JPH03223105A - Preparation of low density porous carbon granule - Google Patents

Preparation of low density porous carbon granule

Info

Publication number
JPH03223105A
JPH03223105A JP2020040A JP2004090A JPH03223105A JP H03223105 A JPH03223105 A JP H03223105A JP 2020040 A JP2020040 A JP 2020040A JP 2004090 A JP2004090 A JP 2004090A JP H03223105 A JPH03223105 A JP H03223105A
Authority
JP
Japan
Prior art keywords
granules
aqueous solution
porous carbon
mixture
carbonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020040A
Other languages
Japanese (ja)
Inventor
Chizuhiro Shiraishi
白石 千鶴浩
Toshio Nakada
仲田 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2020040A priority Critical patent/JPH03223105A/en
Publication of JPH03223105A publication Critical patent/JPH03223105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve the strength of the subject carbon granule by granulating chaff powder with a binder aqueous solution containing lignin, starch, theriac or a mixture thereof, drying the granules, carbonizing the dried granules and subsequently immersing the carbonized granules in an aqueous solution to elute a SiO2 component therefrom. CONSTITUTION:100 pts.wt. of plant powder such as chaff powder which has an average particle size of <=50mum and whose 60% have particle sizes of <=300mum is mixed with <=60 pts.wt. of a binder aqueous solution comprising lignin, a polysaccharide such as water-soluble starch or theriac or a mixture thereof, and the mixture is charged to a granulating machine and then granulated. The prepared granules are dried at approximately 50-300 deg.C, carbonized at a temperature of <1000 deg.C, immersed in a HF aqueous solution having a concentration of approximately 5% to elute a SiO2 component contained in the tissues of the granules therefrom, followed by washing the treated granules with water and drying the granules to provide low density porous carbon granules having a bulk density of <=0.2g/cm<3>, a N2 adsorption specific surface area of 300-500m<2>/g and a granule-crashing strength of >=300g/granule.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主に土壌改良あるいは水処理用として効用性
の高い低密度多孔質炭素粒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing low-density porous carbon particles that are highly effective mainly for soil improvement or water treatment.

〔従来の技術〕[Conventional technology]

植物にとって有用な微生物が土壌中で生育し易い環境を
つくる土壌改良手段として、古来から焼き畑農業がおこ
なわれている。これは焼き畑作業後に残留する炭が本来
的に有している優れた通水性や保水性が微生物の生育に
適しており、また有機物が含まれていない関係で馬主性
の微生物や病原微生物が侵入せず、アルカリ性であるた
めカビの発生も抑制されるといった多様の効能があるか
らである。
Slash-and-burn agriculture has been practiced since ancient times as a means of soil improvement to create an environment in which microorganisms useful for plants can easily grow. This is because the excellent water permeability and water retention properties of the charcoal that remains after slash-and-burn farming operations are suitable for the growth of microorganisms, and because it does not contain organic matter, it does not contain horse-borne microorganisms or pathogenic microorganisms. This is because it has a variety of effects, such as preventing invasion and inhibiting the growth of mold due to its alkaline nature.

従来、土壌改良を目的とする炭素材料としては木炭、ノ
コ屑炭、樹皮炭、椰子殻皮、藁炭、籾殻燻炭などが一般
的なものとして知られており、土壌中において根粒菌、
VA菌根菌などの共生微生物を増殖させる働きをすると
みられている。炭化物が存在すると、これら菌類の感染
率と胞子形成量が多くなり、リン成分などの吸収力が増
して作物の生育を促進するという見方もある。
Conventionally, charcoal, sawdust charcoal, bark charcoal, coconut husk charcoal, straw charcoal, and rice husk smoked charcoal have been known as carbon materials for the purpose of soil improvement.
It is thought to work to promote the growth of symbiotic microorganisms such as VA mycorrhizal fungi. Some believe that the presence of char increases the infection rate and spore formation of these fungi, increasing their ability to absorb phosphorus and other components, thereby promoting crop growth.

最近の研究では、土中に混入した炭材には最初に空中窒
素固定菌や光合成をするらん藻などの独立栄養微生物が
入り込み、ついで競争に強い共生微生物が入り、酸素を
要求する根が炭中で増えるとそれに共生して根粒菌やV
A菌の増殖する関係にあるとされている〔「農業技術」
第41巻(9) 、 p400〜405(1986) 
) 。
Recent research has shown that autotrophic microorganisms such as aerial nitrogen-fixing bacteria and photosynthetic cyanobacteria first enter carbonaceous materials mixed into the soil, and then commensal microorganisms that are strong in competition enter, and roots that require oxygen become charcoal. When it increases inside, rhizobia and V. coexist with it.
It is said to be related to the proliferation of Bacterium A ["Agricultural technology"]
Volume 41 (9), p400-405 (1986)
).

この種の土壌改良材には性能的に、■土壌の通気性、透
水性を改良する、■適度の保水性を有する、■土壌中で
保肥力がある、■土壌の酸・アルカリ調整機能がある、
■土壌中で酸素(空気)の保有性が高い、等の項目が要
求されるが、これを炭素材としての特性・性状に置き換
えてみると、空隙率および比表面積の高い低密度多孔質
構造を有しながら容易に破粒しない粒状体であり、性状
として内部骨格が軟質な多孔組織であり、外殻は比較的
硬質の炭素層で覆われている形態が理想的なものとなる
This type of soil conditioner has the following properties: ■Improves the air permeability and water permeability of the soil; ■Has an appropriate water retention capacity; ■Has a fertilizing capacity in the soil; ■Has a soil acid/alkali adjustment function. be,
■ Items such as high oxygen (air) retention in the soil are required, but if we translate this into the characteristics and properties of a carbon material, we find that it has a low-density porous structure with high porosity and specific surface area. It is a granular material that does not easily break apart, and its internal skeleton is a soft porous structure, and its outer shell is ideally covered with a relatively hard carbon layer.

他方、多孔質炭素粒は活性炭として水処理用に多量消費
されている。この場合の効能としては、処理水中の被除
去物質を吸着分離する物理的作用のほかに、組織ボア内
に付着増殖させた微生物を活用するバイオリアクター的
な作用があるが、該バイオリアクター基材として利用す
る多孔質炭素粒についても前記土壌改良材と同様の特性
・性状が要求される。
On the other hand, porous carbon particles are consumed in large quantities as activated carbon for water treatment. In this case, in addition to the physical action of adsorbing and separating the substances to be removed in the treated water, there is also a bioreactor-like action that utilizes microorganisms grown in the tissue bore. Porous carbon grains used as soil conditioners are also required to have the same characteristics and properties as the soil conditioner.

しかしながら、従来の多孔質炭素材を製造する技術で上
記の特性・性状を満足するものは見当らない。
However, none of the conventional porous carbon material manufacturing techniques has been found that satisfies the above characteristics and properties.

すなわち、ノコ屑、藁などを低温度で炭化すると軟質の
多孔質組織を形成することができるが、骨格が崩れ昌い
ため複雑なボアが容易に消失してしまう欠点がある。こ
の点、籾殻や椰子殻を炭化したものは比較的硬い炭素体
に転化するが、ボアが微細過ぎて有効な機能特性が付与
されない難点がある。また、前記のような植物系物質の
粉末あるいはこれを炭化した粉末を原料とし、タール、
ピッチ等のバインダーを用いて成形したのち炭化する方
法も知られているが、この方法の場合にはバインダー成
分が骨格内部に残留した状態で炭化するためボアを閉塞
化する問題点がある。
That is, when sawdust, straw, etc. are carbonized at low temperatures, a soft porous structure can be formed, but this has the drawback that the complicated bores easily disappear because the skeleton collapses. In this regard, carbonized rice husks and coconut husks are converted into relatively hard carbon bodies, but the problem is that the bores are too small to impart effective functional properties. In addition, tar,
A method is also known in which the material is molded using a binder such as pitch and then carbonized, but this method has the problem of clogging the bore because the binder component is carbonized while remaining inside the skeleton.

このほかに、石炭、ピッチコークスのような鉱物系の土
壌改良炭素材が商品化された例もあるが、見掛は比重が
0 、7g/ccと高密度で硬質なタイプであり、性状
的に好ましくない。
In addition, there are examples of mineral-based soil improvement carbon materials such as coal and pitch coke being commercialized, but they appear to be high-density and hard types with a specific gravity of 0.7 g/cc. unfavorable to

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは、植物系粉末を原料とした場合におけるバ
インダーの成分および挙動について多角的に研究を加え
た結果、植物系粉末となじみが良くない特定のバインダ
ーを用いて造粒すると、乾燥過程でバインダー成分が粒
表面に移行し最終的にシェル状の炭素膜を形成する事実
を確認し、先に植物系粉末をリグニン、澱粉もしくはこ
れらの混合物からなるバインダー成分の水溶液で造粒化
したのち乾燥処理し、ついで造粒物を焼成炭化する低密
度多孔質炭素粒の製造方法を開発提供した(特願平!−
159925号)。
The present inventors conducted multifaceted research on the components and behavior of binders when plant-based powders are used as raw materials, and found that when granulated using a specific binder that is not compatible with plant-based powders, the drying process It was confirmed that the binder component migrates to the grain surface and finally forms a shell-like carbon film.After first granulating the vegetable powder with an aqueous solution of the binder component consisting of lignin, starch, or a mixture thereof, We have developed and provided a method for producing low-density porous carbon particles by drying and then firing and carbonizing the granules (Special Application Hei!-
No. 159925).

この方法で得られる炭素粒は、軟質な多孔質骨格を有し
、極めて低密度でありながら容易に崩壊しない強度を備
えており、土壌改良材などに好適であることが認められ
ている。
The carbon particles obtained by this method have a soft porous skeleton, have an extremely low density, yet have a strength that does not easily disintegrate, and are recognized to be suitable for soil improvement materials.

本発明は前記の先願技術に更に改良を加えて開発された
もので、その目的とするところは土壌改良あるいはバイ
オリアクター利用の水処理用として一層理想的な特性・
性状を備える低密度多孔質炭素粒の製造方法を提供する
にある。
The present invention has been developed by adding further improvements to the prior art described above, and its purpose is to develop properties that are even more ideal for use in soil improvement or water treatment using bioreactors.
An object of the present invention is to provide a method for producing low-density porous carbon particles having the following properties.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による低密度多孔質
炭素粒の製造方法は、籾殼粉末をリグニン、澱粉または
糖蜜もしくはこれらの混合物を含むバインダー水溶液で
造粒化する造粒工程、造粒物を乾燥処理したのち焼成炭
化処理する炭化工程、炭化粉を弗化水素酸水溶液に浸漬
してシリカ成分を溶出する溶出工程からなることを構成
上の特徴とする。 以下の本発明を工程ごとに詳述する
A method for producing low-density porous carbon particles according to the present invention to achieve the above object includes a granulation step of granulating rice hull powder with an aqueous binder solution containing lignin, starch, molasses, or a mixture thereof; It is characterized in that it consists of a carbonization step in which the material is dried and then subjected to firing carbonization, and an elution step in which the carbonized powder is immersed in an aqueous hydrofluoric acid solution to elute the silica component. The present invention will be explained in detail below step by step.

(1)造粒工程 本発明の原料には、植物系粉末のうちから籾殼粉末が選
択使用される。該籾殼粉末は、粒度が500μ驕以下で
全体の60%が300μ−の篩目をパスする程度に微粉
化して用いることが望ましい。
(1) Granulation process As the raw material of the present invention, chaff powder is selected from plant-based powders. The rice hull powder is preferably used after being pulverized to such an extent that the particle size is 500 μm or less and 60% of the total can pass a 300 μm sieve.

バインダー成分としては、リグニン、水溶性澱粉、糖蜜
などの多*iが用いられ、単独もしくは混合物を水に溶
解した水溶液状態で使用に供される。バインダー水溶液
の添加量は、籾殼粉末100重量部に対しバインダー成
分として60重量部以下に設定することが好適で、60
重量部を上廻る添加量とすると乾燥時におけるバインダ
ー成分の表面層への移行が不充分となり、結果的に硬粒
、高密度の炭素粒しか得られなくなる。
As the binder component, polyesters such as lignin, water-soluble starch, and molasses are used, and they are used alone or as a mixture in the form of an aqueous solution. The amount of the binder aqueous solution added is preferably set to 60 parts by weight or less as a binder component per 100 parts by weight of rice hull powder, and 60 parts by weight or less as a binder component.
If the amount added exceeds parts by weight, the transfer of the binder component to the surface layer during drying will be insufficient, resulting in only hard grains and high-density carbon grains being obtained.

造粒化は、籾殼粉末とバインダー水溶液を攪拌造粒機に
投入し、回転運動を与えることによっておこなわれる。
Granulation is performed by putting the rice hull powder and binder aqueous solution into a stirring granulator and applying rotational motion.

造粒機としては、カーボンブラックの湿式造粒に常用さ
れているようなピン型タイプのものが量産に適している
As a granulator, a pin-type granulator, such as the one commonly used for wet granulation of carbon black, is suitable for mass production.

(2)炭化工程 造粒工程で得られた造粒物は、引き続き乾燥処理される
。乾燥処理は、造粒物を50〜300℃の温度に保持さ
れた回転ドラムに移して転動させながらおこなうことが
好適で、造粒物の転動過程でバインダー成分の表面層移
行が効率的に進行する。
(2) Carbonization step The granulated material obtained in the granulation step is subsequently subjected to a drying treatment. The drying process is preferably carried out by transferring the granulated material to a rotating drum maintained at a temperature of 50 to 300°C and rolling it, so that the binder component can be efficiently transferred to the surface layer during the rolling process of the granulated material. Proceed to.

これに対し、静置乾燥ではバインダー成分が粒表面に留
まらず外部へ拡散する現象を生じて、粒強度の偏析なら
びに低下を招く。
On the other hand, in static drying, a phenomenon occurs in which the binder component does not remain on the grain surface but diffuses to the outside, leading to segregation and reduction in grain strength.

乾燥後の焼成炭化処理には、静置炭化法、流動炭化法の
いずれの方法を適用することができ、焼成には厳密な昇
温速度の制御は必要ない、炭化温度は、付与するアルカ
リ度、比表面積などを考慮して設定されるが、通常は1
000℃以下、700〜800℃近傍の温度域が主に用
いられる。
For the firing carbonization treatment after drying, either the static carbonization method or the fluidized carbonization method can be applied, and the firing does not require strict control of the heating rate.The carbonization temperature depends on the alkalinity to be imparted. , is set taking into consideration specific surface area, etc., but usually 1
A temperature range of 000°C or less and around 700 to 800°C is mainly used.

(3)溶出工程 炭化工程で得られた炭化粒は、ついで弗化水素酸の水溶
液に浸漬し、粒組織中に介在するシリカ成分を溶出する
。弗化水素酸水溶液の濃度は、5%程度とすることが作
業性を含め好適で、シリカ成分が完全に溶解するまで浸
漬処理を継続する。
(3) Elution step The carbonized grains obtained in the carbonization step are then immersed in an aqueous solution of hydrofluoric acid to elute the silica component present in the grain structure. The concentration of the hydrofluoric acid aqueous solution is preferably about 5%, including workability, and the immersion treatment is continued until the silica component is completely dissolved.

なおこの場合、効率は低下するが熱アルカリ等シリカ成
分を溶出できる溶出剤を用いることも可能である。
In this case, it is also possible to use an eluent that can elute the silica component, such as a hot alkali, although the efficiency is reduced.

溶出処理後の炭化粒は、充分に水洗したのち乾燥して目
的の低密度多孔質炭素粒を得る。
The carbonized particles after the elution treatment are thoroughly washed with water and then dried to obtain the desired low-density porous carbon particles.

〔作 用〕[For production]

本発明によれば、軟質な多孔質組織が形成される籾殼粉
末を原料とし、これとなじみの良くないリグニン、澱粉
、糖蜜等のバインダー成分を選択使用して造粒化される
から、バインダー成分は造粒後の乾燥過程で粒の骨格内
部から表面層に移行する作用を営む、そして、引き続く
炭化工程でそのままの形態で炭化されるから、軟質多孔
質組織の内部骨格部分が硬質の炭素膜で被覆された理想
的形態を形成する。
According to the present invention, rice hull powder, which forms a soft porous structure, is used as a raw material and is granulated by selectively using binder components such as lignin, starch, and molasses, which are not compatible with rice hull powder. During the drying process after granulation, the components move from the inside of the grain skeleton to the surface layer, and are carbonized in that form in the subsequent carbonization process, so that the internal skeleton of the soft porous structure becomes hard carbon. Form an ideal morphology coated with a membrane.

本発明の原料となる籾殼粉末には相当量の珪素成分が含
有されており、これは炭化時の熱処理によって無定形の
シリカ(SiO□)に転化して炭化粒組織内に残存する
。炭化工程後の溶出工程は前記シリカ成分を弗化水素酸
水溶液を用いて除去するもので、この処理が組織の比表
面積ならびに細孔容積を一層増大するために有効に作用
する。
The rice hull powder used as the raw material of the present invention contains a considerable amount of silicon component, which is converted into amorphous silica (SiO□) by heat treatment during carbonization and remains in the carbonized grain structure. In the elution step after the carbonization step, the silica component is removed using an aqueous hydrofluoric acid solution, and this treatment effectively acts to further increase the specific surface area and pore volume of the tissue.

したがって、得られる炭素粒のかさ密度は概ね0、2g
/cc以下に抑えられ、窒素吸着比表面積300〜50
0■27 gでの粒内部容積は2.0〜3.0cc/g
以上に及ぶ。そのうえ、粒破砕強度は300g /粒以
上の水準を保持している。
Therefore, the bulk density of the obtained carbon particles is approximately 0.2 g
/cc or less, nitrogen adsorption specific surface area 300-50
The internal volume of grains at 0.27 g is 2.0 to 3.0 cc/g.
It covers more than that. Moreover, the grain crushing strength is maintained at a level of 300 g/grain or higher.

上記の独特な特性・性状は土壌改良および水処理用とし
て極めて効果的に機能し、例えば土壌改良の目的に供す
る場合には高い比表面積ならびに多孔質骨格組織が酸素
(空気)の保持および保水機能を支え、微生物、肥料類
の担持と土壌改良有効成分の吸着化に寄与する。さらに
、粒表面は比較的硬質の炭素膜によるシェル構造を形成
しているため、流動性、土中混入時の空隙性(通気性)
確保、土の団粒化促進などに作用する。
The above unique characteristics and properties function extremely effectively for soil improvement and water treatment. For example, when used for soil improvement purposes, the high specific surface area and porous skeletal structure have oxygen (air) retention and water retention functions. It supports microorganisms and fertilizers, and contributes to the adsorption of soil improvement active ingredients. Furthermore, since the particle surface forms a shell structure with a relatively hard carbon film, it improves fluidity and porosity (air permeability) when mixed into soil.
It works to secure soil and promote soil agglomeration.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1〜4 籾殻を自由粉砕機(■奈良機械製作新製、M−3型〕を
用いて微粉砕し、0.3a■フイルタ一通過分を採取し
た。この粉末100重量部に対し、表1に示すバインダ
ー成分および添加量(重量部)でピン型造粒機により造
粒処理をおこなった。この場合、バインダー成分にはリ
グニンスルホン酸カルシウム〔重陽国策バルブ■製、[
サンエキスCJ]および水溶性澱粉〔関東化学■製、鹿
1級〕を用いた。
Examples 1 to 4 Rice husks were finely pulverized using a free crusher (M-3 type, manufactured by Nara Kikai Seisakusho), and the amount that had passed through a 0.3a filter was collected.For 100 parts by weight of this powder, Granulation treatment was carried out using a pin-type granulator using the binder components and additive amounts (parts by weight) shown in Table 1.In this case, the binder component was calcium lignin sulfonate [manufactured by Choyo Kokusaku Valve ■, [
Sunextract CJ] and water-soluble starch (Kanto Kagaku ■, Shika 1 grade) were used.

造粒物を回転ドラム式乾燥機に入れ、130℃の温度で
転動乾燥をおこなった。ついで、造粒物を焼成温度(表
1)を変えて炭化処理し、炭素粒を得た。
The granules were placed in a rotating drum dryer and tumble dried at a temperature of 130°C. Next, the granules were carbonized at different firing temperatures (Table 1) to obtain carbon particles.

表1 ついで、炭素粒をIg当たり20W1の弗化水素酸水溶
液(5χ)に45分間浸漬してシリカ成分を溶出したの
ち、水洗・乾燥処理を施して低密度多孔質炭素粒を製造
した。
Table 1 Next, the carbon particles were immersed in a hydrofluoric acid aqueous solution (5χ) of 20W1 per Ig for 45 minutes to elute the silica component, and then washed with water and dried to produce low-density porous carbon particles.

実施例5 実施例1の工程において造粒物の乾燥処理を静置乾燥に
変え、その他は全て同一条件により炭素粒を製造した。
Example 5 Carbon granules were produced under the same conditions as in Example 1, except that the drying process for the granulated product was changed to static drying.

比較例1 実施例1と同一条件により造粒および炭化工程をおこな
い、溶出工程を施さずに炭素粒を製造した。
Comparative Example 1 Granulation and carbonization steps were carried out under the same conditions as in Example 1, and carbon particles were produced without performing an elution step.

比較例2 実施例2と同一条件により造粒および炭化工程をおこな
い、溶出工程を施さずに炭素粒を製造した。
Comparative Example 2 Granulation and carbonization steps were carried out under the same conditions as in Example 2, and carbon particles were produced without performing the elution step.

(特性・性状の評価) 実施例1〜5、比較例1〜2により得られた各炭素粒に
つき各種の特性を測定し、表2に対比して示した。なお
、比較例3として木質繊維を主成分としたパルプスラッ
ジ炭化物からなる高性能グレードの市販土壌改良材〔北
輿化学■製、「ブラ ツクワン」 〕 の特性値を表2に併載した。
(Evaluation of Properties/Properties) Various properties were measured for each of the carbon grains obtained in Examples 1 to 5 and Comparative Examples 1 to 2, and are shown in Table 2 for comparison. In addition, as Comparative Example 3, the characteristic values of a high-performance grade commercially available soil conditioner made of pulp sludge carbide containing wood fiber as the main component (manufactured by Hokoshi Kagaku ■, "Bratsu Kwan") are also listed in Table 2.

第1図は、実施例1、比較例1による炭素粒および比較
例3の土壌改良材について測定した細孔分布曲線を示し
たものである。
FIG. 1 shows pore distribution curves measured for the carbon grains of Example 1, Comparative Example 1, and the soil conditioner of Comparative Example 3.

表2および第1図の結果から考察されるように、実施例
により製造された各炭素粒は比較例に比べて低密度で比
表面積および細孔容積が大きく、かつ良好な粒破砕強度
を示していることが判明する。
As considered from the results in Table 2 and Figure 1, the carbon grains produced in Examples had lower density, larger specific surface area and pore volume, and exhibited better grain crushing strength than Comparative Examples. It turns out that

ただし、バインダー添加量が60重量部を越える実施例
4の炭素粒は粒強度と共にがさ密度が高くなる傾向を示
し、また乾燥処理を静置法でおこなった実施例5のもの
は粒強度が低下する後退特性が認められた。
However, the carbon grains of Example 4, in which the amount of binder added exceeds 60 parts by weight, showed a tendency for the bulk density to increase as well as the grain strength, and the grain strength of Example 5, in which the drying process was performed by the standing method, decreased. A decreasing regression characteristic was observed.

第2〜3図は実施例1による炭素粒の粒子構造を拡大し
て示したSEM写真で、第2図は拡大倍率61倍のもの
、第3図は拡大倍率650倍のものである。第4図は比
較例1による炭素粒の粒子構造を拡大倍率630倍に拡
大したSEM写真である。
2 and 3 are SEM photographs showing the particle structure of the carbon grains according to Example 1 in an enlarged manner, with FIG. 2 at a magnification of 61 times, and FIG. 3 at a magnification of 650 times. FIG. 4 is an SEM photograph of the particle structure of carbon grains according to Comparative Example 1, which is magnified at a magnification of 630 times.

これらのSEM写真を対比すると、溶出工程による多孔
質化の差異が明確に認められる。
When these SEM photographs are compared, differences in porosity due to the elution process are clearly recognized.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば高い空隙率と比表面積を
もち、容易に破壊することのない粒強度を備える低密度
多孔質炭素粒を効率よく製造することが可能となる。こ
れらの特性・性状は、特に土壌改良材または水処理用バ
イオリアクターとして理想的であり、これら用途に適用
して多大の効果が期待できる。
As described above, according to the present invention, it is possible to efficiently produce low-density porous carbon grains that have high porosity and specific surface area and have grain strength that prevents them from easily breaking. These characteristics and properties are particularly ideal as a soil improvement material or a bioreactor for water treatment, and great effects can be expected when applied to these uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1、比較例1による各炭素粒および比較
例3の市販土壌改良材について測定した細孔分布曲線を
示したグラフである。第2〜3図は実施例1による炭素
粒の粒子構造を拡大して示したSEM写真(拡大倍率、
第1図=61倍、第2図:650倍)、第4図は比較例
1による炭素粒の粒子構造を拡大して示したSEM写真
(拡大倍率二630倍)である。
FIG. 1 is a graph showing pore distribution curves measured for each carbon particle according to Example 1, Comparative Example 1, and the commercially available soil conditioner of Comparative Example 3. Figures 2 and 3 are SEM photographs (magnification:
FIG. 1: 61 times, FIG. 2: 650 times), and FIG. 4 are SEM photographs (magnification: 2,630 times) showing the particle structure of carbon grains according to Comparative Example 1.

Claims (1)

【特許請求の範囲】 1、籾殼粉末を、リグニン、澱粉または糖蜜もしくはこ
れらの混合物を含むバインダー水溶液で造粒化する造粒
工程、造粒物を乾燥処理したのち焼成炭化処理する炭化
工程、炭化粒を弗化水素酸水溶液に浸漬してシリカ成分
を溶出する溶出工程からなることを特徴とする低密度多
孔質炭素粒の製造方法。 2、造粒物の乾燥処理を、50〜300℃の回転ドラム
中で転動させながらおこなう請求項1記載の低密度多孔
質炭素粒の製造方法。
[Claims] 1. A granulation step of granulating rice hull powder with an aqueous binder solution containing lignin, starch, molasses, or a mixture thereof; a carbonization step of drying the granulated product and then firing and carbonizing it; A method for producing low-density porous carbon particles, comprising an elution step of immersing carbonized particles in an aqueous hydrofluoric acid solution to elute a silica component. 2. The method for producing low-density porous carbon particles according to claim 1, wherein the drying treatment of the granules is carried out while rolling in a rotating drum at 50 to 300°C.
JP2020040A 1990-01-29 1990-01-29 Preparation of low density porous carbon granule Pending JPH03223105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040A JPH03223105A (en) 1990-01-29 1990-01-29 Preparation of low density porous carbon granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040A JPH03223105A (en) 1990-01-29 1990-01-29 Preparation of low density porous carbon granule

Publications (1)

Publication Number Publication Date
JPH03223105A true JPH03223105A (en) 1991-10-02

Family

ID=12015949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040A Pending JPH03223105A (en) 1990-01-29 1990-01-29 Preparation of low density porous carbon granule

Country Status (1)

Country Link
JP (1) JPH03223105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028703A1 (en) * 1993-06-04 1994-12-22 Otsuka Kagaku Kabushiki Kaisha Carrier and agricultural material
JP2002018416A (en) * 2000-06-30 2002-01-22 Maywa Co Ltd Treating method of bagasse
JP2014094883A (en) * 2007-04-04 2014-05-22 Sony Corp Method of producing electrode material, method of producing capacitor material, method of producing porous carbon material, electrode material, capacitor material, porous carbon material, electronic apparatus and capacitor
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028703A1 (en) * 1993-06-04 1994-12-22 Otsuka Kagaku Kabushiki Kaisha Carrier and agricultural material
KR100291876B1 (en) * 1993-06-04 2001-06-01 오쯔까 유우지로 Carrier and Agricultural Materials
JP2002018416A (en) * 2000-06-30 2002-01-22 Maywa Co Ltd Treating method of bagasse
US10756346B2 (en) 2007-04-04 2020-08-25 Sony Corporation Porous Carbon Material
JP2016006011A (en) * 2007-04-04 2016-01-14 ソニー株式会社 Electrode material, capacitor material and porous carbon material, and electronic device and capacitor
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers
JP2014094883A (en) * 2007-04-04 2014-05-22 Sony Corp Method of producing electrode material, method of producing capacitor material, method of producing porous carbon material, electrode material, capacitor material, porous carbon material, electronic apparatus and capacitor
US11545665B2 (en) 2007-04-04 2023-01-03 Sony Corporation Carbon-polymer complex
EP4122883A1 (en) * 2007-04-04 2023-01-25 Sony Group Corporation Carbon-polymer complex and adsorbent comprising the same
US11955638B2 (en) 2007-04-04 2024-04-09 Sony Corporation Sheet-shaped member
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
JPWO2017146044A1 (en) * 2016-02-23 2018-11-22 ソニー株式会社 Solidified porous carbon material, method for producing the same, and water purifier
JP2019131460A (en) * 2016-02-23 2019-08-08 ソニー株式会社 Solidified porous carbon material and method of manufacturing the same
JP2022008312A (en) * 2016-02-23 2022-01-13 ソニーグループ株式会社 Material with functional material attached thereon and production method thereof, water purifying device and production method thereof, water purifying device cartridge and production method thereof, air purifier and production method thereof, filter member and production method thereof, support member and production method thereof, expanded polyurethane foam and production method thereof, bottle and production method thereof, container and production method thereof, member composed of cap or lid and production method thereof, material composed of solidified porous carbon material or ground product of porous carbon material and binder and production method thereof, and porous carbon material and production method thereof
US11707727B2 (en) 2016-02-23 2023-07-25 Sony Corporation Solidified porous carbon material and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2016522150A (en) Method for producing matrix-type granular composite fertilizer having delayed action and matrix-type granular composite fertilizer obtained by the method
CN107794050A (en) A kind of preparation method and application of charcoal base cadmium pollution soil conditioner
CN108262022A (en) A kind of modification biological charcoal and preparation method thereof
CN108160037A (en) A kind of modification biological charcoal and preparation method thereof
CN111330541A (en) Modified biochar and preparation method thereof
CN106008089A (en) Quick rooting organic fertilizer for potted flowers and method for preparing quick rooting organic fertilizer
CN113860931B (en) Aerobic composting method for removing antibiotics in feces by using chicken manure biochar and application of chicken manure biochar in removing antibiotics
CN107353169A (en) A kind of preparation method of straw biomass charcoal bundled slow-releasing fertilizer
JPH03223105A (en) Preparation of low density porous carbon granule
CN111617730B (en) Fly ash composite material, preparation method and application thereof
CN113248333A (en) Granular soil conditioner for composite heavy metal pollution and preparation method thereof
CN115785958B (en) Biochar-loaded micro-powder soil conditioner, preparation method and application
CN110122258A (en) A kind of plantation sand prepared using stalk
CN110268945A (en) Tailing planting soil and its manufacture craft
JPH0423989A (en) Carbon material for supporting microorganism
JPH0328116A (en) Production of low density porous carbon grain
JP4865196B2 (en) Superabsorbent lightweight soil containing water repellent organic material and method for producing the same
JPH0825732B2 (en) Method for producing low-density porous carbon particles
CN111848309A (en) Preparation method of biological fertilizer for konjak cultivation
CN110791293A (en) Rice field heavy metal cadmium passivator and preparation method thereof
JPH0280388A (en) Compound fertilizer
CN113528143B (en) Rice hull ash powder composite material, and granulation method and application thereof
CN114736071B (en) Preparation method and application of attapulgite clay modified compound fertilizer
CN108530198A (en) A kind of potato growth compound fertilizer and preparation method thereof
CN207891280U (en) The system for preparing charcoal base manure