JPH0629163A - Layered solid electrolytic capacitor - Google Patents

Layered solid electrolytic capacitor

Info

Publication number
JPH0629163A
JPH0629163A JP20754892A JP20754892A JPH0629163A JP H0629163 A JPH0629163 A JP H0629163A JP 20754892 A JP20754892 A JP 20754892A JP 20754892 A JP20754892 A JP 20754892A JP H0629163 A JPH0629163 A JP H0629163A
Authority
JP
Japan
Prior art keywords
anode
metal
valve
cathode
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20754892A
Other languages
Japanese (ja)
Inventor
Yutaka Harashima
豊 原島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP20754892A priority Critical patent/JPH0629163A/en
Publication of JPH0629163A publication Critical patent/JPH0629163A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain excellent characteristic stabilized over a larger temperature range by fixing a cathode electrode terminal to a cathode layer of a layered body and respectively connecting metal fine leads for anode to the anode electrode terminals fixed to the layered body. CONSTITUTION:A value functioning metal 2, which is harder than a valve functioning metal foil 1, is fastened to the one end of such valve functioning metal foil 1 and metal fine lead 3 for anode, which is softer than the valve functioning metal 2, is fixed to a part of the valve functioning metal 2 projected from the valve functioning metal foil 1. The projected part of the valve functioning metal 2 including the fixing portion is covered with an insulating resin 4, an oxide film 5 of dielectric material is formed as a base material of anode 6 at the surface of the valve functioning metal foil 1, a conductive polymer layer 7-cathode layer 8 are formed on the oxide film 5 of dielectric material to obtain a plate capacitor 9. A plurality of capacitor plates 9 are layered through respective cathode layers 8 and metal fine leads 3 for anode to obtain a laminated material 11. The cathode electrode terminal 12 is connected to the cathode layer 8, while the metal fine lead 3 for anode is connected to the anode electrode terminal 13, and this anode electrode terminal 13 is fixed to an insulating region 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性高分子を固体電
解質とした積層型固体電解コンデンサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

【0002】[0002]

【従来の技術】従来、固体電解コンデンサとしては、ア
ルミニウム、タンタル、ニオブなどの弁作用金属を陽極
体とし、この弁作用金属の酸化皮膜を誘電体とし、この
酸化皮膜上に、固体電解質として二酸化マンガンや7.
7.8.8.−テトラシアノキノジメタンのTCNQ錯
体からなる有機半導体などを形成して構成されたものが
ある。
2. Description of the Related Art Conventionally, as a solid electrolytic capacitor, a valve metal such as aluminum, tantalum or niobium is used as an anode body, an oxide film of the valve metal is used as a dielectric, and a solid electrolyte is used as a solid electrolyte on the oxide film. Manganese and 7.
7.8.8. -There is one formed by forming an organic semiconductor or the like composed of a TCNQ complex of tetracyanoquinodimethane.

【0003】また、近年、例えば特開昭62−1814
15号公報に開示されているように、ピロール、チオフ
ェン、フランなどの複素五員環化合物を化学的、電気化
学的な手段を用いて重合形成したポリピロール、ポリチ
オフェン、ポリフランなどの導電性高分子を固体電解質
とした固体電解コンデンサが開発されている。
In recent years, for example, Japanese Patent Laid-Open No. 62-1814.
As disclosed in Japanese Patent Publication No. 15, a five-membered heterocyclic compound such as pyrrole, thiophene, or furan is polymerized by a chemical or electrochemical means to form a conductive polymer such as polypyrrole, polythiophene, or polyfuran. Solid electrolytic capacitors using solid electrolytes have been developed.

【0004】この導電性高分子は、その電導度が約10
2 S/cmと、二酸化マンガン(10-2S/cm)や、
TCNQ錯体(10S/cm)に比べて非常に高く、ま
た、熱安定性に優れるなどの特徴を有しているため、こ
の導電性高分子を固体電解質として利用することによ
り、インピーダンスの周波数特性、漏れ電流特性などの
電気的諸特性に優れ、広い範囲での温度特性に優れた固
体電解コンデンサを得ることが可能である。
This conductive polymer has an electric conductivity of about 10
2 S / cm and manganese dioxide (10 -2 S / cm),
Since it is extremely higher than TCNQ complex (10 S / cm) and has excellent thermal stability, by using this conductive polymer as a solid electrolyte, impedance frequency characteristics, It is possible to obtain a solid electrolytic capacitor having excellent electrical characteristics such as leakage current characteristics and excellent temperature characteristics in a wide range.

【0005】また、電子部品の軽薄短小化に伴い、固体
電解コンデンサにおいても、単位体積あたりの容量増大
の目的で、陽極体を積層一体化する各種の方法が提案さ
れている。例えば、(a)特開昭61−30020号公
報に記載されているように、陽極基体を積層一体化した
ものに陽極リードを接続した後、酸化皮膜層、半導体
層、導電体層を順次形成する方法、(b)特開昭63−
239917号公報に記載されているように、弁作用金
属板の所定部分に絶縁物層を形成することで区分された
金属基板の一方に誘電体酸化皮膜、半導体層、導電体層
を順次形成したコンデンサ素板を複数枚積層し、導電ペ
ーストで固着すると共に、他方の金属基板露出部を加圧
一体化した後、電気溶接により接続し積層体を形成する
方法、などが存在している。
Further, as electronic parts have become lighter, thinner, shorter, and smaller, various methods have been proposed for laminating and integrating anode bodies in a solid electrolytic capacitor for the purpose of increasing the capacity per unit volume. For example, (a) as described in JP-A-61-30020, after connecting an anode lead to a laminated and integrated anode substrate, an oxide film layer, a semiconductor layer, and a conductor layer are sequentially formed. (B) JP-A-63-
As described in Japanese Patent No. 239917, a dielectric oxide film, a semiconductor layer, and a conductor layer are sequentially formed on one of the divided metal substrates by forming an insulating layer on a predetermined portion of a valve action metal plate. There is a method in which a plurality of capacitor base plates are laminated and fixed by a conductive paste, and the exposed portion of the other metal substrate is pressure-integrated and then connected by electric welding to form a laminated body.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記
(a)の方法は、その陽極基体が、あらかじめ、単層が
積層化された構成であるため、各単層への半導体層及び
導電体層の十分な形成ができず、コンデンサとしての基
本特性が全体的に低下してしまう欠点がある。また、上
記(b)の方法は、コンデンサ素板を積層した後、金属
基板露出部を加圧一体化するため、誘電体酸化皮膜、半
導体層、導電体層を形成した部分へのストレスを防ぎき
れず、誘電体酸化皮膜に欠陥部が生じ、漏れ電流が増大
し、ショート不良が発生してしまう欠点がある。
However, in the above method (a), since the anode substrate has a structure in which single layers are laminated in advance, the semiconductor layer and the conductor layer for each single layer are formed. There is a drawback that the capacitor cannot be formed sufficiently and the basic characteristics of the capacitor are deteriorated as a whole. Further, in the above method (b), after the capacitor base plates are laminated, the exposed portion of the metal substrate is pressure-integrated, so that stress on the portion where the dielectric oxide film, the semiconductor layer, and the conductor layer are formed is prevented. However, there is a defect that defects occur in the dielectric oxide film, the leakage current increases, and a short circuit defect occurs.

【0007】本発明は、以上のような従来技術の課題を
解決するために提案されたものであり、その目的は、イ
ンピーダンスの周波数特性、漏れ電流特性などの電気的
諸特性に優れ、広い温度範囲にわたって特性の安定した
積層型固体電解コンデンサを提供することである。
The present invention has been proposed in order to solve the problems of the prior art as described above, and its purpose is to provide excellent electrical characteristics such as frequency characteristics of impedance and leakage current characteristics, and a wide temperature range. It is an object of the present invention to provide a laminated solid electrolytic capacitor having stable characteristics over the range.

【0008】[0008]

【課題を解決するための手段】本発明による積層型固体
電解コンデンサは、表面が粗面化されその上に誘電体酸
化皮膜が形成された弁作用金属箔の一端部にこの金属箔
より突出してこの金属箔より硬い弁作用金属が固着さ
れ、この弁作用金属の突出部にこの金属より軟らかい陽
極用金属細線が固着され、前記突出部を除く前記弁作用
金属及び前記弁作用金属箔の誘電体酸化皮膜上に導電性
高分子層と陰極層を順次形成されてコンデンサ素板が構
成され、このコンデンサ素板の陰極層同士が対応し、か
つ陽極用金属細線同士が対応する形で複数枚積層され陰
極層間が導電性接着剤で接合されて積層体が形成され、
この積層体の陰極層に陰極電極端子が固着され、かつ陽
極用金属細線それぞれが前記積層体と固着された陽極電
極端子と接続されたことを特徴とするものである。
A laminated solid electrolytic capacitor according to the present invention has a surface which is roughened and a dielectric oxide film is formed on the surface of the valve-acting metal foil. A valve action metal that is harder than this metal foil is fixed, and a fine metal wire for an anode that is softer than this metal is fixed to the protrusion of this valve action metal, and the valve action metal excluding the protrusion and the dielectric of the valve action metal foil. A conductive polymer layer and a cathode layer are sequentially formed on the oxide film to form a capacitor base plate, and the cathode layers of the capacitor base plate correspond to each other, and the thin metal wires for the anode correspond to each other. The cathode layers are joined with a conductive adhesive to form a laminate,
A cathode electrode terminal is fixedly attached to the cathode layer of this laminated body, and each thin metal wire for anode is connected to the anode electrode terminal fixed to the laminated body.

【0009】[0009]

【作用】以上のような構成を有する本発明の積層型固体
電解コンデンサによれば、電導度が102 S/cmと高
く、熱安定性にも優れた導電性高分子層と導電体層を、
個々のコンデンサ素板に予め形成するため、導電性高分
子層と導電体層を必要十分な厚さで均一に形成すること
ができる。また、陽極導出化のために引出す陽極用金属
細線が弁作用金属箔に直接固着されることなく、この弁
作用金属箔に固着したこの弁作用金属箔より硬い弁作用
金属を介した構成となっているため、製造工程中陽極用
金属細線に加えられるストレスが弁作用金属箔に伝わら
ずこの弁作用金属箔より硬い弁作用金属で吸収すること
になり、誘電体酸化皮膜の破壊の危険性が解消される。
According to the laminated solid electrolytic capacitor of the present invention having the above-mentioned constitution, the conductive polymer layer and the conductor layer having a high electric conductivity of 10 2 S / cm and excellent thermal stability are provided. ,
Since it is formed in advance on each capacitor base plate, the conductive polymer layer and the conductor layer can be uniformly formed with a necessary and sufficient thickness. In addition, the thin metal wire for the anode drawn out for leading out the anode is not directly fixed to the valve metal foil, but the valve metal harder than the valve metal foil fixed to the valve metal foil is used. Therefore, the stress applied to the thin metal wire for anode during the manufacturing process is not transmitted to the valve metal foil and is absorbed by the valve metal that is harder than this valve metal foil, and there is a risk of destruction of the dielectric oxide film. Will be resolved.

【0010】[0010]

【実施例】以下、本発明の一実施例に関し、図面を参照
して具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings.

【0011】まず、図3に示すように、例えば、表面が
粗面化された弁作用金属箔1の一端部に、この弁作用金
属箔1より突出してこの弁作用金属箔1より硬い表面が
粗面化された弁作用金属2を超音波溶接することで固着
し、この弁作用金属2の前記弁作用金属箔1よりの突出
部に、この突出部を構成する弁作用金属2より軟らかい
陽極用金属細線3を固着するとともに、この固着部を含
む弁作用金属2の突出部全部分をポリイミド樹脂などの
絶縁性樹脂4で覆い、次に前記弁作用金属箔1を製品定
格電圧に適した電圧で化成処理することにより、その表
面に誘電体酸化皮膜5を形成し陽極基体6を形成する。
First, as shown in FIG. 3, for example, at one end of a valve-action metal foil 1 having a roughened surface, a surface protruding from the valve-action metal foil 1 and harder than the valve-action metal foil 1 is formed. The roughened valve action metal 2 is fixed by ultrasonic welding, and an anode softer than the valve action metal 2 forming the protrusion is attached to the protrusion of the valve action metal 2 from the valve action metal foil 1. The thin metal wire 3 is fixed, and the entire protruding portion of the valve metal 2 including the fixed portion is covered with an insulating resin 4 such as a polyimide resin. Then, the valve metal foil 1 is suitable for a product rated voltage. By performing a chemical conversion treatment with a voltage, a dielectric oxide film 5 is formed on the surface and an anode substrate 6 is formed.

【0012】次に、図2に示すように、この陽極基体6
を例えば2M−ピロール/エタノール溶液に5分間浸漬
した後、さらに、0.5M−過硫酸アンモニウム水溶液
に5分間浸漬して、化学酸化重合を施し、誘電体酸化皮
膜5上に、ポリピロールからなる化学重合膜を形成し、
しかる後、例えば支持電解質としてアルキルナフタレン
スルホン酸塩0.05mol/l、及びピロールモノマ
ー0.2mol/lを含む電解重合液中において、前段
の処理で形成した化学重合膜を陽極とし、外部電極との
間で定電流電解酸化重合(1mA/cm2 、1h)を行
い、ポリピロールからなる電解重合膜を形成する。すな
わち、これらの処理により、陽極基体6の誘電体酸化皮
膜5上に、化学重合膜と電解重合膜からなる導電性高分
子層7を形成し、この導電性高分子層7上に陰極引き出
し用として、グラファイト層、銀ペースト層を順次形成
することで陰極層8を形成しコンデンサ素板9を形成す
る。
Next, as shown in FIG.
Is immersed in, for example, a 2M-pyrrole / ethanol solution for 5 minutes, and then further immersed in a 0.5M-ammonium persulfate aqueous solution for 5 minutes to perform chemical oxidative polymerization, and chemical polymerization of polypyrrole is performed on the dielectric oxide film 5. Forming a film,
Then, for example, in an electrolytic polymerization solution containing 0.05 mol / l of alkylnaphthalene sulfonate as a supporting electrolyte and 0.2 mol / l of pyrrole monomer, the chemically polymerized film formed in the previous treatment was used as an anode and an external electrode. Constant current electrolytic oxidation polymerization (1 mA / cm 2 , 1 h) is performed between them to form an electrolytic polymerization film made of polypyrrole. That is, by these treatments, a conductive polymer layer 7 composed of a chemically polymerized film and an electrolytic polymerized film is formed on the dielectric oxide film 5 of the anode base 6, and the conductive polymer layer 7 is used for drawing out a cathode. As the graphite layer and the silver paste layer are sequentially formed, the cathode layer 8 is formed and the capacitor base plate 9 is formed.

【0013】しかして、図1に示すように前記コンデン
サ素板9を複数、陰極層8同志及び陽極用金属細線3同
志をそれぞれ対応させて積層し、陰極層8間を導電性接
着剤10で接合させて積層体11を形成し、しかる後、
陰極層8部に陰極電極端子12を接続するとともに、前
記陽極用金属細線3を陽極電極端子13に接続し、この
陽極電極端子13を前記積層体11を構成する絶縁性樹
脂4部に固着し、しかる後、図4に示すように例えばト
ランスファーモールドにより樹脂外装14を施しコンデ
ンサ本体15を形成し、このコンデンサ本体15の側面
から導出された陰極電極端子12及び陽極電極端子13
をコンデンサ本体15側面に沿ってコンデンサ本体15
の底面にまで至るように折り曲げ加工し完成品としてな
るものである。
Therefore, as shown in FIG. 1, a plurality of the capacitor base plates 9 are laminated so that the cathode layers 8 and the anode thin metal wires 3 are laminated in correspondence with each other, and a conductive adhesive 10 is provided between the cathode layers 8. The laminated body 11 is formed by bonding, and after that,
The cathode electrode terminal 12 is connected to the cathode layer 8 part, the metal thin wire 3 for anode is connected to the anode electrode terminal 13, and the anode electrode terminal 13 is fixed to the insulating resin 4 part constituting the laminate 11. After that, as shown in FIG. 4, a resin body 14 is formed by, for example, transfer molding to form a capacitor body 15, and a cathode electrode terminal 12 and an anode electrode terminal 13 led out from the side surface of the capacitor body 15.
The capacitor body 15 along the side surface of the capacitor body 15
The finished product is bent so that it reaches the bottom of the product.

【0014】以上のような構成を有する本実施例の積層
型固体電解コンデンサによれば、高電導性を有し、耐熱
性に優れた導電性高分子層7と陰極層8を複数層となる
コンデンサ素板9の積層化前で行っているため、誘電体
酸化皮膜5上に導電性高分子層7及び陰極層8を必要十
分な所望の厚さで均一に形成できる。従って、インピー
ダンスの周波数特性などの電気的諸特性の向上及び広い
温度範囲での特性の安定化に寄与できる。また、陽極導
出化のために引き出す陽極用金属細線3が弁作用金属箔
1に直接固着されることなく、この弁作用金属箔1に固
着したこの弁作用金属箔1より硬い弁作用金属2を介し
た構成となっているため、弁作用金属箔1への誘電体酸
化皮膜5、導電性高分子層7及び陰極層8形成、更にコ
ンデンサ素板9の積層化工程中において陽極用金属細線
3に加えられるストレスが弁作用金属箔1に伝わらず、
この弁作用金属箔1より硬い弁作用金属2で吸収するこ
とになり、誘電体酸化皮膜5の破壊はなくなり、漏れ電
流特性劣化の危険性が解消される。
According to the laminated solid electrolytic capacitor of the present embodiment having the above-mentioned structure, the conductive polymer layer 7 and the cathode layer 8 having high electric conductivity and excellent heat resistance are formed in a plurality of layers. Since the process is performed before the capacitor base plate 9 is laminated, the conductive polymer layer 7 and the cathode layer 8 can be uniformly formed on the dielectric oxide film 5 with a necessary and sufficient desired thickness. Therefore, it can contribute to improvement of various electrical characteristics such as impedance frequency characteristics and stabilization of the characteristics in a wide temperature range. Further, the thin metal wire for an anode 3 drawn out for derivation of the anode is not directly fixed to the valve-action metal foil 1, but the valve-action metal foil 2 harder than the valve-action metal foil 1 fixed to the valve-action metal foil 1 is fixed. Because of the interposing structure, the dielectric oxide film 5, the conductive polymer layer 7 and the cathode layer 8 are formed on the valve action metal foil 1, and further the metal thin wire 3 for anode is used during the step of laminating the capacitor base plate 9. The stress applied to the valve action metal foil 1 is not transmitted,
Since the valve action metal 2 harder than the valve action metal foil 1 absorbs it, the dielectric oxide film 5 is not destroyed and the risk of deterioration of the leakage current characteristic is eliminated.

【0015】以下、本発明と従来技術の特性比較につい
て述べる。 (実施例A)3mm×3mmで厚さ80μmのアルミニ
ウム箔の一端部に幅0.8mm,厚さ0.2mmのアル
ミニウムを長さ0.8mmにわたって超音波溶接するこ
とで接合し、前記アルミニウム箔と前記アルミニウムの
溶接端部から更に0.2mm上部に0.1mmφの陽極
リード用銀めっき銅線を電気溶接して、前記アルミニウ
ム箔表面に誘電体酸化皮膜を形成し構成した陽極基体を
用い、前述した手段によって製作した。 (従来例B)エッチングにより粗面化し、化成の施され
た弁作用金属箔を、絶縁性樹脂で陽極側と誘電体及び陰
極形成側に区分し、陰極形成側の有効面積3mm×3m
mとした陽極基体を、陽極側と陰極側を互いに対応させ
て4枚積層し、陽極側をかしめ付けや電気溶接などの方
法で取りまとめた後、前記実施例Aと同様の方法で陰極
側にポリピロールからなる導電性高分子層を形成した。
A characteristic comparison between the present invention and the prior art will be described below. (Example A) An aluminum foil having a width of 0.8 mm and a thickness of 0.2 mm was ultrasonically welded to one end of an aluminum foil having a thickness of 3 mm × 3 mm and a thickness of 80 μm over a length of 0.8 mm to bond the aluminum foil. And a 0.1 mmφ silver-plated copper wire for an anode lead is further electro-welded to a 0.2 mm upper portion from the weld end of the aluminum, and the anode base is formed by forming a dielectric oxide film on the surface of the aluminum foil, It was produced by the means described above. (Conventional Example B) A valve action metal foil which is roughened by etching and formed is divided into an anode side and a dielectric / cathode forming side with an insulating resin, and an effective area of the cathode forming side is 3 mm × 3 m.
After stacking four sheets of the anode substrate having m, the anode side and the cathode side corresponding to each other, and collecting the anode side by a method such as caulking or electric welding, the same method as in Example A was applied to the cathode side. A conductive polymer layer made of polypyrrole was formed.

【0016】なお、電解重合時間は、前記実施例Aの場
合の4倍の時間とした。その後、この導電性高分子層上
に、グラファイト層、銀ペースト層を順次形成すること
で、導電体層を形成し、コンデンサ素子を形成し、続い
て、このコンデンサ素子を、陰極側は導電性接着剤若し
くははんだ付けにより、陽極側は電気溶接により、それ
ぞれ引出リードと接続した後、前記実施例Aと同様の手
段で外装を施した。 (従来例C)従来例Bと同様の方法で陽極基体を得た
後、この陽極基体の陰極形成側に、前記実施例Aと同様
の方法でポリピロールからなる導電性高分子層を形成
し、さらに、この導電性高分子層上に、グラファイト
層、銀ペースト層を順次形成することで導電体層を形成
したコンデンサ素板を、陽極側と陰極側を互いに対応さ
せて4枚積層し、その陰極引出用の銀ペースト層の形成
部に、さらに、銀接着剤を介在させて陰極側を固着し、
陽極側を電気溶接で取りまとめることで形成したコンデ
ンサ素子に、前記従来例Bと同様の手段で引出リード接
続及び外装を施した。
The electrolytic polymerization time was four times as long as that in Example A. After that, a graphite layer and a silver paste layer are sequentially formed on the conductive polymer layer to form a conductor layer and a capacitor element, and subsequently, the capacitor element is made conductive on the cathode side. The anode side was connected to the extraction lead by electric welding on the anode side by an adhesive or soldering, and then the exterior was applied by the same means as in Example A above. (Conventional Example C) After obtaining an anode substrate by the same method as in Conventional Example B, a conductive polymer layer made of polypyrrole is formed on the cathode formation side of this anode substrate by the same method as in Example A, Furthermore, on the conductive polymer layer, a graphite layer and a silver paste layer were sequentially formed to form a conductor layer, and four capacitor base plates were laminated so that the anode side and the cathode side corresponded to each other. In the portion where the silver paste layer for drawing out the cathode is formed, a silver adhesive is further interposed to fix the cathode side,
The capacitor element formed by assembling the anode side by electric welding was subjected to the lead lead connection and the exterior by the same means as in the conventional example B.

【0017】しかして、上記実施例A、従来例B及び従
来例Cそれぞれの初期特性を調べたところ、下記の表1
に示すような結果が得られた。この表1において、各欄
の上段の数値は平均値、下段の括弧内の数値は分布範囲
を示しており、ESRは、周波数100kHzにおける
抵抗値である。また、それぞれの周波数−インピーダン
ス特性を調べたところ、図5に示すような結果が得られ
た。
The initial characteristics of each of the above-mentioned Example A, Conventional Example B and Conventional Example C were examined, and the following Table 1 is shown.
The results shown in are obtained. In Table 1, the numerical value in the upper row of each column indicates the average value, the numerical value in the lower row in parentheses indicates the distribution range, and ESR is the resistance value at a frequency of 100 kHz. Further, when the frequency-impedance characteristics of each of them were examined, the results shown in FIG. 5 were obtained.

【0018】なお、試料は、実施例A、従来例B及び従
来例Cとも定格10V−4.7μFで、数量はそれぞれ
100個である。
The samples of Example A, Conventional Example B, and Conventional Example C are rated at 10 V-4.7 μF, and the number of each is 100.

【0019】[0019]

【表1】 [Table 1]

【0020】表1及び図5から明らかなように、従来例
Bについては、初期特性全般にわたって特性の劣化が著
しく、ばらつきも大きくなっている。この最大の理由
は、陽極基体を積層し、取りまとめた後に、導電性高分
子層及び導電体層を形成したことから、これらの層の形
成が不十分であり、付着むらなどを生じているためであ
ると考えられる。また、従来例Cについては、漏れ電流
特性、ESR特性、インピーダンス特性の劣化が見られ
るが、この理由は、コンデンサ素板を取りまとめる際の
ストレスにより、誘電体酸化皮膜が損傷し、漏れ電流の
増大につながると同時に、この際に、導電性高分子層及
び導電体層にもクラックが生じ、この部分全体として抵
抗値が上昇したためであると考えられる。
As is clear from Table 1 and FIG. 5, in the conventional example B, the characteristics are significantly deteriorated over the entire initial characteristics, and the variations are large. The main reason for this is that since the conductive polymer layer and the conductor layer were formed after the anode substrates were laminated and put together, the formation of these layers was insufficient and uneven adhesion was caused. Is considered to be. Further, in the conventional example C, the leakage current characteristics, the ESR characteristics, and the impedance characteristics are deteriorated. The reason is that the dielectric oxide film is damaged due to the stress when the capacitor base plates are put together, and the leakage current increases. It is considered that this is because at the same time, the cracks were generated in the conductive polymer layer and the conductor layer at the same time, and the resistance value increased in the entire portion.

【0021】これに対し、実施例Aのものは、安定した
特性を示し、この種導電性高分子膜を固体電解質とした
チップタイプの積層型固体電解コンデンサにおける本発
明の優れた効果を実証した。
On the other hand, the one of Example A showed stable characteristics, and demonstrated the excellent effect of the present invention in the chip type laminated solid electrolytic capacitor using the conductive polymer film of this kind as a solid electrolyte. .

【0022】なお、本発明は上記実施例に限定されるも
のではなく、陽極用金属線としては銀めっき銅線以外に
も例えばすずめっき銅線,ニッケル線,ステンレス線な
どの金属を使用してもよく、弁作用金属箔及び弁作用金
属としては、アルミニウムの他に、タンタル、チタン、
ニオブなども使用可能である。また、上記実施例では、
陽極リード及び陰極リードとしてチップ型端子を使用
し、トランスファーモールドにより外装を施すことで、
チップタイプの積層型固体電解コンデンサを完成してい
るが、電極端子として錫めっきCP線などを用い、流動
浸漬法やディップ法などにより外装を施し、リード線タ
イプとすることも可能である。さらに、弁作用金属箔と
弁作用金属、及び弁作用金属と金属リード線との具体的
な接合方法や、導電性高分子層、及び導電体層の具体的
な形成方法などは、自由に選択可能である。そしてま
た、本発明は、前記の定格に限らず、各種の定格の積層
型固体電解コンデンサに同様に適用可能であり、同様に
優れた作用効果を得られるものである。
The present invention is not limited to the above-mentioned embodiment, and metal other than silver-plated copper wire, such as tin-plated copper wire, nickel wire, and stainless wire, may be used as the metal wire for the anode. Also, as the valve action metal foil and the valve action metal, in addition to aluminum, tantalum, titanium,
Niobium or the like can also be used. Further, in the above embodiment,
By using chip type terminals as the anode lead and the cathode lead and applying the exterior by transfer molding,
Although the chip-type laminated solid electrolytic capacitor has been completed, it is also possible to use a tin-plated CP wire or the like as an electrode terminal and apply a coating by a fluid immersion method or a dip method to make it a lead wire type. Further, the specific joining method of the valve action metal foil and the valve action metal, or the valve action metal and the metal lead wire, the specific method of forming the conductive polymer layer, and the conductor layer are freely selected. It is possible. Further, the present invention is not limited to the above ratings, but can be similarly applied to multilayer solid electrolytic capacitors having various ratings, and similarly excellent effects can be obtained.

【0023】[0023]

【発明の効果】以上説明したように、本発明において
は、導電性高分子層と導電体層を個々のコンデンサ素板
にあらかじめ形成するとともに、コンデンサ素板の積層
化にあたり、陰極層間を導電性接着剤で接合し、かつ陽
極リード線の溶接を有効な誘電体酸化皮膜を有する弁作
用金属箔との間に陽極リード及びこの弁作用金属箔より
も硬い弁作用金属を介して行っているため、インピーダ
ンスの周波数特性、漏れ電流特性などの電気的諸特性に
優れ、広い温度範囲にわたって特性の安定した、小型・
大容量の積層型固体電解コンデンサを提供することがで
きる。
As described above, in the present invention, the conductive polymer layer and the conductor layer are formed in advance on each capacitor base plate, and when the capacitor base plates are laminated, the cathode layers are electrically conductive. Since it is bonded with an adhesive and the anode lead wire is welded to the valve action metal foil having an effective dielectric oxide film through the anode lead and the valve action metal that is harder than this valve action metal foil. Excellent in electrical characteristics such as impedance frequency characteristics and leakage current characteristics, stable characteristics over a wide temperature range, small size
It is possible to provide a large-capacity laminated solid electrolytic capacitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る外装前の積層体を示す
斜視図。
FIG. 1 is a perspective view showing a laminated body before packaging according to an embodiment of the present invention.

【図2】図1の一実施例を構成するコンデンサ素板を示
す断面図。
FIG. 2 is a cross-sectional view showing a capacitor base plate which constitutes one embodiment of FIG.

【図3】図1の−実施例を構成する陽極基体を示す一部
断面斜視図。
FIG. 3 is a partial cross-sectional perspective view showing an anode substrate constituting the embodiment of FIG.

【図4】本発明の一実施例に係る積層型固体電解コンデ
ンサの完成品を示す斜視図。
FIG. 4 is a perspective view showing a finished product of a laminated solid electrolytic capacitor according to an embodiment of the present invention.

【図5】周波数−インピーダンス特性曲線図。FIG. 5 is a frequency-impedance characteristic curve diagram.

【符号の説明】 1 弁作用金属箔 2 弁作用金属 3 陽極用金属細線 4 絶縁性樹脂 5 誘電体酸化皮膜 6 陽極基体 7 導電性高分子層 8 陰極層 9 コンデンサ素板 10 導電性接着剤 11 積層体 12 陰極電極端子 13 陽極電極端子 14 樹脂外装 15 コンデンサ本体[Explanation of Codes] 1 valve metal foil 2 valve metal 3 thin metal wire for anode 4 insulating resin 5 dielectric oxide film 6 anode substrate 7 conductive polymer layer 8 cathode layer 9 capacitor base plate 10 conductive adhesive 11 Laminated body 12 Cathode electrode terminal 13 Anode electrode terminal 14 Resin exterior 15 Capacitor body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面が粗面化されその上に誘電体酸化皮
膜が形成された弁作用金属箔の一端部にこの金属箔より
突出してこの金属箔より硬い弁作用金属が固着され、こ
の弁作用金属の突出部にこの金属より軟らかい陽極用金
属細線が固着され、前記突出部を除く前記弁作用金属及
び前記弁作用金属箔の誘電体酸化皮膜上に導電性高分子
層と陰極層を順次形成されてコンデンサ素板が構成さ
れ、このコンデンサ素板の陰極層同士が対応し、かつ陽
極用金属細線同士が対応する形で複数枚積層させ陰極層
間が導電性接着剤で接合されて積層体が形成され、この
積層体の陰極層に陰極電極端子が固着され、かつ陽極用
金属細線それぞれが前記積層体と固着された陽極電極端
子と接続されたことを特徴とする積層型固体電解コンデ
ンサ。
1. A valve-acting metal having a roughened surface and a dielectric oxide film formed on the valve-acting metal foil, protruding from the metal foil and being harder than the metal foil, is fixed to one end of the valve-acting metal foil. A fine metal wire for an anode, which is softer than this metal, is fixed to the protruding portion of the working metal, and a conductive polymer layer and a cathode layer are sequentially formed on the dielectric oxide film of the valve working metal and the valve working metal foil excluding the protruding portion. A capacitor base plate is formed to form a plurality of layers, and the cathode layers of the capacitor base plate correspond to each other, and the thin metal wires for the anode correspond to each other, and the cathode layers are joined with a conductive adhesive to form a laminate. Is formed, a cathode electrode terminal is fixed to the cathode layer of this laminated body, and each thin metal wire for anode is connected to the anode electrode terminal fixed to the laminated body.
JP20754892A 1992-07-10 1992-07-10 Layered solid electrolytic capacitor Pending JPH0629163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20754892A JPH0629163A (en) 1992-07-10 1992-07-10 Layered solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20754892A JPH0629163A (en) 1992-07-10 1992-07-10 Layered solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0629163A true JPH0629163A (en) 1994-02-04

Family

ID=16541562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20754892A Pending JPH0629163A (en) 1992-07-10 1992-07-10 Layered solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0629163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421227B2 (en) 1999-12-10 2002-07-16 Showa Denko K.K. Solid electrolytic multilayer capacitor
JP2012129572A (en) * 2012-04-04 2012-07-05 Panasonic Corp Chip type laminated capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421227B2 (en) 1999-12-10 2002-07-16 Showa Denko K.K. Solid electrolytic multilayer capacitor
US6706078B2 (en) 1999-12-10 2004-03-16 Showa Denko Kabushiki Kaisha Solid electrolytic multilayer capacitor
JP2012129572A (en) * 2012-04-04 2012-07-05 Panasonic Corp Chip type laminated capacitor

Similar Documents

Publication Publication Date Title
JP3755336B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3276113B1 (en) Solid electrolytic capacitors
US7481850B2 (en) Solid electrolytic capacitor, stacked capacitor using the same, and fabrication method thereof
JPH05205984A (en) Laminated solid electrolytic capacitor
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
EP3226270B1 (en) Solid electrolytic capacitor
JP2003133183A (en) Solid electrolytic capacitor and method of manufacturing the same
KR20110027631A (en) Electrolytic capacitor assembly and method with recessed leadframe channel
JP2001185460A (en) Solid electrolytic capacitor and its manufacturing method and substrate of an integrated circuitfor it
US7957120B2 (en) Capacitor chip and method for manufacturing same
JPH04119624A (en) Solid electrolytic capacitor
JP3128831B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002198264A (en) Electrolytic capacitor, circuit board containing electrolytic capacitors and manufacturing method thereof
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP4026819B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor and capacitor by the method
JP2004088073A (en) Solid electrolytic capacitor
JPH0629163A (en) Layered solid electrolytic capacitor
JPH08273983A (en) Aluminum solid capacitor
JPH05326343A (en) Monolithic solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2001126958A (en) Chip-type solid electrolytic capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JPH09260217A (en) Metallic foil lamination type capacitor
JP2007235101A (en) Solid electrolytic capacitor