JPH06293576A - Porous silica-carbon composite body and its production - Google Patents

Porous silica-carbon composite body and its production

Info

Publication number
JPH06293576A
JPH06293576A JP4285096A JP28509692A JPH06293576A JP H06293576 A JPH06293576 A JP H06293576A JP 4285096 A JP4285096 A JP 4285096A JP 28509692 A JP28509692 A JP 28509692A JP H06293576 A JPH06293576 A JP H06293576A
Authority
JP
Japan
Prior art keywords
alkali metal
porous silica
carbon composite
product
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4285096A
Other languages
Japanese (ja)
Other versions
JP2506600B2 (en
Inventor
Kazuji Ishibashi
一二 石橋
Katsutoshi Yamada
勝利 山田
Yoshio Noda
良男 野田
Yuji Yokota
祐司 横田
Nobumasa Kumamoto
進誠 熊本
Yoshie Takahashi
芳恵 高橋
Kazufumi Komatsu
和史 小松
Hitoshi Kuwagaki
整 桑垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU TANSO KOGYO KK
SANYU PLANT SERVICE KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
HOKUETSU TANSO KOGYO KK
SANYU PLANT SERVICE KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU TANSO KOGYO KK, SANYU PLANT SERVICE KK, Agency of Industrial Science and Technology filed Critical HOKUETSU TANSO KOGYO KK
Priority to JP4285096A priority Critical patent/JP2506600B2/en
Publication of JPH06293576A publication Critical patent/JPH06293576A/en
Application granted granted Critical
Publication of JP2506600B2 publication Critical patent/JP2506600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a new porous silica-carbon composite body which can be useful as an absorbent with the same ability as or more than activated carbon in order to increase the availability of silicon-accumulated biomass, and to provide the production method of the composite body. CONSTITUTION:This porous silica-carbon composite body is a fired body of carbonized silicon-accumulated biomass and an alkali metal compd. and has >=900m<2>/g BET surface area. The composite body is a porous silica-carbon composite body having >=900m<2>/g BET surface area and is obtd. by firing a mixture of carbonized silicon-accumulated biomass and an alkali metal compd. and then eluting and removing the alkali metal content from the fired body. The mixture of the carbonized silicon-accumulated biomass and the alkali metal compd. is fired at high temp. of >=400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ケイ素集積バイオマス
を原料とする、新規な多孔性シリカ−炭素複合体及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel porous silica-carbon composite using silicon-accumulated biomass as a raw material and a method for producing the same.

【0002】[0002]

【従来の技術及びその問題点】もみ殻や藁などのような
ケイ素集積バイオマスは、農業の近代化に伴って産業廃
棄物化しており、堆肥などの形で土地へ還元するほか包
装材料、パルプ原料、土木建築用資材、手工芸品原料、
くん炭、製鉄所での脱酸素剤などへも利用されている
が、農業からの排出量に比べ利用面の開拓は大幅におく
れている。本発明者らは、ケイ素集積バイオマスを原料
とする吸着剤を開発することで利用面の開拓をはかろう
とした。すなわち、ケイ素集積バイオマスを200〜1
000℃で炭素化した後、水蒸気、炭酸ガス、水蒸気を
含む燃料廃ガス等の雰囲気下に600〜1200℃で賦
活し、BET表面積100〜300m2/gの多孔性炭素
化物を得ることに成功した。しかし、ここに得られた多
孔性炭素化物は、市販活性炭に比べBET表面積等が大
幅に小さいため吸着性能が低く、本発明者らの意図した
吸着剤を軸とするケイ素集積バイオマスの有効利用の目
的を果たすことができなかった。
[Prior art and its problems] Silicon-accumulated biomass such as rice husks and straw has been turned into industrial waste with the modernization of agriculture, and is returned to the land in the form of compost and other packaging materials and pulp. Raw materials, civil engineering materials, handicraft materials,
It is also used as a charcoal and as an oxygen scavenger in steel mills, but its use has been greatly expanded compared to the amount of emissions from agriculture. The present inventors sought to cultivate the utilization side by developing an adsorbent using silicon-accumulated biomass as a raw material. That is, 200 to 1 of silicon-accumulated biomass
After carbonization at 000 ℃, activated at 600 ~ 1200 ℃ in the atmosphere of steam, carbon dioxide gas, fuel waste gas containing steam, etc., succeeded in obtaining a porous carbonized product of BET surface area 100 ~ 300 m 2 / g did. However, since the porous carbonized product obtained here has a significantly smaller BET surface area and the like as compared with the commercially available activated carbon, its adsorption performance is low, and the effective utilization of the silicon-accumulated biomass centered on the adsorbent intended by the present inventors is effective. I couldn't fulfill my purpose.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ケイ素集積
バイオマスの利用面を増強するため、活性炭と同等ある
いはそれ以上の能力を持つ吸着剤として利用可能な新規
多孔性シリカ−炭素複合体及びその製造法を提供するこ
とをその課題とする。
DISCLOSURE OF THE INVENTION The present invention provides a novel porous silica-carbon composite which can be used as an adsorbent having an ability equal to or higher than that of activated carbon in order to enhance the utilization of silicon-accumulated biomass, and its composite. It is an object to provide a manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記課題を
解決すべく鋭意検討の結果、本発明を完成するに至っ
た。すなわち、本発明によれば、ケイ素集積バイオマス
の炭素化処理物とアルカリ金属化合物との焼成体からな
り、BET表面積が900m2/g以上である多孔性シリ
カ−炭素複合体が提供される。また、本発明によれば、
ケイ素集積バイオマスの炭素化処理物とアルカリ金属化
合物との混合物の焼成体からそれに含まれるアルカリ金
属分を溶出除去させたものからなり、BET表面積が9
00m2/g以上である多孔性シリカー炭素複合体が提供
される。さらに、本発明によれば、ケイ素集積バイオマ
スの炭素化物とをアルカリ金属化合物との混合物を40
0℃以上の高温で焼成することを特徴とする多孔性シリ
カ−炭素複合体の製造方法が提供される。さらにまた、
本発明によれば、ケイ素集積バイオマスの炭素化処理物
とアルカリ金属化合物との混合物を400℃以上の高温
で焼成した後、得られた焼成物中に残存するアルカリ金
属分を溶出除去することを特徴とする多孔性シリカー炭
素複合体の複合体の製造方法が提供される。さらにま
た、本発明によれば、ケイ素集積バイオマスとアルカリ
金属化合物との混合物を80〜300℃で加熱した後、
300℃以上の温度で焼成し、得られ焼成物を水洗処理
することを特徴とする多孔性シリカー炭素複合体の製造
方法が提供される。さらにまた、本発明によれば、前記
多孔性シリカー炭素複合体からなる吸着剤が提供され
る。なお、本明細書で言うケイ素集積バイオマスとは、
シリカ成分を含有する植物(ケイ素集積植物)またはそ
の葉、茎などの部分を意味し、具体的には、稲、麦など
の籾殻または藁、笹の葉、バガス、トウモロコシやとく
さの葉あるいは茎などがあげられる。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, there is provided a porous silica-carbon composite comprising a carbonized product of silicon-accumulated biomass and a calcined product of an alkali metal compound and having a BET surface area of 900 m 2 / g or more. Further, according to the present invention,
It is composed of a calcined product of a carbonized product of silicon-accumulated biomass and an alkali metal compound, in which the alkali metal content contained therein is eluted and removed, and the BET surface area is 9
A porous silica-carbon composite having a density of at least 00 m 2 / g is provided. Furthermore, according to the present invention, a mixture of a carbonized product of silicon-accumulated biomass and an alkali metal compound is added to 40
Provided is a method for producing a porous silica-carbon composite, which comprises firing at a high temperature of 0 ° C or higher. Furthermore,
According to the present invention, after firing a mixture of a carbonized product of silicon-accumulated biomass and an alkali metal compound at a high temperature of 400 ° C. or higher, it is possible to elute and remove the alkali metal content remaining in the obtained fired product. A method for producing a composite of a characterized porous silica-carbon composite is provided. Furthermore, according to the present invention, after heating the mixture of the silicon-accumulated biomass and the alkali metal compound at 80 to 300 ° C.,
Provided is a method for producing a porous silica-carbon composite, which comprises calcination at a temperature of 300 ° C. or higher and washing the resulting calcination product with water. Furthermore, according to the present invention, there is provided an adsorbent comprising the porous silica-carbon composite. In addition, the silicon-accumulated biomass referred to in the present specification means
Plants containing silica components (silicon-accumulating plants) or parts thereof such as leaves and stems, specifically, rice husks or rice husks or straws, bamboo leaves, bagasse, corn and tokusa leaves or stems. And so on.

【0005】本発明の多孔性シリカ−炭素複合体を得る
には、先ず、ケイ素集積バイオマスを炭素化処理する。
炭素化処理温度は、300℃以上、好ましくは350〜
1000℃である。炭素化処理雰囲気は、ケイ素集積バ
イオマスの燃焼が実質上起らない雰囲気であれば良く、
空気を遮断した雰囲気、アルゴン雰囲気や窒素雰囲気、
炭酸ガス雰囲気、スチーム雰囲気等が一般的に採用され
る。この炭素化処理工程においては、原料バイオマスを
構成する有機物が熱分解により低分子化合物として消失
するのをできるだけ抑制して、原料バイオマスに含まれ
る炭素分をできるだけ高い割合で炭素化処理物中に残留
させることが重要である。本発明の場合、炭素化処理物
中の炭素分は、シリカ(SiO2)に対して40重量%
以上、好ましくは50〜60重量%の範囲に規定するの
が良い。炭素化処理物中の炭素分の割合が前記範囲より
少なくなると、最終的に得られる多孔性シリカ−炭素複
合体の比表面積が著しく小さくなる。なお、この場合の
炭素分には、揮発性炭素分と固定炭素分の両方が含まれ
る。炭素分の高い炭素化処理物を得るための1つの方法
としては、原料バイオマスを熱処理するに際し、室温か
ら熱処理温度までの昇温速度をできるだけ低い速度、通
常、1〜100℃/分の速度、好ましくは1〜20℃/
分の速度とし、熱処理温度に到達後の熱処理時間を0〜
5時間程度の短時間とする方法を示すことができる。こ
の場合、昇温速度が小さければ小さいほど炭素分の残留
率が高い。もみ殻の炭素化処理においては、熱処理温度
が400〜900℃の場合は、昇温速度1℃/分で炭素
分残留率52〜54%、昇温速度20℃/分では炭素分
残留率40〜49%の結果を得ることができる。
In order to obtain the porous silica-carbon composite of the present invention, first, the silicon-accumulated biomass is carbonized.
The carbonization treatment temperature is 300 ° C. or higher, preferably 350 to
It is 1000 ° C. The carbonization treatment atmosphere may be an atmosphere in which combustion of the silicon-accumulated biomass does not substantially occur,
An atmosphere in which air is shut off, an argon atmosphere or a nitrogen atmosphere,
Carbon dioxide gas atmosphere, steam atmosphere, etc. are generally adopted. In this carbonization treatment step, it is possible to suppress as much as possible the disappearance of the organic matter that constitutes the raw material biomass as a low-molecular compound due to thermal decomposition, and the carbon content contained in the raw material biomass remains in the carbonized product at the highest possible rate. It is important to let In the case of the present invention, the carbon content in the carbonized product is 40% by weight with respect to silica (SiO 2 ).
As described above, it is preferable to set the content in the range of 50 to 60% by weight. When the proportion of carbon content in the carbonized product is less than the above range, the specific surface area of the finally obtained porous silica-carbon composite is significantly reduced. The carbon content in this case includes both volatile carbon content and fixed carbon content. As one method for obtaining a carbonized product having a high carbon content, when heat treating the raw material biomass, the temperature rising rate from room temperature to the heat treatment temperature is as low as possible, usually 1 to 100 ° C./minute, Preferably 1 to 20 ° C /
The heat treatment time after reaching the heat treatment temperature is 0 to
A method of shortening the time to about 5 hours can be shown. In this case, the smaller the rate of temperature rise, the higher the carbon residue rate. In the carbonization treatment of rice husks, when the heat treatment temperature is 400 to 900 ° C., the carbon content residual ratio is 52 to 54% at a temperature increase rate of 1 ° C./min, and the carbon content residual ratio is 40 at a temperature increase rate of 20 ° C./min. Results of ~ 49% can be obtained.

【0006】前記のようにして得られたケイ素集積バイ
オマスの炭素化処理物は、これをアルカリ金属化合物と
の混合物の形で焼成する。焼成温度は300〜1000
℃、好ましくは400〜1000℃である。アルカリ金
属化合物としては、ナトリウム化合物やカリウム化合物
が用いられるが、特にカリウム金属化合物が好ましい。
アルカリ化合物としては、水酸化物、炭酸塩、硫酸塩、
ハロゲン化物等の各種のものが使用可能であるが、水酸
化物の使用が好ましい。また、アルカリ金属水酸化物と
アルカリ金属炭素塩を併用するのも好ましい態様であ
る。アルカリ金属化合物は、炭素化処理物に添加混合さ
れるが、この場合、アルカリ金属化合物は、粉末状や、
粒状又は溶液状で添加される。また、炭素化処理物とア
ルカリ金属化合物との混合物は、前記のように、あらか
じめ形成した炭素化処理物にアルカリ金属化合物を添加
して得ることができる他、ケイ素集積バイオマスにアル
カリ金属化合物を添加混合し、この混合物を炭素化処理
することによっても得ることができる。アルカリ金属化
合物の添加量は、少なすぎるとBET表面積の低下や吸
着能低下で製品の品質が低下し、添加量が多すぎると多
孔性シリカー炭素複合体収率が低下する。一般的には、
炭素化処理物1重量部に対し、アルカリ金属化合物0.
1〜7重量部、好ましくは3〜5重量部になるような添
加量である。アルカリ金属化合物を添加した炭素化処理
物は、ロータリーキルンや流動炉のような焼成炉内で、
300〜1000℃、好ましくは700〜900℃で
0.5分〜5時間、好ましくは3〜120分間焼成す
る。
The carbonized product of the silicon-accumulated biomass obtained as described above is calcined in the form of a mixture with an alkali metal compound. Baking temperature is 300 to 1000
C., preferably 400 to 1000.degree. As the alkali metal compound, a sodium compound or a potassium compound is used, but a potassium metal compound is particularly preferable.
As the alkaline compound, hydroxide, carbonate, sulfate,
Various compounds such as halides can be used, but hydroxides are preferably used. Further, it is also a preferred embodiment to use an alkali metal hydroxide and an alkali metal carbon salt together. The alkali metal compound is added and mixed to the carbonized product, but in this case, the alkali metal compound is in the form of powder or
It is added in granular or solution form. Further, the mixture of the carbonized product and the alkali metal compound can be obtained by adding the alkali metal compound to the previously formed carbonized product as described above, or the addition of the alkali metal compound to the silicon accumulated biomass. It can also be obtained by mixing and carbonizing this mixture. If the amount of the alkali metal compound added is too small, the BET surface area is reduced and the adsorption ability is lowered, resulting in a decrease in product quality, and if the amount added is too large, the yield of the porous silica-carbon composite is reduced. In general,
For 1 part by weight of the carbonized product, 0.
The amount is 1 to 7 parts by weight, preferably 3 to 5 parts by weight. The carbonized product to which the alkali metal compound is added, in a firing furnace such as a rotary kiln or a fluidized furnace,
Baking is performed at 300 to 1000 ° C., preferably 700 to 900 ° C. for 0.5 minutes to 5 hours, preferably 3 to 120 minutes.

【0007】炭素化処理物とアルカリ金属化合物との混
合物の好ましい焼成方法は、その混合物を、350〜4
50℃、好ましくは約400℃の温度で少なくとも10
分間、好ましくは20〜40分間焼成した後、700〜
900℃に昇温させ、この温度で0〜200分間焼成す
る方法である。焼成雰囲気は、窒素ガスやアルゴンガ
ス、炭酸ガス等の不活性ガスや、スチーム、空気、燃焼
廃ガス等であることができる。炭素化処理物とアルカリ
金属化合物の混合物を焼成する場合、ケイ素集積バイオ
マスを存在させることができ、これにより製品の収量を
向上させることができる。ケイ素集積バイオマスの添加
量は、炭素化処理物に対して1〜20重量%の範囲であ
る。炭素化処理物を、前記のようにしてアルカリ金属化
合物との混合物の形で焼成する際には、アルカリ金属化
合物は、最終的にアルカリ金属酸化物となるが、この場
合、アルカリ金属化合物の一部は、炭素化処理物中の炭
素分やケイ素分と反応して気散除去される。このような
焼成物は、それ自体でも高い表面積、例えば、BET表
面積で900m2/g以上を有するものであるが、好ま
しくは、その焼成物中に含まれているアルカリ金属分を
溶出除去させることによって、その表面積を著しく向上
させることができる。焼成物中からのアルカリ金属分の
溶出は、焼成物を水で煮沸する方法や、焼成物を水中に
浸漬する方法、焼成物をカラムに充填し、この充填カラ
ムに水を流通させる方法等で実施することができる。こ
のような溶出処理により焼成物中のアルカリ金属分をほ
ぼ完全に除去することができる。このようにしてアルカ
リ金属分の溶出除去された焼成物は極めて高い表面積を
有し、通常、BET表面積で900m2/g以上、特に
2000〜4000m2/gの表面積を有する。
A preferred method of firing the mixture of the carbonized product and the alkali metal compound is to add 350 to 4 to the mixture.
At least 10 at a temperature of 50 ° C, preferably about 400 ° C
After firing for 70 minutes, preferably 20-40 minutes, 700-
This is a method in which the temperature is raised to 900 ° C. and firing is performed at this temperature for 0 to 200 minutes. The firing atmosphere can be an inert gas such as nitrogen gas, argon gas, carbon dioxide gas, steam, air, combustion waste gas, or the like. When the mixture of the carbonized product and the alkali metal compound is fired, the silicon-accumulated biomass can be present, which can improve the yield of the product. The amount of silicon-accumulated biomass added is in the range of 1 to 20% by weight based on the carbonized product. When the carbonized product is fired in the form of a mixture with the alkali metal compound as described above, the alkali metal compound finally becomes an alkali metal oxide. The part reacts with the carbon content and the silicon content in the carbonized product to be removed by vaporization. Such a calcined product itself has a high surface area, for example, a BET surface area of 900 m 2 / g or more, but it is preferable to elute and remove the alkali metal content contained in the calcined product. By that, the surface area can be remarkably improved. Elution of the alkali metal content from the calcined product can be performed by boiling the calcined product with water, immersing the calcined product in water, filling the calcined product in a column, and circulating water in the packed column. It can be carried out. By such elution treatment, the alkali metal content in the fired product can be almost completely removed. Thus fired product eluted removal of alkali metal component and has a very high surface area, typically, 900 meters 2 / g or more in BET surface area, in particular with a surface area of 2000~4000m 2 / g.

【0008】本発明において炭素化処理物をアルカリ金
属化合物との混合物の形で焼成する場合、炭素化処理物
は、あらかじめ、ペレット状や、球状、板状等の形状に
成形し、成形物として焼成することもできる。炭素化処
理物の成形は、従来公知の方法に従って、高分子化合物
や粘着性液体をバインダーとして混合し、これを押出成
形や打錠成形等の任意の成形方法によって行うことがで
きる。炭素化処理物に対して添加するアルカリ金属化合
物が粉末状の場合、炭素化処理物にアルカリ金属化合物
を添加混合した後、成形することができる。また、アル
カリ金属化合物を水溶液として添加する場合、炭素化処
理物の成形後、その成形物にアルカリ金属化合物の水溶
液をスプレーしたり、あるいは成形物をアルカリ金属化
合物の水溶液中に浸漬する等の方法でアルカリ金属化合
物を含む成形物を得ることができる。本発明により炭素
化処理物とアルカリ金属化合物からなる成形物を好まし
く得るための他の方法としては、炭素化処理物に水酸化
ナトリウム及び/又は水酸化カリウムを混合し、この混
合物をその水酸化ナトリウム及び/又は水酸化カリウム
の融点以上の温度、好ましくは約400℃近辺の温度で
約30分間程度熱処理し、得られた溶融状混合物を成形
し、室温に冷却する方法を示すことができる。
In the present invention, when the carbonized product is fired in the form of a mixture with an alkali metal compound, the carbonized product is molded in advance into a pellet shape, a spherical shape, a plate shape or the like to obtain a molded product. It can also be baked. The carbonized product can be molded according to a conventionally known method by mixing a polymer compound and a viscous liquid as a binder and then performing an arbitrary molding method such as extrusion molding or tablet molding. When the alkali metal compound added to the carbonized product is powdery, it can be molded after the alkali metal compound is added and mixed to the carbonized product. When the alkali metal compound is added as an aqueous solution, a method such as spraying an aqueous solution of the alkali metal compound on the molded product after molding the carbonized product or immersing the molded product in the aqueous solution of the alkali metal compound Thus, a molded product containing an alkali metal compound can be obtained. As another method for obtaining a carbonized product and a molded product composed of an alkali metal compound according to the present invention, sodium hydroxide and / or potassium hydroxide is mixed with the carbonized product, and the mixture is subjected to the hydroxylation. A method of heat-treating at a temperature above the melting point of sodium and / or potassium hydroxide, preferably about 400 ° C. for about 30 minutes, molding the obtained molten mixture, and cooling to room temperature can be shown.

【0009】本発明により多孔性シリカー炭素複合体を
製造するための他の好ましい方法は、原料としてのケイ
素集積バイオマスの粉砕物にアルカリ金属化合物を混合
し、この混合物を80〜300℃の温度で熱処理した
後、300℃以上の温度で焼成し、得られた焼成物を水
洗する方法である。この場合、原料ケイ素集積バイオマ
スの粉砕は、そのままあるいは120〜200℃で熱処
理して水分を除去した状態で行う。アルカリ金属化合物
の添加量は、乾燥物基準で、原料ケイ素集積バイオマス
1重量部に対し、1〜5重量部の割合である。また、焼
成物の水洗温度は、30〜100℃、好ましくは60〜
90℃である。この方法によれば、表面積が1000〜
1500m2/gの多孔性シリカー炭素複合体を得るこ
とができる。また、この方法の場合、アルカリ金属化合
物として、水酸化ナトリウムを用いることにより、水洗
排液として、ケイ酸ナトリウム水溶液を得ることができ
る。このケイ酸ナトリウム水溶液は着色のないもので、
濃度調整することにより水ガラスとして利用し得る他、
化学原料として利用することができる。さらに、アルカ
リ金属化合物として水酸化カリウムを用いることによ
り、水洗排液としてケイ酸カリウムの水溶液を得ること
ができる。このケイ酸カリウム水溶液は着色のないもの
で、水耕肥料として利用し得る他、化学原料として利用
することができる。
Another preferable method for producing a porous silica-carbon composite according to the present invention is to mix an alkali metal compound with a pulverized product of silicon-accumulated biomass as a raw material, and mix the mixture at a temperature of 80 to 300 ° C. After the heat treatment, it is fired at a temperature of 300 ° C. or higher, and the obtained fired product is washed with water. In this case, the raw material silicon-accumulated biomass is pulverized as it is or in a state where the moisture is removed by heat treatment at 120 to 200 ° C. The addition amount of the alkali metal compound is 1 to 5 parts by weight with respect to 1 part by weight of the raw material silicon-accumulated biomass on a dry matter basis. The temperature of washing the baked product with water is 30 to 100 ° C., preferably 60 to
90 ° C. According to this method, the surface area is 1000-
A 1500 m 2 / g porous silica-carbon composite can be obtained. Further, in the case of this method, by using sodium hydroxide as the alkali metal compound, it is possible to obtain an aqueous sodium silicate solution as the washing effluent. This sodium silicate aqueous solution has no color,
It can be used as water glass by adjusting the concentration,
It can be used as a chemical raw material. Furthermore, by using potassium hydroxide as the alkali metal compound, an aqueous solution of potassium silicate can be obtained as the washing effluent. This potassium silicate aqueous solution is not colored and can be used as a hydroponic fertilizer and also as a chemical raw material.

【0010】[0010]

【発明の効果】本発明の多孔性シリカ−炭素複合体は、
高い表面積を有する。この多孔性シリカー炭素複合体に
おいて、アルカリ金属分末溶出のものは、BET表面積
が800〜1000m2/gであるが、アルカリ金属分
溶出のものは、BET表面積が2000〜4000m2
/gという極めて高い表面積を有する。これらのものは
いずれも高い表面積を有することから吸着剤や公害防止
用資材等として有効に利用される。また、焼成体からア
ルカリ金属分を溶出させる際に得られるケイ酸アルカリ
を含む溶出液は、着色のないもので、各種の用途に用い
ることができる。例えば、ケイ酸ナトリウムを含む溶出
液は水ガラスとして利用可能なものであり、ケイ酸カリ
ウムを含む溶出液は水耕肥料として利用可能のものであ
る。本発明の多孔性シリカ−炭素複合体は、ケイ素集積
バイオマスを原料として製造されることから、そのコス
トが低いという利点がある。
The porous silica-carbon composite of the present invention comprises:
Has a high surface area. In this porous silica-carbon composite, one having an alkali metal content elution has a BET surface area of 800 to 1000 m 2 / g, while one having an alkali metal content elution has a BET surface area of 2000 to 4000 m 2.
It has a very high surface area of / g. Since all of these have a high surface area, they are effectively used as adsorbents, pollution control materials, and the like. The eluate containing alkali silicate obtained when the alkali metal component is eluted from the fired product is not colored and can be used for various purposes. For example, the eluate containing sodium silicate can be used as water glass, and the eluate containing potassium silicate can be used as hydroponic fertilizer. Since the porous silica-carbon composite of the present invention is produced by using silicon-accumulated biomass as a raw material, it has an advantage of low cost.

【0011】[0011]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。なお、実施例に示したBET表面積の測定はイタ
リアカルロエルバ社製ソープトマチック1800、ある
いは米国製カウンターソープを用いて行った。また、メ
チレンブルー吸着量の測定はJIS K 1474(粒
状活性炭の試験法)に準じて行った。すなわち、300
mg/lのメチレンブルー溶液中によくかきまぜながら
試料0.2gを添加した後、溶液中のメチレンブルー濃
度を分光光度計を用い、波長665mmで測定し、その
結果に基づいて試料1g当りのメチレンブルー吸着量を
mg/gを算出した。
EXAMPLES Next, the present invention will be described in more detail by way of examples. In addition, the measurement of the BET surface area shown in the examples was carried out using a Soaptomatic 1800 manufactured by Carlo Erba, Italy or a counter soap manufactured in the United States. The amount of methylene blue adsorbed was measured according to JIS K 1474 (test method for granular activated carbon). That is, 300
After adding 0.2 g of the sample to a mg / l methylene blue solution while thoroughly stirring, the concentration of methylene blue in the solution was measured with a spectrophotometer at a wavelength of 665 mm, and based on the result, the amount of adsorbed methylene blue per 1 g of the sample Was calculated as mg / g.

【0012】実施例1 SiO2:約25重量%、有機物:約75重量%を含む
もみ殻50gをフタ付ニッケルルツボに入れ、ルツボに
窒素を通しながら電気炉で加熱し、20℃/分の昇温速
度でルツボ内部の温度を400℃まで昇温させ、さらに
400℃で120分間熱処理することでもみ殻を炭素化
すると、炭素分:57重量%、SiO2:43重量%か
らなる炭素化物が得られた。この炭素化物を窒素中で放
冷し室温となした。500mlのビーカーにこの炭化素
化物20gを入れ、これに苛性カリ80g加えて充分混
合した後、混合物をフタ付ニッケルルツボに入れ、10
0分の時間をかけて表1に示す温度まで昇温した後、直
ちに冷却して多孔性シリカ−炭素複合体を得た。次いで
この焼成体を水中に添加し、煮沸することにより焼成物
中のカリウム分及びケイ酸分を溶出した後、乾燥した。
ここで得られた多孔性シリカ−炭素複合体のBET表面
積及びメチレンブルー吸着量と焼成温度との関係を表1
に示す。
Example 1 50 g of rice husks containing about 25% by weight of SiO 2 and about 75% by weight of organic matter were placed in a nickel crucible with a lid and heated in an electric furnace while passing nitrogen through the crucible and heated at 20 ° C./min. When the temperature inside the crucible is raised to 400 ° C. at a heating rate and the chaff is carbonized by further heat-treating at 400 ° C. for 120 minutes, a carbonized product consisting of carbon content: 57 wt% and SiO 2 : 43 wt% was gotten. The carbonized product was allowed to cool to room temperature in nitrogen. Into a 500 ml beaker, 20 g of this carbide was added, and 80 g of caustic potash was added and mixed well, and then the mixture was placed in a nickel crucible with a lid, and 10
The temperature was raised to the temperature shown in Table 1 over a period of 0 minutes and then immediately cooled to obtain a porous silica-carbon composite. Next, the calcined product was added to water and boiled to elute the potassium component and the silicic acid component in the calcined product, and then dried.
Table 1 shows the relationship between the BET surface area and the amount of methylene blue adsorbed on the porous silica-carbon composite obtained here and the firing temperature.
Shown in.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例2 稲わらを2〜10mmに切断した後、昇温速度1℃/分
で窒素ガス中で500℃まで加熱することにより炭素化
して、炭素化物を得た。この炭素化物20gに苛性カリ
40gを加えて、実施例1と同一手法で多孔性シリカ−
炭素複合体を作製した。この場合、焼成温度は800℃
とした。このようにして得られた多孔性シリカ−炭素複
合体は、BET表面積2022m2/g、メチレンブル
ー吸着量720mg/gの成績を示した。
Example 2 Rice straw was cut into 2 to 10 mm and then carbonized by heating to 500 ° C. in nitrogen gas at a heating rate of 1 ° C./min to obtain a carbonized product. To 20 g of this carbonized product, 40 g of caustic potash was added, and porous silica was added in the same manner as in Example 1.
A carbon composite was prepared. In this case, the firing temperature is 800 ° C
And The porous silica-carbon composite material thus obtained showed a BET surface area of 2022 m 2 / g and a methylene blue adsorption amount of 720 mg / g.

【0015】実施例3 もみ殻の茎部を約200℃で熱処理した後、粉砕し、こ
の粉砕物を実施例1と同様にして400〜700℃の温
度で炭素化した。この炭素化物1重量部に苛性カリ4重
量部を混合し、この混合物を苛性カリウムの融点よりや
や高い400℃の温度で50分間熱処理をしたのち、こ
の混合物を実施例1と同様にしてカリウム分、珪酸分を
溶出した。得られた製品のBET表面積及びメチレンブ
ルー吸着量を表2に示す。
Example 3 The stem portion of rice husk was heat-treated at about 200 ° C. and then pulverized. The pulverized product was carbonized in the same manner as in Example 1 at a temperature of 400 to 700 ° C. 1 part by weight of this carbonized product was mixed with 4 parts by weight of caustic potash, and the mixture was heat-treated at a temperature of 400 ° C. slightly higher than the melting point of potassium caustic for 50 minutes, and then the mixture was treated with potassium as in Example 1. The silicic acid content was eluted. The BET surface area and methylene blue adsorption amount of the obtained product are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】実施例4 実施例1で得たもみ殻炭素化物1重量部に対して、苛性
カリ2重量部及び炭酸カリウム2重量部を添加混合し、
得られた混合物を空気中において600〜900℃で焼
成した後、珪酸及びカリウム分を溶出した。得られた製
品の性能を次表に示す。なお、表2に示したベンゼンガ
ス吸着量(重量%)は、温度30℃での試料に対する吸
着ベンゼンガスの重量%である。
Example 4 2 parts by weight of caustic potash and 2 parts by weight of potassium carbonate were added and mixed with 1 part by weight of the chaff carbon material obtained in Example 1.
After calcining the obtained mixture in air at 600 to 900 ° C., the silicic acid and potassium components were eluted. The performance of the obtained product is shown in the following table. The benzene gas adsorption amount (% by weight) shown in Table 2 is the% by weight of the adsorbed benzene gas with respect to the sample at a temperature of 30 ° C.

【0018】[0018]

【表3】 [Table 3]

【0019】実施例5 もみ殻を500℃で炭素化処理して得た炭素化物1重量
部に対して、もみ殻0.1重量部及び苛性カリ4重量部
を添加混合し、この混合物を800℃で10分間焼成し
た後、珪酸とカリウム分を溶出した。得られた製品は、
BET表面積3461m2/g及びメチレンブルー吸着
量950mg/gを示した。
Example 5 0.1 part by weight of rice husks and 4 parts by weight of caustic potash were added and mixed with 1 part by weight of a carbonized product obtained by carbonizing rice husks at 500 ° C., and this mixture was heated at 800 ° C. After baking for 10 minutes at room temperature, silicic acid and potassium were eluted. The product obtained is
The BET surface area was 3461 m 2 / g and the amount of methylene blue adsorbed was 950 mg / g.

【0020】実施例6 もみ殻を窒素ガス中で3℃/分の昇温速度で600℃ま
で加熱して炭素化した。次に、炭酸カリウム又は苛性カ
リ2〜4gを蒸留水5mlに添加して形成した各溶液
を、前記で得た炭素化物1gに添加混合し、この混合物
を空気を遮断して100分で900℃の温度に昇温し、
この温度で0〜20分間焼成した後、カリウム分と珪酸
分を溶出した。得られた製品の性状を次表に示す。
Example 6 Rice husks were carbonized by heating them to 600 ° C. at a heating rate of 3 ° C./min in nitrogen gas. Next, each solution formed by adding 2 to 4 g of potassium carbonate or caustic potash to 5 ml of distilled water was added to and mixed with 1 g of the carbonized product obtained above, and this mixture was kept at 900 ° C. for 100 minutes by blocking air. Up to temperature,
After baking at this temperature for 0 to 20 minutes, the potassium content and the silicic acid content were eluted. The properties of the obtained product are shown in the following table.

【0021】[0021]

【表4】 [Table 4]

【0022】実施例7 稲わらを長さ約3mmに切断した後、窒素ガス中で40
0℃で炭素化して得られた炭素化物を500℃で1時間
熱処理したもの1重量部に炭酸カリウム又は苛性カリ4
重量部を添加混合し、この混合物を窒素ガス中で800
℃で30分間又は800℃で100分間焼成した。得ら
れた製品の性能を次表に示す。
Example 7 Rice straw was cut into pieces each having a length of about 3 mm and then 40
Carbonized product obtained by carbonizing at 0 ° C. was heat-treated at 500 ° C. for 1 hour. 1 part by weight of potassium carbonate or caustic potash was added.
Parts by weight are added and mixed, and the mixture is mixed in nitrogen gas at 800 parts.
Baking was performed at 30 ° C. for 30 minutes or at 800 ° C. for 100 minutes. The performance of the obtained product is shown in the following table.

【0023】[0023]

【表5】 [Table 5]

【0024】実施例8 もみ殻を窒素ガス中で昇温速度3℃/分で600℃まで
加熱して炭素化した。この炭素化物1重量部に対し、苛
性カリ4重量部を添加混合し、この混合物を窒素ガス中
で400℃で100分間焼成した。この焼成物を水洗処
理を施すことなく次いで、800℃で100分焼成し
た。得られた焼成体(水洗処理なし)の性状を調べたと
ころ、BET表面積:900m2/g、メチレンブルー吸
着量:300mg/gの結果が得られた。
Example 8 Rice husks were carbonized by heating them to 600 ° C. in nitrogen gas at a heating rate of 3 ° C./min. To 1 part by weight of this carbonized product, 4 parts by weight of caustic potash was added and mixed, and the mixture was baked in nitrogen gas at 400 ° C. for 100 minutes. This baked product was then baked at 800 ° C. for 100 minutes without being washed with water. When the properties of the obtained fired body (without water washing treatment) were examined, the results were BET surface area: 900 m 2 / g and methylene blue adsorption amount: 300 mg / g.

【0025】実施例9 実施例1において、アルカリとして苛性ソーダを炭素化
物1重量部に対して4重量部の割合で用いた以外は同様
にして製品(焼成温度900℃)を得た。この製品は、
BET表面積:3010m2/g、メチレンブルー吸着
量:900mg/gを示した。
Example 9 A product (baking temperature 900 ° C.) was obtained in the same manner as in Example 1, except that caustic soda was used as the alkali in an amount of 4 parts by weight with respect to 1 part by weight of the carbonized product. This product is
The BET surface area was 3010 m 2 / g and the amount of methylene blue adsorbed was 900 mg / g.

【0026】実施例10 実施例5において、苛性カリの代りに苛性ソーダを用い
た以外は同様にして製品を得た。この製品はBET表面
積:2990m2/g、メチレンブルー吸着量:970
mg/gを示した。
Example 10 A product was obtained in the same manner as in Example 5 except that caustic soda was used instead of caustic potash. This product has a BET surface area of 2990 m 2 / g and a methylene blue adsorption amount of 970.
It showed mg / g.

【0027】実施例11 500℃で処理したもみ殻炭化物20gをフタ付ニッケ
ルルツボに入れ、次いで、KOHを炭素化物の重量1に
対して4部を加えた。これを400℃で30分処理し次
に800℃で100分間焼成した後水洗し、得られた焼
成体の内部表面積とメチレンブルー吸着量を調べた。内
部表面積2940m2/g〜3140m2/g、メチレン
ブルー吸着量890mg/g〜900mg/gの結果が
得られた。なお、水洗に際して得られた水洗排液は、ケ
イ酸カリウムを含むもので、水耕肥料として使用可能な
ものであった。
Example 11 20 g of chaff carbide treated at 500 ° C. was placed in a nickel crucible with a lid, and then 4 parts of KOH was added to 1 part by weight of the carbonized product. This was treated at 400 ° C. for 30 minutes, then calcined at 800 ° C. for 100 minutes and then washed with water, and the internal surface area of the obtained calcined product and the amount of adsorbed methylene blue were examined. Internal surface area 2940m 2 / g~3140m 2 / g, methylene blue adsorption of 890mg / g~900mg / g results. The effluent from the rinsing obtained during rinsing contained potassium silicate and was usable as a hydroponic fertilizer.

【0028】実施例12 実施例11において、KOHの代りにKClを用いた以
外は同様にして実験を行った。この場合、内部表面積1
200m2/g、メチレンブルー吸着量380mg/g
の製品が得られた。
Example 12 An experiment was conducted in the same manner as in Example 11 except that KCl was used instead of KOH. In this case, the internal surface area 1
200m 2 / g, methylene blue adsorption amount 380mg / g
The product was obtained.

【0029】実施例13 もみ殻を空気中で200℃で熱処理した後、80メッシ
ュアンダーの大きさにに粉砕した。この粉砕物1重量部
に水酸化ナトリウム4重量部を混合し、酸素濃度が0.
1vol%以下の窒素ガス中で100℃で15分間熱処
理した後、800℃に昇温し、この温度で10分間熱処
理した。次に、このようにして得た焼成物を温度90℃
の水と接触させて水洗した。この水洗後に得られた多孔
性シリカー炭素複合体は、BET表面積:1100m2
/g、メチレンブルー吸着量:350mg/gを有する
ものであった。また、この水洗に際して得られた水洗排
液は、着色のないケイ酸ナトリウム水溶液であり、この
水溶液は、これを濃縮することにより、水ガラスとして
利用することができた。
Example 13 Rice husks were heat treated in air at 200 ° C. and then crushed to a size of 80 mesh under. 1 part by weight of this pulverized product was mixed with 4 parts by weight of sodium hydroxide, and the oxygen concentration was adjusted to 0.
After heat treatment at 100 ° C. for 15 minutes in a nitrogen gas of 1 vol% or less, the temperature was raised to 800 ° C. and heat treatment was performed at this temperature for 10 minutes. Next, the fired product thus obtained is heated to 90 ° C.
And washed with water. The porous silica-carbon composite obtained after this washing with water had a BET surface area of 1100 m 2.
/ G, methylene blue adsorption amount: 350 mg / g. Further, the effluent of the rinsing obtained during the rinsing was an uncolored sodium silicate aqueous solution, and this aqueous solution could be used as water glass by concentrating it.

【0030】実施例14 もみ殻を粉砕し、この粉末1重量部に対し、アルカリ4
重量部を混合し、さらに廃糖密0.2重量部を混合す
る。このようにして得た混合物を円筒体内に挿入し、
1.5ton/cm2の圧力で圧縮し、この圧縮状態に
3分間保持した後、この円筒体から円柱状成形体を取出
し、これを天日乾燥し、さらに100℃の温度に加熱し
て脱水する。次いで、この成形体を窒素ガス中で800
℃で15分間焼成した。得られた焼成物を熱湯で洗浄し
た後、その性能を評価した。その結果を次表に示す。
Example 14 Rice husks were crushed, and 4 parts of alkali was added to 1 part by weight of this powder.
Part by weight is mixed, and 0.2 part by weight of waste sugar is mixed. Insert the mixture thus obtained into the cylinder,
After compressing at a pressure of 1.5 ton / cm 2 and maintaining this compressed state for 3 minutes, a cylindrical molded body was taken out, dried in the sun, and heated at a temperature of 100 ° C. for dehydration. To do. Next, this molded body is subjected to 800 in nitrogen gas.
Baking for 15 minutes at ° C. After the obtained fired product was washed with hot water, its performance was evaluated. The results are shown in the table below.

【表6】 [Table 6]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/52 B 38/06 F (72)発明者 石橋 一二 北海道札幌市豊平区月寒東2条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 山田 勝利 北海道札幌市豊平区月寒東2条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 野田 良男 北海道札幌市豊平区月寒東2条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 横田 祐司 北海道札幌市豊平区月寒東2条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 熊本 進誠 北海道千歳市若草1丁目24番地の2−1 (72)発明者 高橋 芳恵 北海道札幌市中央区南25条西12丁目4番1 −503号 (72)発明者 小松 和史 東京都大田区南雪谷4丁目22番11号 (72)発明者 桑垣 整 神奈川県茅ヶ崎市円蔵2423−8─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C04B 35/52 B 38/06 F (72) Inventor Iji Ishibashi 2 Tsukikanto, Toyohira-ku, Sapporo, Hokkaido Article 172-12-1 Industrial Technology Institute Hokkaido Industrial Development Laboratory (72) Inventor Satoshi Yamada 2-17-17-2 Tsukikanto, Toyohira-ku, Sapporo-shi, Hokkaido Institute of Industrial Technology Hokkaido Industrial Development Laboratory (72) Inventor Yoshio Noda 2-17-1, Tsukikanto, Toyohira-ku, Sapporo-shi, Hokkaido Inside the Industrial Research Institute of Hokkaido Industrial Technology Institute (72) Inventor Yuji Yokota 2-17-1, Tsukikanto, Toyohira-ku, Sapporo-shi, Hokkaido Industrial Technology Institute (72) Inventor Susumu Kumamoto 2-1 at 1-24 Wakakusa, Chitose-shi, Hokkaido (72) Inventor Yoshie Takahashi 2 Minami, Chuo-ku, Sapporo, Hokkaido Article 5 West 12-4-1-503 (72) Inventor Kazufumi Komatsu 4-22-11 Minamiyukitani, Ota-ku, Tokyo (72) Inventor Sei Kuwagaki 2423-8, Enzo, Chigasaki-shi, Kanagawa

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素集積バイオマスの炭素化処理物と
アルカリ金属化合物との混合物の焼成体からなり、BE
T表面積が900m2/g以上である多孔性シリカ−炭素
複合体。
1. BE comprising a calcined product of a mixture of a carbonized product of silicon-accumulated biomass and an alkali metal compound,
A porous silica-carbon composite having a T surface area of 900 m 2 / g or more.
【請求項2】 ケイ素集積バイオスの炭素化処理物とア
ルカリ金属化合物との混合物の焼成体からそれに含まれ
るアルカリ金属分を溶出除去させたものからなり、BE
T表面積が900m2/g以上である多孔性シリカー炭素
複合体。
2. BE comprising a calcined product of a mixture of a carbonized product of silicon-containing bios and an alkali metal compound, in which an alkali metal component contained therein is eluted and removed.
A porous silica-carbon composite having a T surface area of 900 m 2 / g or more.
【請求項3】 アルカリ金属化合物が水酸化ナトリウム
及び/又は水酸化カリウムである請求項1又は2の多孔
性シリカー炭素複合体。
3. The porous silica-carbon composite according to claim 1, wherein the alkali metal compound is sodium hydroxide and / or potassium hydroxide.
【請求項4】 請求項1〜3のいずれかの多孔性シリカ
−炭素複合体からなる吸着剤。
4. An adsorbent comprising the porous silica-carbon composite according to claim 1.
【請求項5】 ケイ素集積バイオマスの炭素化処理物と
アルカリ金属化合物との混合物を300℃以上の高温で
焼成することを特徴とする多孔性シリカ−炭素複合体の
製造方法。
5. A method for producing a porous silica-carbon composite, which comprises firing a mixture of a carbonized product of silicon-accumulated biomass and an alkali metal compound at a high temperature of 300 ° C. or higher.
【請求項6】 ケイ素集積バイオマスの炭素化処理物と
アルカリ金属化合物との混合物を300℃以上の高温で
焼成した後、得られた焼成物中に残存するアルカリ金属
分を溶出除去することを特徴とする多孔性シリカー炭素
複合体の製造方法。
6. A method of calcining a mixture of a carbonized product of silicon-accumulated biomass and an alkali metal compound at a high temperature of 300 ° C. or higher, and then eluting and removing an alkali metal content remaining in the obtained calcined product. And a method for producing a porous silica-carbon composite.
【請求項7】 ケイ素集積バイオマスを炭素化処理物に
添加する請求項5又は6の方法。
7. The method according to claim 5, wherein the silicon-accumulated biomass is added to the carbonized product.
【請求項8】 ケイ素集積バイオマスとアルカリ金属化
合物との混合物を、80〜300℃で熱処理した後、3
00℃以上の温度で焼成し、得られた焼成物を水洗する
ことを特徴とする多孔性シリカ−炭素複合体の製造方
法。
8. A mixture of silicon-accumulated biomass and an alkali metal compound is heat treated at 80 to 300 ° C., and then 3
A method for producing a porous silica-carbon composite, which comprises calcination at a temperature of 00 ° C. or higher and washing the resulting calcinated product with water.
【請求項9】 もみ殻粉砕物とアルカリ金属化合物との
混合物を300℃以上の温度で焼成した後、得られ焼成
物を水洗処理することを特徴とする多孔性シリカー炭素
複合体の製造方法。
9. A method for producing a porous silica-carbon composite, which comprises firing a mixture of crushed rice husks and an alkali metal compound at a temperature of 300 ° C. or higher, and then washing the obtained fired product with water.
【請求項10】 請求項8又は9の方法において、アル
カリ金属化合物として水酸化ナトリウムを用い、水洗排
液としてケイ酸ナトリウム水溶液を得ることを特徴とす
る多孔性シリカー炭素複合体の製造方法。
10. The method for producing a porous silica-carbon composite according to claim 8 or 9, wherein sodium hydroxide is used as the alkali metal compound, and an aqueous sodium silicate solution is obtained as the washing effluent.
【請求項11】 請求項8又は9の方法において、アル
カリ金属化合物として水酸化カリウムを用い、水洗排液
としてケイ酸カリウム水溶液を得ることを特徴とする多
孔性シリカー炭素複合体の製造方法。
11. The method for producing a porous silica-carbon composite according to claim 8 or 9, wherein potassium hydroxide is used as the alkali metal compound, and an aqueous potassium silicate solution is obtained as the washing effluent.
JP4285096A 1992-09-30 1992-09-30 Porous silica-carbon composite and method for producing the same Expired - Lifetime JP2506600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4285096A JP2506600B2 (en) 1992-09-30 1992-09-30 Porous silica-carbon composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4285096A JP2506600B2 (en) 1992-09-30 1992-09-30 Porous silica-carbon composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06293576A true JPH06293576A (en) 1994-10-21
JP2506600B2 JP2506600B2 (en) 1996-06-12

Family

ID=17687081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4285096A Expired - Lifetime JP2506600B2 (en) 1992-09-30 1992-09-30 Porous silica-carbon composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP2506600B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529518A (en) * 2000-03-31 2003-10-07 アグリテック,インク. Precipitated silica and silica gel with or without deposited carbon from biomass ash solution and process
JP2008016792A (en) * 2006-06-08 2008-01-24 Showa Denko Kk Porous body, manufacturing method therefor and applications therefor
CN104289177A (en) * 2014-05-29 2015-01-21 天津城建大学 Preparation method of charcoal for heavy metal wastewater purification
JP2019506701A (en) * 2015-12-18 2019-03-07 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) Anode with diatom shell
JP2020055730A (en) * 2018-06-29 2020-04-09 ジカンテクノ株式会社 Carbon material, graphene, and apparatus and method for producing graphene
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers
WO2024009692A1 (en) * 2022-07-06 2024-01-11 株式会社クボタ Deodorant and method for producing deodorant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121986A (en) * 1984-07-10 1986-01-30 凸版印刷株式会社 Manufacture of porous sintered body
JPS6186475A (en) * 1984-10-05 1986-05-01 凸版印刷株式会社 Manufacture of porous sintered body
JPH0238374A (en) * 1988-07-27 1990-02-07 Osaka Gas Co Ltd Bulk active carbon fiber aggregate and production thereof
JPH0459891A (en) * 1990-06-28 1992-02-26 Hideo Murakami Industrial production of biocoal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121986A (en) * 1984-07-10 1986-01-30 凸版印刷株式会社 Manufacture of porous sintered body
JPS6186475A (en) * 1984-10-05 1986-05-01 凸版印刷株式会社 Manufacture of porous sintered body
JPH0238374A (en) * 1988-07-27 1990-02-07 Osaka Gas Co Ltd Bulk active carbon fiber aggregate and production thereof
JPH0459891A (en) * 1990-06-28 1992-02-26 Hideo Murakami Industrial production of biocoal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529518A (en) * 2000-03-31 2003-10-07 アグリテック,インク. Precipitated silica and silica gel with or without deposited carbon from biomass ash solution and process
JP2008016792A (en) * 2006-06-08 2008-01-24 Showa Denko Kk Porous body, manufacturing method therefor and applications therefor
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers
US10756346B2 (en) 2007-04-04 2020-08-25 Sony Corporation Porous Carbon Material
US11545665B2 (en) 2007-04-04 2023-01-03 Sony Corporation Carbon-polymer complex
US11955638B2 (en) 2007-04-04 2024-04-09 Sony Corporation Sheet-shaped member
CN104289177A (en) * 2014-05-29 2015-01-21 天津城建大学 Preparation method of charcoal for heavy metal wastewater purification
JP2019506701A (en) * 2015-12-18 2019-03-07 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) Anode with diatom shell
JP2020055730A (en) * 2018-06-29 2020-04-09 ジカンテクノ株式会社 Carbon material, graphene, and apparatus and method for producing graphene
JP2020055727A (en) * 2018-06-29 2020-04-09 ジカンテクノ株式会社 Graphene, and apparatus and method for producing graphene
WO2024009692A1 (en) * 2022-07-06 2024-01-11 株式会社クボタ Deodorant and method for producing deodorant

Also Published As

Publication number Publication date
JP2506600B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JPH0297414A (en) Production of active carbon having superior quality
US3600476A (en) Method for manufacture of light weight aggregates
GB2200904A (en) Process for producing low water-absorption artificial lightweight aggregate
US3853490A (en) Granulation of potassium sulfate
CN107915473A (en) Sintered coal ash super light ceramisite and preparation method thereof
JP2506600B2 (en) Porous silica-carbon composite and method for producing the same
CN106587962A (en) Diatomite-based ceramsite and preparation method thereof
CN110776308B (en) High-temperature porcelain and preparation method thereof
CN1562739A (en) Method for producing active carbon by using cinder of brown coal
CN106185926B (en) The preparation method of mineral activated carbon containing rare earth
CN108558353A (en) A kind of diatomite environment-friendly insulating brick and preparation method thereof
RU2597400C1 (en) Method of producing composite sorbent based on mineral and vegetable carbon-containing material
CN107805053A (en) A kind of method for preparing porous ceramic grain using flyash and biomass electric power plant burnning ash
CN112521142B (en) Photocatalytic ceramic, preparation method thereof and method for degrading organic dye RhB
KR100278140B1 (en) Method for producing granular strontium carbonate using strontium-containing binder
US4075311A (en) Process for preparing granulated magnesium hydroxide and magnesia of a large specific surface
CA1241523A (en) Process for the preparation of lithium silicate
NO329045B1 (en) Method of producing pencil lead from used stop carriers
CN104961449A (en) Semitransparent jadeite ceramic and preparation method thereof
CN113620290B (en) Preparation method of air purification activated carbon adsorption material
KR20200055985A (en) Method for manufacturing high-efficiency activated carbon for removal of harmful gas using nano metal powder
CN102659438A (en) Microporous lightweight mullite refractory aggregate and preparation method thereof
KR940010246B1 (en) Method of making orchid stone
SU789456A1 (en) Method of producing hollow granules
JPH03223105A (en) Preparation of low density porous carbon granule

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 17