JPH06293932A - High strength heat resistant aluminum-base alloy and its production - Google Patents

High strength heat resistant aluminum-base alloy and its production

Info

Publication number
JPH06293932A
JPH06293932A JP6244492A JP6244492A JPH06293932A JP H06293932 A JPH06293932 A JP H06293932A JP 6244492 A JP6244492 A JP 6244492A JP 6244492 A JP6244492 A JP 6244492A JP H06293932 A JPH06293932 A JP H06293932A
Authority
JP
Japan
Prior art keywords
dispersed
intermetallic compound
alloy
base alloy
matrix phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6244492A
Other languages
Japanese (ja)
Inventor
Akira Kato
晃 加藤
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hidehiko Horikiri
秀彦 堀切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6244492A priority Critical patent/JPH06293932A/en
Publication of JPH06293932A publication Critical patent/JPH06293932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a high strength heat resistant Al-base alloy having high temp. strength higher than that of the conventional Al-base alloy. CONSTITUTION:This alloy consists of a matrix phase, which has a composition represented by the general formula AlaNibCod(wherein in 50=<=a<=95 atomic %, 0.5<=b<=35 atomic %, 0.5<=c<=15 atomic %, and 0.5<=d<=10 atomic %) and is composed of fine crystalline substances, and fine grains to be dispersed, which are dispersed into the matrix phase and composed of AlNiY intermetallic compound or AlNiYCo intermetallic compound. A rapidly solidified Al-base alloy is optimized as fine crystalline substance, and, by applying hot plastic working to the rapidly solidified Al-base alloy, proper amounts of fine grains to be dispersed with high thermal stability are precipitated and dispersed in optimum shape into the matrix phase of fine crystalline substance and, as a result, deformation in the matrix phase at high temp. can be sufficiently prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高硬度、高強度、高耐
摩耗性、高耐熱性に優れた高力耐熱アルミニウム基合金
に関し、特に高温強度に優れる高力耐熱アルミニウム基
合金と、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength heat resistant aluminum base alloy excellent in high hardness, high strength, high wear resistance and high heat resistance, and particularly to a high strength heat resistant aluminum base alloy excellent in high temperature strength and its It relates to a manufacturing method.

【0002】[0002]

【従来の技術】アモルファス合金、すなわち非晶質合金
は、物質を構成する原子の配列が結晶質合金のような長
周期規則性をもたないものと定義され、一般に溶融合金
の急冷、電着、蒸着、スパッタリング等の製法により得
られる。この非晶質合金は、対応する結晶質合金と比較
して、材料特性上で種々の優れた特性をもっていること
が知られている。
2. Description of the Related Art Amorphous alloys, that is, amorphous alloys are defined as those in which the arrangement of the atoms that make up a substance does not have the long-period regularity as in crystalline alloys, and are generally used for rapid cooling and electrodeposition of molten alloys. , Vapor deposition, sputtering and the like. It is known that this amorphous alloy has various excellent properties in terms of material properties as compared with the corresponding crystalline alloy.

【0003】アルミニウム(Al)基合金においても、
非晶質合金が得られることは従来から知られており、金
属−金属系非晶質合金としては、Al−Ln2元合金
(Ln=Y、La、Pr、Nd、Sm、Eu、Gd、T
b、Dy、Ho、Er、Tm、Yb)、あるいはAl−
Ln−TM3元合金(TM=V、Nb、Mo、Mn、F
e、Co、Ni)などがある。
Even in aluminum (Al) based alloys,
It is conventionally known that an amorphous alloy can be obtained, and as a metal-metal amorphous alloy, an Al-Ln binary alloy (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, T) is used.
b, Dy, Ho, Er, Tm, Yb), or Al-
Ln-TM ternary alloy (TM = V, Nb, Mo, Mn, F
e, Co, Ni) and the like.

【0004】Al−Ln2元合金の超急冷非晶質リボン
における硬さ(Hv)と引張強さ(σf)とは、Ln量
の増加に伴って増大し、Al−Ln2元非晶質合金での
最高値は硬さが250Hv、引張強さが875MPaで
ある。さらに、高い機械的強度がAl−Ln−TM3元
非晶質合金において得られており、Al−Ln−Ni系
において硬さが340Hv、引張強さが1140MPa
であって、これらの値は実用Al基結晶質合金の最高値
(180Hv、550MPa)を大きく上回っており、
Al基非晶質合金が優れた機械的性質を有することがわ
かる。
The hardness (Hv) and the tensile strength (σf) of the ultra-quenched amorphous ribbon of Al-Ln binary alloy increase with the increase of the amount of Ln. The maximum value of hardness is 250 Hv and the tensile strength is 875 MPa. Furthermore, high mechanical strength is obtained in the Al-Ln-TM ternary amorphous alloy, and hardness is 340 Hv and tensile strength is 1140 MPa in the Al-Ln-Ni system.
Therefore, these values are much higher than the maximum value (180 Hv, 550 MPa) of the practical Al-based crystalline alloy,
It can be seen that the Al-based amorphous alloy has excellent mechanical properties.

【0005】また、特開平1−275732号公報にお
いて、一般式Ala b c (但しM=V、Cr、M
n、Fe、Co、Ni、Cu、Zr、Ti、Mo、W、
Ca、Li、Mg、Si、Nbから選ばれる1種若しく
は2種以上の金属元素、X=Y、La、Ce、Sm、N
b、Hf、Ta、Mm(メッシュメタル)から選ばれる
1種若しくは2種以上の金属元素、a、b、cは原子パ
ーセントで50≦a≦95、0.5≦b≦35、0.5
≦c≦25)からなる3元合金を急冷凝固することによ
り、引張強度87〜103kgf/mm2 、降伏強度8
2〜96kgf/mm2 の非晶質、非晶質と微細結晶質
との複合体又は微細結晶質が得られている。かかるAl
基からなる非晶質合金、非晶質と微細結晶質との複合体
合金又は微細結晶質合金は、従来のAl基結晶質合金に
比べて2倍以上の硬さ、引張強さを有している。
Further, in Japanese Patent Laid-Open No. 1-275732, a general formula Al a M b X c (where M = V, Cr, M
n, Fe, Co, Ni, Cu, Zr, Ti, Mo, W,
One or more metal elements selected from Ca, Li, Mg, Si and Nb, X = Y, La, Ce, Sm, N
One or more metal elements selected from b, Hf, Ta, and Mm (mesh metal), a, b, and c are atomic percentages of 50 ≦ a ≦ 95, 0.5 ≦ b ≦ 35, 0.5.
≦ c ≦ 25) by rapid solidification of a ternary alloy having a tensile strength of 87 to 103 kgf / mm 2 and a yield strength of 8
2-96 kgf / mm 2 of amorphous, a composite of amorphous and fine crystalline, or fine crystalline is obtained. Such Al
An amorphous alloy composed of a base, a composite alloy of amorphous and microcrystalline, or a microcrystalline alloy has a hardness and a tensile strength that are at least twice as high as those of a conventional Al-based crystalline alloy. ing.

【0006】[0006]

【発明が解決しようとする課題】しかし、表1から明ら
かなように、従来のAl合金は300℃の高温では、強
度低下が著しく、最も強度の高いものでも、350MP
aを示すに止まる。
However, as is clear from Table 1, the strength of conventional Al alloys is remarkably reduced at a high temperature of 300 ° C.
Stop showing a.

【0007】[0007]

【表1】 [Table 1]

【0008】このため、航空機や自動車の軽量化を進め
る上において、さらに高温強度の高い、高耐熱性Al基
合金の出現が望まれていた。本発明は、従来のAl基合
金の高温強度が不十分であるという前記問題点に鑑みて
なされたものでって、従来のAl基合金よりもさらに高
い高温強度を維持した高力耐熱Al基合金を提供するこ
とも目的とする。
Therefore, in order to reduce the weight of aircrafts and automobiles, the advent of high heat-resistant Al-based alloys having higher high temperature strength has been desired. The present invention has been made in view of the above-mentioned problem that the high temperature strength of the conventional Al-based alloy is insufficient, and a high-strength heat-resistant Al-based alloy that maintains a higher high-temperature strength than the conventional Al-based alloy. It is also an object to provide an alloy.

【0009】[0009]

【課題を解決するための手段】本発明者は、Al−Ni
−Y合金において他の元素を添加することによる微細組
織の最適化によって高温強度の向上を図るべく検討し
た。その結果、従来のAl基合金の高温強度が前述のレ
ベルに止まっているのは、熱安定性の高い金属間化合物
の分散が不十分であり、従来の金属間化合物が高温で母
相中の変形を抑制するのに充分でないことを発見した。
また、添加元素としてCoを採用し、かつ微細結晶質中
に熱安定性の高いAlNiY金属間化合物又はAlNi
YCo金属間化合物が分散することにより、高い高温強
度が得られることを発見した。そして、適量のAlNi
Y金属間化合物又はAlNiYCo金属間化合物が最適
な形状及び分散状態で微細組織を形成するNi、Y、C
oの適量含有範囲について、研究を重ねた結果、従来の
Al基合金よりもさらに高い高温強度をもつ高力耐熱A
l基合金を完成した。
The present inventor has found that Al--Ni
It was studied to improve the high temperature strength by optimizing the microstructure by adding other elements in the -Y alloy. As a result, the high temperature strength of the conventional Al-based alloy remains at the above-mentioned level because the intermetallic compound having high thermal stability is insufficiently dispersed and the conventional intermetallic compound is It was discovered that it was not enough to suppress the deformation.
Further, Co is adopted as an additional element, and AlNiY intermetallic compound or AlNi which has high thermal stability in the fine crystalline material.
It has been discovered that high temperature strength can be obtained by dispersing the YCo intermetallic compound. And an appropriate amount of AlNi
Ni, Y, C in which a Y intermetallic compound or AlNiYCo intermetallic compound forms a fine structure in an optimal shape and dispersion state
As a result of repeated research on the appropriate content range of o, high strength heat resistance A with higher high temperature strength than conventional Al-based alloys
The l-based alloy was completed.

【0010】すなわち、本発明の高力耐熱Al基合金
は、一般式Ala Nib c Cod (但し、原子パーセ
ントで50≦a≦95、0.5≦b≦35、0.5≦c
≦15、0.5≦d≦10)で示される組成を有し、微
細結晶質からなる母相と、該母相中に分散され、AlN
iY金属間化合物又はAlNiYCo金属間化合物から
なる分散微粒子とからなることを特徴とする。
That is, the high-strength heat-resistant Al-based alloy of the present invention has the general formula Al a Ni b Y c Co d (where atomic percent is 50 ≦ a ≦ 95, 0.5 ≦ b ≦ 35, 0.5 ≦ c
≦ 15, 0.5 ≦ d ≦ 10), and has a fine crystalline matrix phase and AlN dispersed in the matrix phase.
iY intermetallic compound or AlNiYCo intermetallic compound dispersed particles.

【0011】本発明の高力耐熱Al基合金において、分
散微粒子は、長辺の長さが1μm以下、アスペクト比
(長辺の長さ:短辺の長さ)が1.5以上であり、針状
又は板状であることができる。一般式Ala Nib c
Cod において、原子パーセントで50≦a≦95、
0.5≦b≦35にそれぞれ限定したのは、この範囲か
ら外れると、非平衡相化しにくいからである。また、一
般式Ala Nib c Cod において、原子パーセント
で0.5≦c≦15、0.5≦d≦10にそれぞれ限定
したのは、その範囲から外れると、低濃度側ではAlN
iY金属間化合物又はAlNiYCo金属間化合物が得
られず、高濃度側ではAlNiY金属間化合物又はAl
NiYCo金属間化合物が粗大化して最適な析出・分散
状態が得られないからである。
In the high-strength heat-resistant Al-based alloy of the present invention, the dispersed fine particles have a long side length of 1 μm or less and an aspect ratio (long side length: short side length) of 1.5 or more. It can be needle-shaped or plate-shaped. General formula Al a Ni b Y c
In Co d , in atomic percent 50 ≦ a ≦ 95,
The reason for limiting each to 0.5 ≦ b ≦ 35 is that it is difficult to form a non-equilibrium phase outside this range. Further, in the general formula Al a Ni b Y c Co d , the atomic percentages are limited to 0.5 ≦ c ≦ 15 and 0.5 ≦ d ≦ 10, respectively.
iY intermetallic compound or AlNiYCo intermetallic compound cannot be obtained, and AlNiY intermetallic compound or Al on the high concentration side.
This is because the NiYCo intermetallic compound becomes coarse and an optimum precipitation / dispersion state cannot be obtained.

【0012】分散微粒子を長辺の長さが1μm以下、ア
スペクト比が1.5以上の針状又は板状のものに限定し
たのは、かかる形状により析出・分散されれば、高い高
温強度が得られるからである。また、本発明の高力耐熱
Al基合金の製造方法は、一般式Ala Nib c Co
d (但し、原子パーセントで50≦a≦95、0.5≦
b≦35、0.5≦c≦15、0.5≦d≦10)で示
される組成の急冷凝固Al基合金に熱間塑性加工を施
し、微細結晶質からなる母相中にAlNiY金属間化合
物又はAlNiYCo金属間化合物からなる分散微粒子
を析出・分散させることを特徴とする。
The dispersed fine particles are limited to those having a long side length of 1 μm or less and an aspect ratio of 1.5 or more, which are needle-like or plate-like. This is because it can be obtained. In addition, the method for producing a high-strength heat-resistant Al-based alloy of the present invention is based on the general formula Al a Ni b Y c Co
d (provided that atomic percentage is 50 ≦ a ≦ 95, 0.5 ≦
b ≦ 35, 0.5 ≦ c ≦ 15, 0.5 ≦ d ≦ 10), a rapidly solidified Al-based alloy is subjected to hot plastic working, and AlNiY metal It is characterized in that dispersed fine particles composed of a compound or AlNiYCo intermetallic compound are deposited and dispersed.

【0013】急冷凝固Al基合金は、前記組成を有する
合金の溶湯を液体急冷凝固法で急冷凝固することにより
得られる。液体急冷凝固法は溶融した金属・合金を急速
に冷却して過冷させ、その構造を凍結させて非晶質を得
る方法であって、数100mg程度の薄片を得るガン
法、ピストン・アンビル法、あるいは薄帯を連続的に得
ることができる遠心法、単ロール法、双ロール法、粉体
が得られるスプレー法、細線として得られる回転液中紡
糸法などがある。
The rapidly solidified Al-based alloy is obtained by rapidly solidifying a molten alloy having the above composition by a liquid rapid solidification method. The liquid rapid solidification method is a method of rapidly cooling and supercooling a molten metal / alloy and freezing its structure to obtain an amorphous material. A gun method and a piston-anvil method for obtaining a thin piece of about several hundreds of mg. Alternatively, there are a centrifugal method capable of continuously obtaining a ribbon, a single roll method, a twin roll method, a spray method capable of obtaining a powder, and a rotating submerged spinning method obtainable as a fine wire.

【0014】本発明には、単ロール法、双ロール法、回
転液中紡糸法、高圧溶湯噴霧法が特に有効である。これ
らの方法では102 〜106 ℃/秒程度の冷却速度が得
られる。単ロール法、双ロール法により薄帯を製造する
には、ノズル孔を通し、約300〜10000rpmの
範囲の一定速度で回転している直径30〜300mmの
銅あるいは鋼製のロールに溶湯を噴出する。これにより
幅が約1〜300mm厚さが約5〜500μmの非晶質
の薄片を製造することができる。回転液中紡糸法によ
り、非晶質細線を得るには、約50〜500rpmで回
転するドラム内に遠心力により保持された深さ1〜10
cmの冷却液層を形成し、この回転する冷却液層中に、
ノズル孔を通じ、アルゴン背圧にて、溶湯を噴出する。
高圧溶湯噴霧法により急冷凝固粉末を得るには、滴下さ
せた溶湯に40〜100kgf/cm2 の高圧の窒素、
アルゴンガス、ヘリウムガスなどを吹きつけ、溶湯を急
冷凝固させる。急冷凝固Al基合金が微細結晶質である
かどうかは、通常のX線回折法によって知ることができ
る。すなわち、微細結晶質の存在は、微細結晶質に起因
する回折ピークの合成された回折パターンが示される。
The single roll method, the twin roll method, the rotating submerged spinning method and the high pressure molten metal spraying method are particularly effective for the present invention. With these methods, a cooling rate of about 10 2 to 10 6 ° C / sec can be obtained. To produce a thin strip by the single roll method or the twin roll method, the molten metal is jetted through a nozzle hole and onto a copper or steel roll having a diameter of 30 to 300 mm which is rotating at a constant speed of about 300 to 10000 rpm. To do. This makes it possible to produce amorphous flakes having a width of about 1 to 300 mm and a thickness of about 5 to 500 μm. In order to obtain an amorphous fine wire by a spinning liquid spinning method, a depth of 1 to 10 held by a centrifugal force in a drum rotating at about 50 to 500 rpm is used.
cm cooling liquid layer is formed, and in this rotating cooling liquid layer,
Molten metal is jetted through a nozzle hole with a back pressure of argon.
In order to obtain a rapidly solidified powder by the high pressure molten metal spraying method, 40-100 kgf / cm 2 of high pressure nitrogen is added to the dropped molten metal,
The molten metal is rapidly cooled and solidified by blowing argon gas or helium gas. Whether or not the rapidly solidified Al-based alloy is fine crystalline can be known by a usual X-ray diffraction method. That is, the presence of fine crystalline material indicates a synthesized diffraction pattern of diffraction peaks due to the fine crystalline material.

【0015】急冷凝固Al基合金に熱間塑性加工を施す
手段としては、押し出し加工、プレス加工、又は熱間鍛
造を採用することができる。急冷凝固Al基合金の組織
としては、微細結晶質の他に非晶質相を含んでもよい。
また、非晶質相単相でもよい。非晶質相は結晶化温度以
上で熱間組成加工することにより微細結晶質に変化す
る。
As means for subjecting the rapidly solidified Al-based alloy to hot plastic working, extrusion, press working, or hot forging can be adopted. The structure of the rapidly solidified Al-based alloy may include an amorphous phase in addition to the fine crystalline material.
Further, it may be an amorphous phase or a single phase. The amorphous phase changes into fine crystalline by hot composition processing at a crystallization temperature or higher.

【0016】[0016]

【作用】本発明の高力耐熱Al基合金では、Al、N
i、Y、Coの最適含有範囲により、急冷凝固Al基合
金が微細結晶質として最適化される。つまり、母相が非
晶質相の場合、結晶化温度以上では相変態で結晶化して
しまい、強度が低下するが、微細結晶質の場合は、この
ような相変態がないため、高温での熱的安定性が高い。
そして、急冷凝固Al基合金に熱間塑性加工を施すこと
により、微細結晶質の母相中に熱安定性の高いAlNi
Y金属間化合物又はAlNiYCo金属間化合物からな
る分散微粒子が適量かつ最適な形状で析出・分散され、
これら分散微粒子が高温で母相中の変形を充分に抑制す
るため、高い高温強度が得られる。
In the high strength heat resistant Al-based alloy of the present invention, Al, N
The optimum content range of i, Y, and Co optimizes the rapidly solidified Al-based alloy as fine crystalline. In other words, when the parent phase is an amorphous phase, it is crystallized by the phase transformation above the crystallization temperature and the strength is reduced, but in the case of fine crystalline, there is no such phase transformation, so at high temperature High thermal stability.
Then, by subjecting the rapidly solidified Al-based alloy to hot plastic working, AlNi having high thermal stability is formed in the microcrystalline matrix phase.
Dispersed fine particles composed of Y intermetallic compound or AlNiYCo intermetallic compound are deposited and dispersed in an appropriate amount and in an optimum shape,
Since these dispersed fine particles sufficiently suppress the deformation in the matrix at high temperature, high high temperature strength can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例とともに説明
する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0018】[0018]

【表2】 [Table 2]

【0019】アーク溶解により、表2に示す化学成分の
Al合金を溶解し、母合金を作製した。母合金をアルゴ
ンガス雰囲気下で高周波炉にて溶解後、ヘリウムガスの
圧力100kgf/cm2 の条件下で高圧溶湯噴霧法に
より非平衡相粉(非晶質単相)末を作製した。そして、
25μm以下に分級した粉末を温度500℃、加圧力5
00〜1000MPa、押出比10:1で押し出し、直
径7mm、長さ200mmの円柱材を得た。押し出しに
より得られた円柱材は真密度であった。
Al alloys having chemical components shown in Table 2 were melted by arc melting to prepare a mother alloy. After melting the mother alloy in a high frequency furnace under an argon gas atmosphere, a non-equilibrium phase powder (amorphous single phase) powder was produced by a high pressure molten metal spraying method under the condition of a helium gas pressure of 100 kgf / cm 2 . And
The powder classified to 25 μm or less has a temperature of 500 ° C. and a pressing force of 5
It was extruded at an extrusion ratio of 10: 1 at 00 to 1000 MPa to obtain a columnar material having a diameter of 7 mm and a length of 200 mm. The columnar material obtained by extrusion had a true density.

【0020】得られた円柱材について、TEM(tra
nsmisson electron microsc
ope)観察を実施した結果、実施例1〜5について
は、fcc(面心立方格子)AlとYAl3 とに加え、
AlNiY及びAlNiYCoの針状の金属間化合物が
長辺1μm以下、アスペクト比1.5以上で分散してい
るのが確認された。一方、比較例6〜8では、fccA
lとYAl3 及びNi3Alが観察されたが、AlNi
Y及びAlNiYCoの針状の金属間化合物は観察され
なかった。
TEM (tra
nsmisson electron microsc
As a result of carrying out observation, in addition to fcc (face centered cubic lattice) Al and YAl 3 ,
It was confirmed that the acicular intermetallic compounds of AlNiY and AlNiYCo were dispersed with the long side of 1 μm or less and the aspect ratio of 1.5 or more. On the other hand, in Comparative Examples 6 to 8, fccA
1 and YAl 3 and Ni 3 Al were observed, but AlNi
No acicular intermetallic compounds of Y and AlNiYCo were observed.

【0021】次に、円柱材の引張試験を円柱材より作製
した引張試験片によりインストロン型試験機を用いて行
った。得られた結果も表2に示す。また、Al88.5Ni
8 Mm3.5 成分のAl合金から同様に引張試験片を作製
して比較例9とし、実施例1及び比較例6、7、9につ
いての温度(℃)と引張強さσf(MPa)との関係も
図1に示す。なお、比較例9におけるMmはミッシュメ
タルを表す。ミッシュメタルとは主要元素がLa、Ce
であり、そのほかに上記La、Ceを除く希土類(ラン
タノイド系列)元素および不可避不純物(Si、Mg、
Fe、Ag等)を含有する複合体の通称であり、成分は
Ce45〜54wt%、La23〜32wt%、Nd1
3〜19wt%、Pr3〜8wt%、Fe1%未満、そ
の他1wt%未満である。
Next, the tensile test of the columnar material was conducted by using an Instron type tester with a tensile test piece prepared from the columnar material. The results obtained are also shown in Table 2. Also, Al 88.5 Ni
A tensile test piece was similarly prepared from an Al alloy having a composition of 8 Mm 3.5 and used as Comparative Example 9. The relationship between the temperature (° C.) and the tensile strength σf (MPa) for Example 1 and Comparative Examples 6, 7, and 9. Is also shown in FIG. Note that Mm in Comparative Example 9 represents misch metal. The main elements of misch metal are La and Ce
In addition to the above, rare earth (lanthanoid series) elements other than La and Ce and unavoidable impurities (Si, Mg,
Fe, Ag, etc.) is a common name for a complex containing the components of Ce45 to 54 wt%, La23 to 32 wt%, and Nd1.
3 to 19 wt%, Pr3 to 8 wt%, Fe less than 1%, and other less than 1 wt%.

【0022】比較例6、7、9では、300℃での引張
強度が350MPa以下であった。これに対し、実施例
1〜5では、300℃で410MPa以上の高い高温強
度を示しており、本発明の効果を確認することができ
た。
In Comparative Examples 6, 7, and 9, the tensile strength at 300 ° C. was 350 MPa or less. On the other hand, in Examples 1 to 5, high high temperature strength of 410 MPa or more at 300 ° C. was shown, and the effect of the present invention could be confirmed.

【0023】[0023]

【発明の効果】以上詳述したように、本発明の高力耐熱
アルミニウム基合金では、従来のAl基合金よりもさら
に高い高温強度を発揮することができる。このため、本
発明の高力耐熱アルミニウム基合金を採用すれば、軽量
化が進められる航空機や自動車の要請に答えることがで
きる。
As described in detail above, the high-strength heat-resistant aluminum-based alloy of the present invention can exhibit higher high-temperature strength than conventional Al-based alloys. Therefore, by adopting the high-strength heat-resistant aluminum-based alloy of the present invention, it is possible to meet the demands of aircrafts and automobiles that are being reduced in weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、比較例6、7、9についての温度と
引張強度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between temperature and tensile strength for Example 1 and Comparative Examples 6, 7, and 9.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 晃 宮城県仙台市太白区八木山本町2−36−1 サクセス26 B101 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8番22号 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 堀切 秀彦 宮城県仙台市青葉区米ケ袋2丁目2番55号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kato 2-36-1, Yagiyamamotomachi, Taihaku-ku, Sendai City, Miyagi Prefecture 26-3 Success 26 B101 (72) Ken Ken Masumoto 3-8-22, Uesugi, Aoba-ku, Sendai City, Miyagi Prefecture No. (72) Inventor Akihisa Inoue Kawauchi Muzen, Aoba-ku, Sendai-shi, Miyagi Kawauchi Housing 11-806 (72) Hidehiko Horikiri 2-255 Yonegabukuro, Aoba-ku, Sendai-shi, Miyagi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式Ala Nib c Cod (但し、原
子パーセントで50≦a≦95、0.5≦b≦35、
0.5≦c≦15、0.5≦d≦10)で示される組成
を有し、微細結晶質からなる母相と、 該母相中に分散され、AlNiY金属間化合物又はAl
NiYCo金属間化合物からなる分散微粒子とからなる
ことを特徴とする高力耐熱アルミニウム基合金。
1. A general formula Al a Ni b Y c Co d (provided that atomic percentage is 50 ≦ a ≦ 95, 0.5 ≦ b ≦ 35,
0.5 ≦ c ≦ 15, 0.5 ≦ d ≦ 10) and a matrix phase composed of a fine crystalline material, and an AlNiY intermetallic compound or Al dispersed in the matrix phase.
A high-strength heat-resistant aluminum-based alloy, characterized by comprising dispersed fine particles of NiYCo intermetallic compound.
【請求項2】分散微粒子は、長辺の長さが1μm以下、
アスペクト比が1.5以上であり、針状又は板状である
ことを特徴とする請求項1記載の高力耐熱アルミニウム
基合金。
2. The dispersed fine particles have long sides of 1 μm or less,
The high-strength heat-resistant aluminum-based alloy according to claim 1, which has an aspect ratio of 1.5 or more and is needle-shaped or plate-shaped.
【請求項3】一般式Ala Nib c Cod (但し、原
子パーセントで50≦a≦95、0.5≦b≦35、
0.5≦c≦15、0.5≦d≦10)で示される組成
の急冷凝固アルミニウム基合金に熱間塑性加工を施し、
微細結晶質からなる母相中にAlNiY金属間化合物又
はAlNiYCo金属間化合物からなる分散微粒子を析
出・分散させることを特徴とする高力耐熱アルミニウム
基合金の製造方法。
3. A general formula Al a Ni b Y c Co d (provided that atomic percentage is 50 ≦ a ≦ 95, 0.5 ≦ b ≦ 35,
0.5 ≦ c ≦ 15, 0.5 ≦ d ≦ 10), a rapidly solidified aluminum-based alloy is subjected to hot plastic working,
A method for producing a high-strength heat-resistant aluminum-based alloy, which comprises depositing and dispersing dispersed fine particles of an AlNiY intermetallic compound or an AlNiYCo intermetallic compound in a matrix of fine crystalline material.
JP6244492A 1992-03-18 1992-03-18 High strength heat resistant aluminum-base alloy and its production Pending JPH06293932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6244492A JPH06293932A (en) 1992-03-18 1992-03-18 High strength heat resistant aluminum-base alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244492A JPH06293932A (en) 1992-03-18 1992-03-18 High strength heat resistant aluminum-base alloy and its production

Publications (1)

Publication Number Publication Date
JPH06293932A true JPH06293932A (en) 1994-10-21

Family

ID=13200390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244492A Pending JPH06293932A (en) 1992-03-18 1992-03-18 High strength heat resistant aluminum-base alloy and its production

Country Status (1)

Country Link
JP (1) JPH06293932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244323A (en) * 2001-02-21 2002-08-30 Ricoh Co Ltd Cylinder made of aluminum, its manufacturing method, electrophotographic sensitive body and electrophotographic device
JP2008231519A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Quasi-crystal-particle-dispersed aluminum alloy and production method therefor
JP2008248343A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Aluminum-based alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244323A (en) * 2001-02-21 2002-08-30 Ricoh Co Ltd Cylinder made of aluminum, its manufacturing method, electrophotographic sensitive body and electrophotographic device
JP2008231519A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Quasi-crystal-particle-dispersed aluminum alloy and production method therefor
JP2008248343A (en) * 2007-03-30 2008-10-16 Honda Motor Co Ltd Aluminum-based alloy

Similar Documents

Publication Publication Date Title
JP2911673B2 (en) High strength aluminum alloy
JP2799642B2 (en) High strength aluminum alloy
US4347076A (en) Aluminum-transition metal alloys made using rapidly solidified powers and method
US5073207A (en) Process for obtaining magnesium alloys by spray deposition
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
JPWO2007111342A1 (en) High strength and high toughness magnesium alloy and method for producing the same
EP0475101B1 (en) High strength aluminum-based alloys
JPH06184712A (en) Production of high strength aluminum alloy
EP0558957B1 (en) High-strength, wear-resistant aluminum alloy
JP3110512B2 (en) High strength and high toughness magnesium alloy material
US5078807A (en) Rapidly solidified magnesium base alloy sheet
JP2705996B2 (en) High strength magnesium based alloy
EP0564814B1 (en) Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same
JPH0748646A (en) High strength magnesium base alloy and production thereof
JPH06264200A (en) Ti series amorphous alloy
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
JPH05179383A (en) Aluminum alloy having fine crystallized grain manufacture by spray deposition method
JP2703481B2 (en) High strength and high rigidity aluminum base alloy
JP3238516B2 (en) High strength magnesium alloy and method for producing the same
JPH06293932A (en) High strength heat resistant aluminum-base alloy and its production
JPH06316740A (en) High strength magnesium-base alloy and its production
JPH05306424A (en) High strength magnesium-base alloy and its laminated and solidified material
JP3504401B2 (en) High strength and high rigidity aluminum base alloy
JP2941571B2 (en) High strength corrosion resistant aluminum-based alloy and method for producing the same