JPH01210832A - Method and device for estimating profile of heat medium temperature distribution - Google Patents

Method and device for estimating profile of heat medium temperature distribution

Info

Publication number
JPH01210832A
JPH01210832A JP3390788A JP3390788A JPH01210832A JP H01210832 A JPH01210832 A JP H01210832A JP 3390788 A JP3390788 A JP 3390788A JP 3390788 A JP3390788 A JP 3390788A JP H01210832 A JPH01210832 A JP H01210832A
Authority
JP
Japan
Prior art keywords
temperature
heat medium
flow rate
heat
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3390788A
Other languages
Japanese (ja)
Other versions
JP2628061B2 (en
Inventor
Hitoshi Tamate
仁 玉手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON JOHNSON CONTROLS KK
Original Assignee
NIPPON JOHNSON CONTROLS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON JOHNSON CONTROLS KK filed Critical NIPPON JOHNSON CONTROLS KK
Priority to JP3390788A priority Critical patent/JP2628061B2/en
Publication of JPH01210832A publication Critical patent/JPH01210832A/en
Application granted granted Critical
Publication of JP2628061B2 publication Critical patent/JP2628061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To understand an exact heat reserved state of a heat storage tank even if the number of heat medium temperature detectors by estimating the past heating medium temperature of one time point of a spot of this side by one against the flow direction of the heat medium, to be the present heat medium temperature of the present spot. CONSTITUTION:By primary and secondary chilled water flow meters 6, 7, a primary chilled water flow rate and a load flow rate are measured, and from its difference, an in-tank flow rate is calculated. Subsequently, a cumulative value of the in-tank flow rate is calculated, and a time point of an absolute value of this cumulative value goes to capacity per one tank is monitored. Next, whether the cumulative value at this time point is positive or negative is discriminated. When said value is positive, the primary chilled water flow rate is more than the load flow rate, therefore, as for the temperature of a water flow of each virtual water tank of the present time point, a temperature of a water tank of this side by one is regarded as its temperature. When said value is negative, the foregoing is reversed. However, in case of water tanks #1...50 in which a low temperature side terminal tank heat medium temperature detector 8, a high temperature side terminal tank heat medium temperature detector 9 and an intermediate heat medium temperature detector 10 are installed, a temperature which is measured at the present time point is set as a water flow temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、蓄熱槽内の熱媒体の温度分布のプロフィール
を推定する方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and an apparatus for estimating the temperature distribution profile of a heat medium in a heat storage tank.

[゛従来の技術] 従来の蓄熱槽は、第3図に示すように、まず、蓄熱槽で
ある冷水槽1の高温側端末梢(図面右側)から1次冷水
ポンプ4で汲み上げた冷水を、1次冷水流Ji 泗6で
、その1次冷水流J(WRを計測し、そして、冷凍R2
によって冷却して、冷水槽1の低温側端末WI(図面左
側)に戻し、一方、冷水槽1の低温側端末梢から2次冷
水ポンプ5によって汲み上げた冷水を、2次冷水流量計
7で、負荷流量WLを計測し、そして、負荷装置3で吸
熱させて、高温側端末槽に戻している6即ち、1次冷水
流量WRは、冷凍機2の運転状況によって決定され、ま
た、負荷流量WLは、負荷装置3の運転状況及びその負
荷量によって決定される。従って、両者の差が、冷水槽
1の槽内流量WTを生じることになる。しかも、冷水槽
1は、一般に、互いに連通ずる複数の隔壁(図示せず)
によって仕切られた複数の水槽群によって構成されてい
るため、冷水の温度は不連続的に推移している。
[Prior Art] As shown in FIG. 3, a conventional heat storage tank first pumps cold water from the high-temperature side end (right side in the drawing) of a cold water tank 1, which is a heat storage tank, by a primary cold water pump 4. Measure the primary cold water flow J (WR) at 6, and then
On the other hand, the cold water pumped up from the low temperature side end WI of the cold water tank 1 by the secondary cold water pump 5 is cooled by the secondary cold water flow meter 7. The load flow rate WL is measured, and the load device 3 absorbs heat and returns it to the high temperature side terminal tank 6. In other words, the primary cold water flow rate WR is determined by the operating status of the refrigerator 2, and the load flow rate WL is determined by the operating status of the load device 3 and its load amount. Therefore, the difference between the two results in the in-tank flow rate WT of the cold water tank 1. Moreover, the cold water tank 1 generally includes a plurality of partition walls (not shown) that communicate with each other.
The temperature of the cold water fluctuates discontinuously because it is composed of multiple groups of water tanks separated by .

よって、冷水槽1内の冷却水の水温を測定する場合は、
単に、冷水槽1の槽内の一ケ所の冷水温度を測定しただ
けでは、熱媒体の温度を正確に把握することができない
ことから、複数の熱媒体温度検出器を必要としていた。
Therefore, when measuring the temperature of the cooling water in the cold water tank 1,
Simply measuring the cold water temperature at one location in the cold water tank 1 does not accurately determine the temperature of the heat medium, so a plurality of heat medium temperature detectors are required.

[発明が解決しようとする課題] しかしながら、本来、蓄熱槽に蓄えられた熱媒体の正確
な温度の測定には、全槽に亘って、その熱媒体の温度を
測定することが好ましいが、取付は場所の制約及び費用
等により、実現困難であるのが実状であり、一方、その
熱媒体温度検出器の数を減らせば、正確な熱媒体温度の
把握が不可能であるという二律背反した問題がある。
[Problems to be Solved by the Invention] However, in order to accurately measure the temperature of the heat medium stored in a heat storage tank, it is preferable to measure the temperature of the heat medium across all tanks. The reality is that this is difficult to realize due to space constraints and costs. On the other hand, if the number of heat medium temperature detectors is reduced, it is impossible to accurately grasp the heat medium temperature, which is a trade-off problem. be.

しかも、近年、熱源装置とその負荷装置は、互いに時間
的にずらして運転稼働される場合が多く、例えば、冷水
等の熱媒体を生産する冷凍機を深夜運転し、そのエネル
ギーを蓄熱槽に蓄えて、空調機の昼間の運転時に吸熱さ
せて、熱源として活用することにより、利金の安価な深
夜電力を有効に利用する試みがある。このため、蓄熱運
転時、放熱運転時、及び蓄熱・放熱同時運転時において
、熱源装置を最適運転制御するためには、その蓄熱槽に
蓄えられた熱媒体の温度分布のプロフィールを、予め、
正確に把握しなければならないという強い要請がある。
Moreover, in recent years, heat source devices and their load devices are often operated at different times. For example, a refrigerator that produces a heat medium such as cold water is operated late at night, and the energy is stored in a heat storage tank. There is an attempt to make effective use of low-interest late-night electricity by absorbing heat during daytime operation of air conditioners and using it as a heat source. Therefore, in order to optimally control the operation of the heat source device during heat storage operation, heat dissipation operation, and simultaneous heat storage and heat dissipation operation, the profile of the temperature distribution of the heat medium stored in the heat storage tank must be determined in advance.
There is a strong demand for accurate understanding.

そこで、本発明の技術的課題は、上記欠点に窪み、蓄熱
槽内で不連続な分布を示ず熱媒体のプロフィールを正確
に把握し、しかも、従来に較べて熱媒体温度検出器の設
置数を著しく低減した蓄熱槽の温度推定方式及びその推
定装置を提供することである。
Therefore, the technical problem of the present invention is to overcome the above-mentioned drawbacks, to accurately grasp the profile of the heat medium without showing discontinuous distribution in the heat storage tank, and to install fewer heat medium temperature detectors than in the past. An object of the present invention is to provide a method for estimating the temperature of a heat storage tank and an estimating device thereof, which significantly reduces the temperature.

[課題を解決する手段1 本発明によれば、蓄熱槽内を第1の位置から第2の位置
へ流動する熱媒体の温度のプロフィールを推定する熱媒
体温度分布のプロフィール推定方法において、互いに隣
接する熱媒体のうちのより前記第2の位置側に位置する
熱媒体の現時点の温度を、前記互いに隣接する熱媒体の
うちのより前記第1の位置側に位置する熱媒体の過去の
温度とみなし、前記互いに隣接する熱媒体のうちのより
前記第2の位置側に位置する熱媒体の現時点の温度が、
当該熱媒体温度の実測値として与えられるときは、該実
測値を当該現時点の温度とすることを特徴とする熱媒体
温度分布のプロフィール推定方法が得られる。
[Means for Solving the Problems 1] According to the present invention, in a method for estimating a profile of a heat medium temperature distribution that estimates a temperature profile of a heat medium flowing in a heat storage tank from a first position to a second position, The current temperature of the heat medium located closer to the second position among the heat media that Assuming, the current temperature of the heating medium located closer to the second position among the heating mediums adjacent to each other is,
When the actual measurement value of the heating medium temperature is given, a method for estimating the profile of the heating medium temperature distribution is obtained, which is characterized in that the actual measurement value is used as the current temperature.

更に9本発明によれば、熱媒体を蓄える蓄熱槽と、該蓄
熱槽の第1及び第2の位置に位置する熱媒体の温度を夫
々実測する第1及び第2の端末槽熱媒体温度検出器と、
該第1及び第2の位置間に位置する熱媒体の温度を実測
する1以上の中間熱媒体温度検出器と、前記第1の位置
に位置する熱媒体に負荷を与えて前記第2の位置側に流
し込む負荷部と、前記第2の位置側に位置する熱媒体を
冷却又は加熱して前記第1の位置側に流し込む熱源部と
、前記熱源部より流し込まれた熱源流量を計測する熱源
流量計測部と、前記負荷部より流し込まれた負荷流量を
計測する負荷流量計測部と、前記熱′J!X流量と負荷
流量との単位時間当りの流量差を算出する流量差演算部
と、該流動差を累積して累積流量差を算出する累積流量
差演算部と、該累積流量差が所定容量を越えた時に当該
累積流量差に基づいて前記蓄熱槽内の前記第1及び第2
の位置間における熱媒体の流動方向を判定する流動方向
判定部と、該流動方向が前記第1の位置側から第2の位
置側に向かっている場合は、互いに隣接する熱媒体のう
ちのより前記第2の位置側に位置する熱媒体の現時点の
温度を、前記互いに隣接する熱媒体のうちのより前記第
1の位置側に位置する熱媒体の過去の温度と推定し、前
記流動方向が前記第2の位置側から第1の位置側に向か
っている場合は、互いに隣接する熱媒体のうちのより前
記第1の位置側に位置する熱媒体の現時点の温度を、前
記互いに隣接する熱媒体のうちのより前記第2の位置側
に位置する熱媒体の過去の温度と推定する熱媒体温度推
定部と、前記熱媒体温度推定部により推定された熱媒体
の現時点の温度のうちの前記第1及び第2の熱媒体温度
検出器と前記中間熱媒体温度検出器とにより実測される
各地点の現時点の温度を、現時点の各実測値に変更する
推定温度変更部とを有することを特徴とする熱媒体温度
分布のプロフィール推定装置が得られる。
Furthermore, according to the present invention, a heat storage tank for storing a heat medium, and first and second terminal tank heat medium temperature detection for actually measuring the temperature of the heat medium located at the first and second positions of the heat storage tank, respectively. The vessel and
one or more intermediate heat medium temperature detectors that actually measure the temperature of the heat medium located between the first and second positions; a load section that flows into the side, a heat source section that cools or heats the heat medium located on the second position side and flows it into the first position side, and a heat source flow rate that measures the flow rate of the heat source poured from the heat source section. a measuring section, a load flow rate measuring section that measures the load flow rate poured from the load section, and the heat 'J! A flow rate difference calculation unit that calculates the flow rate difference per unit time between the X flow rate and the load flow rate, a cumulative flow difference calculation unit that calculates the cumulative flow difference by accumulating the flow difference, and a the first and second in the heat storage tank based on the cumulative flow rate difference.
a flow direction determination unit that determines the flow direction of the heat medium between the positions, and when the flow direction is from the first position side to the second position side, a flow direction determining unit that determines the flow direction of the heat medium between the positions, and when the flow direction is from the first position side to the second position side, The current temperature of the heating medium located closer to the second position is estimated to be the past temperature of the heating medium located closer to the first position among the mutually adjacent heating media, and the flow direction is When the direction is from the second position side to the first position side, the current temperature of the heat medium located closer to the first position among the mutually adjacent heat mediums is determined as the temperature of the heat medium located closer to the first position. a heating medium temperature estimating unit that estimates the past temperature of a heating medium located closer to the second position among the media; and a heating medium temperature estimating unit that estimates the past temperature of the heating medium located closer to the second position, and It is characterized by having an estimated temperature changing unit that changes the current temperature at each point actually measured by the first and second heat medium temperature detectors and the intermediate heat medium temperature detector to each current actual measurement value. A profile estimating device for heat medium temperature distribution is obtained.

[作用] 本発明は、各地点の熱媒体の温度が熱媒体自身の流動方
向にしたかって変動することに着目するものである。即
ち、熱媒体の流動方向に対して、一つ手前の地点の一時
点過去の熱媒体温度をもって、現地点の現在の熱媒体温
度と推定し、しかも、数箇所の熱媒体温度の実測値は、
常にその地点の現在の温度として、順次繰り返されるこ
とにより、全地点の熱媒体の温度を一々実測することな
く、最低限の実測地点の温度をもって、順次他の地点の
推定温度を訂正することになる。
[Function] The present invention focuses on the fact that the temperature of the heat medium at each point fluctuates in the direction of flow of the heat medium itself. In other words, the current temperature of the heat medium at the current point is estimated from the temperature of the heat medium at a previous point in the past in the flow direction of the heat medium, and the actual measured values of the heat medium temperature at several locations are ,
By sequentially repeating the current temperature at that point, the temperature at the minimum actual measurement point can be used to correct the estimated temperature at other points one after another, without having to actually measure the temperature of the heat medium at all points one by one. Become.

これにより、蓄熱槽内で不連続的なプロフィールを示す
熱媒体の温度分布に適した推定を行うことかできる。
Thereby, it is possible to perform an estimation suitable for the temperature distribution of the heat medium that shows a discontinuous profile within the heat storage tank.

[実施例] 次に、本発明の一実施例について図面を参照して説明す
る。
[Example] Next, an example of the present invention will be described with reference to the drawings.

なお、本実施例は、第3図に示した従来例の冷水槽1を
も参照して説明する。
The present embodiment will be described with reference to the conventional cold water tank 1 shown in FIG.

まず、第2図に示すように、冷水槽1は、互いに連通し
た複数の隔壁11,11.・・・によって仕切られた複
数の水槽群によって構成され、各水槽群の容量は夫々同
一ではない、そこで、これら複数の水槽群からなる冷水
槽1を一つの大きな器とみなして、これを複数の水槽群
に拘らず、均等に50分割する6分割したII当りの容
量をWOとし、低温側末端槽(図面左側)から高温側末
端槽(図面右側)へ順に番号#1〜#50を1・fした
50個の仮想水槽を設定した6そして、低温側端末梢熱
媒体温度検出器8と高温側端末梢熱媒体温度検出器9と
を、低温側末端槽#1及び高温側末端槽#50に夫々設
置し、さらに、冷水槽1の規模に応じて、数種から10
槽置きに、複数の中間熱媒体温度検出器10を設置した
First, as shown in FIG. 2, the cold water tank 1 includes a plurality of partition walls 11, 11. It is composed of a plurality of aquarium groups partitioned by ..., and the capacity of each aquarium group is not the same.Therefore, the cold water tank 1 consisting of these plurality of aquarium groups is regarded as one large container, and it is divided into several aquariums. Regardless of the water tank group, the capacity per II divided into 50 equal parts is WO, and the numbers #1 to #50 are numbered 1 from the low temperature end tank (left side of the drawing) to the high temperature end tank (right side of the drawing).・Fifty virtual water tanks were set 6, and the low temperature side end peripheral heat medium temperature detector 8 and the high temperature side end peripheral heat medium temperature sensor 9 were set as the low temperature side end tank #1 and the high temperature side end tank #1. 50, and furthermore, depending on the scale of the cold water tank 1, from several types to 10
A plurality of intermediate heat medium temperature detectors 10 were installed in the tank.

次に、第1図のフローチャートをも参照して、冷水槽1
の熱媒体温度の推定手順について説明する。
Next, referring also to the flowchart in Fig. 1, the cold water tank 1
The procedure for estimating the heat medium temperature will be explained below.

まず、1次及び2次冷水流量計6,7により、1次冷水
流星WRと負荷流量WLを計測しくSl)、その差から
槽内流量WTを算出する(S2)。
First, the primary and secondary cold water flowmeters 6 and 7 measure the primary cold water meteor WR and the load flow rate WL (Sl), and calculate the in-tank flow rate WT from the difference therebetween (S2).

次に、槽内流量WTの累積値W Sを演算しくS3)、
この累!a(B w sの絶対値が一槽当りの容量WO
となる時点を監視する(S4)。そして、この時点にお
ける累積値WSの正負を識別する(S5)。
Next, calculate the cumulative value WS of the flow rate WT in the tank (S3),
This series! The absolute value of a(B w s is the capacity per tank WO
The point in time is monitored (S4). Then, it is determined whether the cumulative value WS at this point is positive or negative (S5).

正の場合(WS>O)は、1次冷水流量WRの方が負荷
流量WLよりも多いことから、低温側から高温側へ流れ
る槽内水流となっているため、現時点の各仮想水槽の水
流の温度(Tk、O)を、一つ手前の水槽、即ち、番号
#の一つ少ない一時限前の水槽の温度(Tk−1,−1
)をもって、当該温度とみなす(S6)。逆に、負の場
合(WS<O)は、負荷流量WLの方が1次冷水流量W
Rよりも多いことから、高温側から低温側へ流れる槽内
水流となっており、番号#の一つ多い一時限前の水槽の
水流温度(Tk+1.1)をもって、現時点の各仮想水
槽の水流の温度(Tk、O’lとみなす(S7)。但し
、低温側端末梢熱媒体温度検出器8と高温側端末梢熱媒
体温度検出器9及び中間熱媒体温度検出器10が設置さ
れている水槽#1.・・・50では、現時点で計測しな
温度をもって、水流温度(TI、O)、・・・(T2O
,O)とする(S8)。
If it is positive (WS > O), the primary cold water flow rate WR is greater than the load flow rate WL, so the water flow in the tank flows from the low temperature side to the high temperature side, so the water flow in each virtual tank at the moment The temperature (Tk, O) of the previous aquarium, that is, the temperature of the aquarium before the temporary period with one less number # (Tk-1, -1
) is regarded as the relevant temperature (S6). Conversely, if it is negative (WS<O), the load flow rate WL is higher than the primary chilled water flow rate W.
Since the number is higher than R, the water flow in the tank flows from the high temperature side to the low temperature side, and the water flow in each virtual tank at the present time is determined by the water flow temperature (Tk + 1.1) of the tank before the temporary period with one number # higher than the water flow in the tank. temperature (Tk, O'l) (S7).However, a low temperature side end peripheral heat medium temperature detector 8, a high temperature side end peripheral heat medium temperature detector 9, and an intermediate heat medium temperature detector 10 are installed. In water tank #1...50, the water flow temperature (TI, O),... (T2O
, O) (S8).

なお、本実施例では50個の仮想水槽を設定したが、温
度分布のプロフィール精度の要求に従い、仮想水槽の個
数を増減させることは、本発明の趣旨に素止れることは
明白である。
Although 50 virtual water tanks were set in this embodiment, it is clear that increasing or decreasing the number of virtual water tanks in accordance with the requirements for temperature distribution profile accuracy is within the spirit of the present invention.

[発明の効果] 以上の説明のとおり、本発明によれば、蓄熱槽内の熱媒
体温度を検出する熱媒体温度検出器の数を、より低減し
ても、H熱槽の正確な蓄熱状態の把握ができるから、熱
媒体温度検出器の設置のための工事コストを削減するこ
とができ、計装工事の柔軟性を向上させ、蓄熱槽の有効
な機能を積極的に発揮させることができる。
[Effects of the Invention] As described above, according to the present invention, even if the number of heat medium temperature detectors that detect the heat medium temperature in the heat storage tank is further reduced, an accurate heat storage state of the H heat tank can be maintained. This allows us to reduce the construction costs for installing heat medium temperature detectors, improve the flexibility of instrumentation work, and actively utilize the effective functions of heat storage tanks. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる制御手順を示すフロ
ーチャート、第2図は第1図の実施例に係わる仮想水槽
の概念図、第3図は冷水槽の冷水の循環状態を表すブロ
ック図である。 1・・・冷水槽、2・・・冷凍機、3・・・負荷装置、
4・・・1次冷水ポンプ、5・・・2次冷水ポンプ、6
・・・1次冷水流量計、7・・・2次冷水流量計、8・
・・低温側端末槽熱奴体温度検出器、9・・・高温側端
末梢熱媒体温度検出器、10・・・中間熱媒体温度検出
器、11・・・隔壁。 第1図 L−1f番号 第2図 #l   1!2   コ3   HI5  116 
  #7     コ47  $48 1149  $
508:低温例端末槽温度検出器 9:高温側端末槽温度検出器 lO:中間槽温度検出器 第3図
FIG. 1 is a flowchart showing a control procedure according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of a virtual water tank according to the embodiment of FIG. 1, and FIG. 3 is a block diagram showing the state of circulation of cold water in the cold water tank. It is a diagram. 1... Cold water tank, 2... Freezer, 3... Load device,
4...Primary cold water pump, 5...Secondary cold water pump, 6
...Primary chilled water flow meter, 7...Secondary chilled water flow meter, 8.
...Low temperature side terminal tank thermal body temperature detector, 9...High temperature side end peripheral heat medium temperature detector, 10...Intermediate heat medium temperature detector, 11...Partition wall. Figure 1 L-1f number Figure 2 #l 1!2 Ko3 HI5 116
#7 Ko47 $48 1149 $
508: Low temperature example terminal tank temperature detector 9: High temperature side terminal tank temperature detector lO: Intermediate tank temperature detector Fig. 3

Claims (1)

【特許請求の範囲】 1、蓄熱槽内を第1の位置から第2の位置へ流動する熱
媒体の温度のプロフィールを推定する熱媒体温度分布の
プロフィール推定方法において、互いに隣接する熱媒体
のうちのより前記第2の位置側に位置する熱媒体の現時
点の温度を、前記互いに隣接する熱媒体のうちのより前
記第1の位置側に位置する熱媒体の過去の温度とみなし
、前記互いに隣接する熱媒体のうちのより前記第2の位
置側に位置する熱媒体の現時点の温度が、当該熱媒体温
度の実測値として与えられるときは、該実測値を当該現
時点の温度とすることを特徴とする熱媒体温度分布のプ
ロフィール推定方法。 2、熱媒体を蓄える蓄熱槽と、 該蓄熱槽の第1及び第2の位置に位置する熱媒体の温度
を夫々実測する第1及び第2の端末槽熱媒体温度検出器
と、 該第1及び第2の位置間に位置する熱媒体の温度を実測
する1以上の中間熱媒体温度検出器と、前記第1の位置
側に位置する熱媒体に負荷を与えて前記第2の位置側に
流し込む負荷部と、前記第2の位置側に位置する熱媒体
を冷却又は加熱して前記第1の位置側に流し込む熱源部
と、前記熱源部より流し込まれた熱源流量を計測する熱
源流量計測部と、 前記負荷部より流し込まれた負荷流量を計測する負荷流
量計測部と、 前記熱源流量と負荷流量との単位時間当りの流量差を算
出する流量差演算部と、 該流動差を累積して累積流量差を算出する累積流量差演
算部と、 該累積流量差が所定容量を越えた時に当該累積流量差に
基づいて前記蓄熱槽内の前記第1及び第2の位置間にお
ける熱媒体の流動方向を判定する流動方向判定部と、 該流動方向が前記第1の位置側から第2の位置側に向か
っている場合は、互いに隣接する熱媒体のうちのより前
記第2の位置側に位置する熱媒体の現時点の温度を、前
記互いに隣接する熱媒体のうちのより前記第1の位置側
に位置する熱媒体の過去の温度と推定し、 前記流動方向が前記第2の位置側から第1の位置側に向
かっている場合は、互いに隣接する熱媒体のうちのより
前記第1の位置側に位置する熱媒体の現時点の温度を、
前記互いに隣接する熱媒体のうちのより前記第2の位置
側に位置する熱媒体の過去の温度と推定する熱媒体温度
推定部と、前記熱媒体温度推定部により推定された熱媒
体の現時点の温度のうちの前記第1及び第2の熱媒体温
度検出器と前記中間熱媒体温度検出器とにより実測され
る各地点の現時点の温度を、現時点の各実測値に変更す
る推定温度変更部とを有することを特徴とする熱媒体温
度分布のプロフィール推定装置。
[Claims] 1. In a heat medium temperature distribution profile estimation method for estimating a temperature profile of a heat medium flowing in a heat storage tank from a first position to a second position, among mutually adjacent heat mediums, The current temperature of the heat medium located closer to the second position is considered to be the past temperature of the heat medium located closer to the first position among the mutually adjacent heat media, and When the current temperature of a heating medium located closer to the second position among the heating mediums is given as an actual measurement value of the heating medium temperature, the actual measurement value is taken as the current temperature. A method for estimating the profile of heat medium temperature distribution. 2. A heat storage tank that stores a heat medium; first and second terminal tank heat medium temperature detectors that respectively measure the temperature of the heat medium located at the first and second positions of the heat storage tank; and one or more intermediate heat medium temperature detectors that actually measure the temperature of the heat medium located between the second positions, and applying a load to the heat medium located on the first position side to move the heat medium to the second position side. a load section into which the heat medium is poured, a heat source section which cools or heats the heat medium located on the second position side and flows it into the first position side, and a heat source flow rate measurement section which measures the flow rate of the heat source poured from the heat source section. a load flow rate measurement unit that measures the load flow rate poured from the load unit; a flow rate difference calculation unit that calculates the flow rate difference per unit time between the heat source flow rate and the load flow rate; a cumulative flow rate difference calculation unit that calculates a cumulative flow rate difference; and a flow rate of the heat medium between the first and second positions in the heat storage tank based on the cumulative flow rate difference when the cumulative flow rate difference exceeds a predetermined capacity. a flow direction determination unit that determines a direction; and when the flow direction is from the first position side to the second position side, a flow direction determination unit that is located closer to the second position side among mutually adjacent heat mediums; The current temperature of the heating medium is estimated to be the past temperature of the heating medium located closer to the first position among the adjacent heating mediums, and the flow direction is from the second position to the second position. 1, the current temperature of the heating medium located closer to the first position among the adjacent heating mediums,
A heating medium temperature estimation unit that estimates the past temperature of the heating medium located closer to the second position among the mutually adjacent heating mediums, and a current temperature of the heating medium estimated by the heating medium temperature estimation unit. an estimated temperature changing unit that changes the current temperature at each point actually measured by the first and second heat medium temperature detectors and the intermediate heat medium temperature detector to each actual measured value at the current time; A profile estimating device for heat medium temperature distribution, characterized in that it has:
JP3390788A 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution Expired - Lifetime JP2628061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3390788A JP2628061B2 (en) 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3390788A JP2628061B2 (en) 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution

Publications (2)

Publication Number Publication Date
JPH01210832A true JPH01210832A (en) 1989-08-24
JP2628061B2 JP2628061B2 (en) 1997-07-09

Family

ID=12399586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3390788A Expired - Lifetime JP2628061B2 (en) 1988-02-18 1988-02-18 Method and apparatus for estimating profile of heat medium temperature distribution

Country Status (1)

Country Link
JP (1) JP2628061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568378A (en) * 2014-12-31 2015-04-29 中国科学院南海海洋研究所 Oceanic turbulence fixed point mixer and using method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568378A (en) * 2014-12-31 2015-04-29 中国科学院南海海洋研究所 Oceanic turbulence fixed point mixer and using method thereof
CN104568378B (en) * 2014-12-31 2017-05-03 中国科学院南海海洋研究所 Oceanic turbulence fixed point mixer and using method thereof

Also Published As

Publication number Publication date
JP2628061B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
KR100363823B1 (en) Ice heat storage cooling unit
ES2834052T3 (en) Procedure for determining a state of charge of a latent heat store
DK2641071T3 (en) Determination of the heat flow starting from a heat transporting medium
CN104838191A (en) Advanced valve actuator with remote location flow reset
JPH0989546A (en) Ice thickness measuring device
US10823497B2 (en) Insulation-time determining device for a thermally insulated container
JPH08273939A (en) Gas-insulated transformer
EP1144924B1 (en) Freeze point protection for water cooling chillers
JPH01210832A (en) Method and device for estimating profile of heat medium temperature distribution
KR910002338B1 (en) Process for the monitoring of leaks in the primary circuit of a pressurized water nuclear reactor
GB2612733A (en) Methods and systems for tracking thermal profile of hot water storage tanks
JP2003314933A (en) Abnormality detecting device for heat pump heat exchanger
JPH02309141A (en) Controlling method for ice thermal accumulation type air conditioning system
JP2007240130A (en) Heat storage device, and method for measuring heat storage quantity
JP2717716B2 (en) refrigerator
JP3447178B2 (en) Control method of thermal storage air conditioning system
RU2138029C1 (en) Process determining heat consumption by local consumers who are members of united system of heat consumers
JPH0739875B2 (en) Method of grasping the remaining amount of heat storage in the heat storage tank
JP3217113B2 (en) Thermal storage operation method for thermal storage tank
EP4194791A1 (en) Determining a state-of-charge of a phase-change-material-based thermal energy storage device
JPH083376B2 (en) Judgment method of heat storage consumption in heat storage type heat supply system
SU932292A1 (en) Method of measuring heat consumption
Roumjanzev et al. Autonomous precision gas flow micrometer
CN116799341A (en) Bubble detection method for refrigeration pipeline system of energy storage equipment and refrigeration pipeline system
JPH03110330A (en) Method for measuring amount of heat accumulated in ice heat storage system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term