to the low-temperature terminal tank #.
1 and the high-temperature side terminal tank # 50, respectively, and furthermore, a plurality of intermediate heat medium temperature detectors 10 were installed every several to ten tanks according to the scale of the cold water tank 1.

次に、第1図のフローチャートをも参照して、冷水槽
1の熱媒体温度の推定手順について説明する。
Next, the procedure for estimating the temperature of the heat medium in the cold water tank 1 will be described with reference to the flowchart of FIG.

まず、1次及び2次冷水流量計6,7により、1次冷水
流量WRと負荷流量WLを計測し(S1)、その差から槽内流
量WTを算出する(S2)。次に、槽内流量WTの累積値WSを
演算し(S3)、この累積値WSの絶対値が一槽当りの容量
WOとなる時点を監視する(S4)。そして、この時点にお
ける累積値WSの正負を識別する(S5)。正の場合(WS>
0)は、1次冷水流量WRの方が負荷流量WLよりも多いこ
とから、低温側から高温側へ流れる槽内水流となってい
るため、現時点の各仮想水槽の水流の温度(Tk,O)を、
一つ手前の水槽、即ち、番号#の一つ少ない一時限前の
水槽の温度(Tk−1,−1)をもって、当該温度とみなす
(S6)。逆に、負の場合(WS<0)は、負荷流量WLの方
が1次冷水流量WRよりも多いことから、高温側から低温
側へ流れる槽内水流となっており、番号#の一つ多い一
時限前の水槽の水流温度(Tk+1,1)をもって、現時点
の各仮想水槽の水流の温度(Tk,O)とみなす(S7)。但
し、低温側端末槽熱媒体温度検出器8と高温側端末槽熱
媒体温度検出器9及び中間熱媒体温度検出器10が設置さ
れている水槽#1,…50では、現時点で計測した温度をも
って、水流温度(T1,0)、…(T50,0)とする(S8)。
First, the primary chilled water flow rate WR and the load flow rate WL are measured by the primary and secondary chilled water flow meters 6, 7 (S1), and the tank flow rate WT is calculated from the difference (S2). Next, the cumulative value WS of the tank flow rate WT is calculated (S3), and the absolute value of the cumulative value WS is calculated as the capacity per tank.
The time point at which WO is reached is monitored (S4). Then, whether the accumulated value WS at this time is positive or negative is identified (S5). Positive (WS>
0) is that the primary chilled water flow rate WR is larger than the load flow rate WL, so that the water flow in the tank flows from the low-temperature side to the high-temperature side, so the current water temperature (Tk, O ),
The temperature (Tk−1, −1) of the immediately preceding water tank, that is, the water tank immediately before the temporary limit having the smaller number #, is regarded as the temperature (S6). Conversely, in the negative case (WS <0), since the load flow rate WL is larger than the primary chilled water flow rate WR, the water flow in the tank flows from the high-temperature side to the low-temperature side. The water flow temperature (Tk + 1,1) of the water tank before the temporary limit is regarded as the current water flow temperature (Tk, O) of each virtual water tank (S7). However, in the water tanks # 1,... 50 in which the low-temperature terminal tank heat medium temperature detector 8, the high-temperature terminal tank heat medium temperature detector 9 and the intermediate heat medium temperature detector 10 are installed, the temperature measured at the present time is , Water flow temperature (T1,0),... (T50,0) (S8).

なお、本実施例では50個の仮想水槽を設定したが、温
度分布のプロフィール精度の要求に従い、仮想水槽の個
数を増減させることは、本発明の趣旨に含まれることは
明白である。
In the present embodiment, 50 virtual water tanks are set. However, it is obvious that increasing or decreasing the number of virtual water tanks in accordance with the requirement of the profile accuracy of the temperature distribution is included in the gist of the present invention.

[発明の効果] 以上の説明のとおり、本発明によれば、蓄熱槽内の熱
媒体温度を検出する熱媒体温度検出器の数を、より低減
しても、蓄熱槽の正確な蓄熱状態の把握ができるから、
熱媒体温度検出器の設置のための工事コストを削減する
ことができ、計装工事の柔軟性を向上させ、蓄熱槽の有
効な機能を積極的に発揮させることができる。
[Effects of the Invention] As described above, according to the present invention, even if the number of heat medium temperature detectors for detecting the temperature of the heat medium in the heat storage tank is reduced, the accurate heat storage state of the heat storage tank can be reduced. Because I can understand
The construction cost for installing the heat medium temperature detector can be reduced, the flexibility of the instrumentation construction can be improved, and the effective function of the heat storage tank can be positively exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係わる制御手順を示すフロ
ーチャート、第2図は第1図の実施例に係わる仮想水槽
の概念図、第3図は冷水槽の冷水の循環状態を表すブロ
ック図である。 1……冷水槽、2……冷凍機、3……負荷装置、4……
1次冷水ポンプ、5……2次冷水ポンプ、6……1次冷
水流量計、7……2次冷水流量計、8……低温側端末槽
熱媒体温度検出器、9……高温側端末槽熱媒体温度検出
器、10……中間熱媒体温度検出器、11……隔壁。
1 is a flowchart showing a control procedure according to one embodiment of the present invention, FIG. 2 is a conceptual diagram of a virtual water tank according to the embodiment of FIG. 1, and FIG. 3 is a block showing a state of circulation of cold water in a cold water tank. FIG. 1 ... Chilled water tank, 2 ... Refrigerator, 3 ... Load device, 4 ...
Primary chilled water pump, 5… Secondary chilled water pump, 6… Primary chilled water flow meter, 7… Secondary chilled water flow meter, 8… Low temperature terminal bath heating medium temperature detector, 9… High temperature side terminal Tank heat medium temperature detector, 10 ... Medium heat medium temperature detector, 11 ... Partition wall.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蓄熱槽内を第1の位置から第2の位置へ流
動する熱媒体の温度のプロフィールを推定する熱媒体温
度分布のプロフィール推定方法において、 互いに隣接する熱媒体のうちのより前記第2の位置側に
位置する熱媒体の現時点の温度を、前記互いに隣接する
熱媒体のうちのより前記第1の位置側に位置する熱媒体
の過去の温度とみなし、 前記互いに隣接する熱媒体のうちのより前記第2の位置
側に位置する熱媒体の現時点の温度が、当該熱媒体温度
の実測値として与えられるときは、該実測値を当該現時
点の温度とすることを特徴とする熱媒体温度分布のプロ
フィール推定方法。
1. A method for estimating a profile of a temperature distribution of a heat medium for estimating a temperature profile of a heat medium flowing from a first position to a second position in a heat storage tank, comprising the steps of: Considering the current temperature of the heat medium located on the second position side as the past temperature of the heat medium located on the first position side of the heat medium adjacent to each other, the heat medium adjacent to each other Wherein, when the current temperature of the heat medium located on the second position side is given as an actual measured value of the heat medium temperature, the actual measured value is used as the current temperature. Method for estimating the profile of the medium temperature distribution.
【請求項2】熱媒体を蓄える蓄熱槽と、 該蓄熱槽の第1及び第2の位置に位置する熱媒体の温度
を夫々実測する第1及び第2の端末槽熱媒体温度検出器
と、 該第1及び第2の位置間に位置する熱媒体の温度を実測
する1以上の中間熱媒体温度検出器と、 前記第1の位置側に位置する熱媒体に負荷を与えて前記
第2の位置側に流し込む負荷部と、 前記第2の位置側に位置する熱媒体を冷却又は加熱して
前記第1の位置側に流し込む熱源部と、 前記熱源部より流し込まれた熱源流量を計測する熱源流
量計測部と、 前記負荷部より流し込まれた負荷流量を計測する負荷流
量計測部と、 前記熱源流量と負荷流量との単位時間当りの流量差を算
出する流量差演算部と、 該流動差を累積して累積流量差を算出する累積流量差演
算部と、 該累積流量差が所定容量を越えた時に当該累積流量差に
基づいて前記蓄熱槽内の前記第1及び第2の位置間にお
ける熱媒体の流動方向を判定する流動方向判定部と、 該流動方向が前記第1の位置側から第2の位置側に向か
っている場合は、互いに隣接する熱媒体のうちのより前
記第2の位置側に位置する熱媒体の現時点の温度を、前
記互いに隣接する熱媒体のうちのより前記第1の位置側
に位置する熱媒体の過去の温度と推定し、 前記流動方向が前記第2の位置側から第1の位置側に向
かっている場合は、互いに隣接する熱媒体のうちのより
前記第1の位置側に位置する熱媒体の現時点の温度を、
前記互いに隣接する熱媒体のうちのより前記第2の位置
側に位置する熱媒体の過去の温度と推定する熱媒体温度
推定部と、 前記熱媒体温度推定部により推定された熱媒体の現時点
の温度のうちの前記第1及び第2の熱媒体温度検出器と
前記中間熱媒体温度検出器とにより実測される各地点の
現時点の温度を、現時点の各実測値に変更する推定温度
変更部とを有することを特徴とする熱媒体温度分布のプ
ロフィール推定装置。
2. A heat storage tank for storing a heat medium, first and second terminal tank heat medium temperature detectors for actually measuring the temperatures of the heat medium located at first and second positions of the heat storage tank, respectively. One or more intermediate heat medium temperature detectors for actually measuring the temperature of the heat medium located between the first and second positions; and applying a load to the heat medium located at the first position side to produce the second heat medium temperature detector. A load section that flows into the position side; a heat source section that cools or heats the heat medium that is positioned in the second position side to flow into the first position side; and a heat source that measures the flow rate of the heat source that flows in from the heat source section. A flow rate measurement unit, a load flow rate measurement unit that measures a load flow rate flowing from the load unit, a flow rate difference calculation unit that calculates a flow rate difference per unit time between the heat source flow rate and the load flow rate, and the flow rate difference. An accumulative flow difference calculator for accumulating and calculating an accumulative flow difference; A flow direction determining unit that determines a flow direction of the heat medium between the first and second positions in the heat storage tank based on the accumulated flow rate difference when a predetermined capacity is exceeded; When moving from the position side to the second position side, the current temperature of the heat medium located at the second position side among the heat medium adjacent to each other is changed to the current temperature of the heat medium adjacent to the second position side. It is estimated from the past temperature of the heat medium located on the first position side, and when the flow direction is from the second position side to the first position side, the heat medium among the heat medium adjacent to each other The current temperature of the heat medium located on the first position side from
A heat medium temperature estimating unit for estimating a past temperature of the heat medium located closer to the second position than the heat medium adjacent to each other, and a current time of the heat medium estimated by the heat medium temperature estimator. An estimated temperature change unit that changes the current temperature of each point actually measured by the first and second heat medium temperature detectors and the intermediate heat medium temperature detector among the temperatures to actual measured values at the current time; An apparatus for estimating a profile of a temperature distribution of a heat medium, comprising:
JP3390788A 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution Expired - Lifetime JP2628061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3390788A JP2628061B2 (en) 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3390788A JP2628061B2 (en) 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution

Publications (2)

Publication Number Publication Date
JPH01210832A JPH01210832A (en) 1989-08-24
JP2628061B2 true JP2628061B2 (en) 1997-07-09

Family

ID=12399586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3390788A Expired - Lifetime JP2628061B2 (en) 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution

Country Status (1)

Country Link
JP (1) JP2628061B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568378B (en) * 2014-12-31 2017-05-03 中国科学院南海海洋研究所 Oceanic turbulence fixed point mixer and using method thereof

Also Published As

Publication number Publication date
JPH01210832A (en) 1989-08-24

Similar Documents

Publication Publication Date Title
US4611470A (en) Method primarily for performance control at heat pumps or refrigerating installations and arrangement for carrying out the method
KR100363823B1 (en) Ice heat storage cooling unit
DK2641071T3 (en) Determination of the heat flow starting from a heat transporting medium
ES2834052T3 (en) Procedure for determining a state of charge of a latent heat store
CN106840458B (en) Multi-temperature sensor fusion method based on Extended Kalman filter
US20190187642A1 (en) Method and system for controlling temperature of heating element
US20170176032A1 (en) Virtual flow measurement system
Saari et al. Comparison of power plant steam condenser heat transfer models for on-line condition monitoring
JPH0989546A (en) Ice thickness measuring device
JP5013974B2 (en) Method and apparatus for estimating cooling water temperature
Jensen et al. Saturated forced-convective boiling heat transfer with twisted-tape inserts
JP2628061B2 (en) Method and apparatus for estimating profile of heat medium temperature distribution
JPH08273939A (en) Gas-insulated transformer
JP2017053758A (en) Relevant information setting method, flow velocity measurement method, relevant information setting system and flow velocity measurement system
US20140216710A1 (en) Method For Operating A Liquid-To-Air Heat Exchanger Device
WO2000042365A1 (en) Freeze point protection for water cooled chillers
GB2612733A (en) Methods and systems for tracking thermal profile of hot water storage tanks
JP2530411B2 (en) Ice thickness measuring device for ice heat storage device
JP6576746B2 (en) Geothermal heat source system, target value determination method, and operation method of geothermal heat source system
JP3608655B2 (en) Refrigeration capacity test method and apparatus
JP2007240130A (en) Heat storage device, and method for measuring heat storage quantity
JPH02309141A (en) Controlling method for ice thermal accumulation type air conditioning system
CN110411594A (en) A kind of power device tube core temperature estimation method and equipment
JPS6258124A (en) Apparatus for measuring heat quantity
JP3217113B2 (en) Thermal storage operation method for thermal storage tank

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term