JPH0629150B2 - Fluoride glass containing rare earth - Google Patents

Fluoride glass containing rare earth

Info

Publication number
JPH0629150B2
JPH0629150B2 JP2115497A JP11549790A JPH0629150B2 JP H0629150 B2 JPH0629150 B2 JP H0629150B2 JP 2115497 A JP2115497 A JP 2115497A JP 11549790 A JP11549790 A JP 11549790A JP H0629150 B2 JPH0629150 B2 JP H0629150B2
Authority
JP
Japan
Prior art keywords
glass
rare earth
light
zrf
fluoride glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2115497A
Other languages
Japanese (ja)
Other versions
JPH0412035A (en
Inventor
井上  悟
亮男 牧島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP2115497A priority Critical patent/JPH0629150B2/en
Publication of JPH0412035A publication Critical patent/JPH0412035A/en
Publication of JPH0629150B2 publication Critical patent/JPH0629150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類含有フッ化物ガラスに関し、特に、赤
外光を吸収して可視光を発することができ、赤外光から
可視光への波長変換材料として広く応用できるガラスに
関するものである。
Description: TECHNICAL FIELD The present invention relates to a rare earth-containing fluoride glass, and more particularly, it can absorb infrared light and emit visible light. The present invention relates to glass that can be widely applied as a wavelength conversion material.

(従来の技術) フッ化物を原料として作製したフッ化物ガラスは、酸化
物ガラスより広範囲で、紫外光領域から赤外光領域に亘
る広い波長範囲の光を透過し得る点で優れたガラスであ
り、光学部品や赤外光伝送ファイバー、光通信ファイバ
ーなどの用途への応用が広く研究されている。
(Prior Art) Fluoride glass made from a fluoride is a glass that is superior to oxide glass in that it can transmit light in a wide wavelength range from the ultraviolet light region to the infrared light region. , Optical components, infrared light transmission fiber, optical communication fiber, and other applications have been widely studied.

また、フッ化物ガラスは、酸化物ガラスに比べて希土類
元素を多く含有できる性質を有しており、希土類イオン
の蛍光発光を応用した各種発光ガラス、更には、レーザ
ー発振用ガラスなどへの応用も盛んに研究されている。
Further, the fluoride glass has a property of containing a large amount of rare earth elements as compared with the oxide glass, and thus it can be applied to various light emitting glasses to which fluorescence emission of rare earth ions is applied, and further to laser oscillation glass and the like. Has been actively studied.

一般に、希土類イオンの蛍光発光は、基底準位の電子を
紫外光などのエネルギーの高い光で励起し、その励起電
子がエネルギーの低い準位に遷移する過程で起こる。し
たがって、一般には励起光(入射光)のエネルギーより
高いエネルギーを有する光は放出されない。
In general, the fluorescence emission of rare earth ions occurs in the process in which electrons of the ground level are excited by light having a high energy such as ultraviolet light, and the excited electrons transit to a low energy level. Therefore, generally, light having energy higher than that of the excitation light (incident light) is not emitted.

しかし、フッ化物ガラス中では、上述の励起光よりもエ
ネルギーの高い光(すなわち、励起光よりも波長が短い
光)が蛍光として放出される過程がかなりの確率で発生
する。この一番の原因は、フッ化物ガラスが酸化物系な
どよりも、より長い波長の赤外光を透過し得ることにあ
る。すなわち、赤外光の透過限界波長が長波長側にある
ほど、一度励起された電子がより下のエネルギー準位に
遷移して行くまでの、その励起準位での平均滞留時間が
長くなり、更に、同じ励起光を吸収してより高いエネル
ギー準位まで励起される、2段階励起の過程が起こり易
くなることによる。したがって、この過程を利用する
と、赤外光を入射してより波長の短い可視領域の光を放
出させることができる。
However, in the fluoride glass, a process in which light having a higher energy than the above-described excitation light (that is, light having a shorter wavelength than the excitation light) is emitted as fluorescence occurs with a considerable probability. The main reason for this is that fluoride glass can transmit infrared light having a longer wavelength than oxide glasses. That is, as the transmission limit wavelength of infrared light is on the longer wavelength side, the average residence time at the excitation level becomes longer until the electron once excited transitions to a lower energy level, Furthermore, the process of two-step excitation in which the same excitation light is absorbed and excited to a higher energy level is likely to occur. Therefore, by utilizing this process, infrared light can be incident to emit light in the visible region having a shorter wavelength.

従来より、フッ化物ガラス系の中では、ZrF4、Ba
2を主成分とする系(ZrF4系)や、ThF4、Zn
2、BaF2を主成分とする系(ThF4系)、またA
lF3、RF2(R:アルカリ土類金属)を主成分とする
系(AlF3系)が、安定してガラスを作製できるガラ
ス形成系として知られている。これらの系において、E
rF3、YbF3を添加して作製したガラスは、Er3+
Yb3+イオンの吸収帯がある約900〜1100nmの近
赤外光を吸収して、Er3+イオンが緑色光(550nm付
近)及び赤色光(665nm付近)を発することが確認さ
れている。
Conventionally, among fluoride glass systems, ZrF 4 , Ba
F 2 -based system (ZrF 4 system), ThF 4 , Zn
A system mainly composed of F 2 and BaF 2 (ThF 4 system), and A
A system containing AlF 3 and RF 2 (R: alkaline earth metal) as a main component (AlF 3 system) is known as a glass forming system capable of stably producing glass. In these systems, E
The glass produced by adding rF 3 and YbF 3 is Er 3+ ,
It has been confirmed that the Er 3+ ion emits green light (near 550 nm) and red light (near 665 nm) by absorbing near-infrared light of about 900 to 1100 nm which has an absorption band of Yb 3+ ion.

(発明が解決しようとする課題) 上述した2段階励起によるEr3+イオンの蛍光発光を効
率良く発生させるためには、主として、(イ)赤外光透
過限界波長ができるだけ長波長側にあるガラス、また、
(ロ)Er、Ybを多く含有し得るガラスほど有利であ
る。特に、Ybは増感剤としての働きをするため、その
含有量が多いほど発光効率が改善される。
(Problems to be Solved by the Invention) In order to efficiently generate the fluorescence emission of Er 3+ ions by the above-mentioned two-step excitation, (a) a glass whose infrared transmission limit wavelength is as long as possible is mainly used. ,Also,
(B) The glass that can contain a large amount of Er and Yb is more advantageous. In particular, since Yb acts as a sensitizer, the higher the content, the more the luminous efficiency is improved.

このような観点では、ZrF4系は(イ)の点で優れ、
AlF3系は(ロ)の点で優れたガラス系である。ま
た、ThF4系は、(イ)、(ロ)の点で他の2系より
も優れているが、Th自身が放射性であり、実用上好ま
しくない。したがって、ThF4系以外に、(イ)、
(ロ)共に優れたガラス系を見い出すことができれば、
より効率良く赤外光を吸収して可視光を発する安全なガ
ラスが得られる。
From this point of view, the ZrF 4 system is superior in (a),
The AlF 3 system is a glass system excellent in (b). Further, the ThF 4 system is superior to the other 2 systems in terms of (a) and (b), but Th itself is radioactive, which is not preferable in practical use. Therefore, in addition to the ThF 4 system, (a),
(B) If we can find excellent glass systems,
A safe glass that more efficiently absorbs infrared light and emits visible light can be obtained.

本発明は、上記従来技術の問題点を解決し、希土類元素
を多量に含有させることができ、赤外光透過限界波長が
できるだけ長波長側にし得る希土類含有フッ化物ガラス
を提供することを目的とするものである。
The present invention aims to provide a rare earth-containing fluoride glass that solves the above-mentioned problems of the prior art, can contain a large amount of rare earth elements, and can have the infrared light transmission limit wavelength on the long wavelength side as much as possible. To do.

(課題を解決するするための手段) 本発明者は、前記課題を解決し得る希土類含有フッ化物
ガラス系について鋭意研究を重ねた結果、上述のZrF
4系に類似したZrF4−BaF2−LaF3−AlF3
NaF系を基礎組成とすると、これに多量の希土類元素
(Er、Yb)を含有させることができることを見い出
し、ここに本発明をなしたものである。
(Means for Solving the Problems) The inventors of the present invention have conducted extensive studies on a rare earth-containing fluoride glass system that can solve the above problems, and as a result, the above-mentioned ZrF
ZrF 4 --BaF 2 --LaF 3 --AlF 3 --similar to the 4 system
It has been found that a basic composition of NaF can contain a large amount of rare earth elements (Er, Yb), and the present invention has been made here.

すなわち、本発明は、ZrF4:40〜50%、Ba
2:20〜25%、LaF3:2〜5%、AlF3:2
〜8%、NaF:0.1〜6%、InF3:0.4〜
0.8%及びNaCl:0〜6%からなるガラスであっ
て、更にErF3及びYbF3を合計で15〜25%含む
ことを特徴とする希土類含有フッ化物ガラスを要旨とす
るものである。
That is, in the present invention, ZrF 4 : 40 to 50%, Ba
F 2: 20~25%, LaF 3 : 2~5%, AlF 3: 2
~8%, NaF: 0.1~6%, InF 3: 0.4~
A glass made of 0.8% and NaCl: 0 to 6%, further containing 15 to 25% of ErF 3 and YbF 3 in total, which is a gist of a rare earth-containing fluoride glass.

(作用) 本発明のガラスは、前述のZrF4系に類似したZrF4
−BaF2−LaF3−AlF3−NaF系を基礎組成と
するものである。具体的には、ZrF4:40〜50
%、BaF2:20〜25%、LaF3:2〜5%、Al
3:2〜8%、NaF:0.1〜6%、InF3:0.
4〜0.8%からなる組成である。このような組成を持
つ成分系とするのは、ZrF4及びBaF2を主成分とす
るZrF4系が持つ赤外光透過限界波長を長波長側にで
きる利点と、AlF3及びRF2(R:アルカリ土類金
属)を主成分とするAlF3系が持つ希土類元素を多く
含有し得る利点を共に有効に利用するためである。
(Function) The glass of the present invention has a ZrF 4 similar to the ZrF 4 system described above.
It is an -BaF 2 -LaF 3 -AlF 3 -NaF type the base composition. Specifically, ZrF 4 : 40-50
%, BaF 2 : 20 to 25%, LaF 3 : 2 to 5%, Al
F 3: 2~8%, NaF: 0.1~6%, InF 3: 0.
The composition is 4 to 0.8%. The component system having such a composition has the advantage that the infrared light transmission limit wavelength of the ZrF 4 system containing ZrF 4 and BaF 2 as the main components can be set to the long wavelength side, and AlF 3 and RF 2 (R This is because both the advantages of AlF 3 containing Alkaline Earth Metals as a main component and containing a large amount of rare earth elements can be effectively utilized.

但し、本発明では、この成分系に希土類元素のEr及び
Ybをより多く含有し得るように、一般のガラス組成系
よりZrF4含有量を減らし、LaF3、AlF3の含有
量を増加させたものである。これにより、従来の組成で
はEr、Ybの含有可能最大量が9%程度であったとこ
ろを、15〜25%へと大幅に増量することができる。
より好ましい範囲は、ZrF4は40〜46%、LaF3
は4〜5%、AlF3は4〜8%である。
However, in the present invention, the ZrF 4 content is decreased and the LaF 3 and AlF 3 contents are increased as compared with the general glass composition system so that the rare earth elements Er and Yb can be contained in a larger amount in this component system. It is a thing. As a result, it is possible to significantly increase the maximum content of Er and Yb from about 9% in the conventional composition to 15 to 25%.
A more preferable range is 40 to 46% for ZrF 4 and LaF 3
Is 4 to 5% and AlF 3 is 4 to 8%.

各成分とも上限値以上及び下限値以下ではそれぞれ成分
系の利点を効果的に発揮し得えず、またYb希土類元素
のEr及びYbを上述の如く多量に含有させることが困
難となる。
Above the upper limit and below the lower limit of each component, the advantages of the component system cannot be effectively exhibited, and it becomes difficult to incorporate Er and Yb of Yb rare earth elements in a large amount as described above.

なお、必要に応じて、NaClを6%まで安定的に添加
でき、これによりガラスの赤外光透過限界波長をより長
波長側に移動させることが可能である。
If necessary, NaCl can be stably added up to 6%, whereby the infrared light transmission limit wavelength of glass can be shifted to a longer wavelength side.

したがって、本発明では、これらの特徴を活かすことに
より、より効率の良い赤外光吸収−可視光発光過程をガ
ラス中で起こすことができる。
Therefore, in the present invention, by utilizing these characteristics, a more efficient infrared light absorption-visible light emission process can be caused in glass.

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) 第1表に示す組成のガラスを、乾燥窒素雰囲気のグロー
ブボックス中で、金ルツボを用いて800〜900℃の
温度で溶融して作製した。
(Example) A glass having the composition shown in Table 1 was produced by melting in a glove box in a dry nitrogen atmosphere using a gold crucible at a temperature of 800 to 900 ° C.

これらの試作ガラスは約40mm×30mm×5mmの大きさ
である。
These trial glasses are about 40 mm × 30 mm × 5 mm in size.

また、試作ガラスのうちのNO.3のガラスにおいて、N
d:YAGレーザー光(1.064μm、約300mw)
を入射した時の可視領域の発光スペクトルを第1図に示
す。これより、効率よく赤外光を吸収して可視光を発す
るガラスであることがわかる。勿論、他の試作ガラスも
同様の発光スペクトルを示すことを確認した。
In addition, in the No. 3 glass among the prototype glasses, N
d: YAG laser light (1.064 μm, about 300 mw)
FIG. 1 shows the emission spectrum in the visible region when is incident. From this, it can be seen that the glass efficiently absorbs infrared light and emits visible light. Of course, it was confirmed that other prototype glasses also showed similar emission spectra.

(発明の効果) 以上詳述したように、本発明によれば、特定の組成の成
分系で希土類元素の含有量を多くできるので、赤外光
(900〜1100nm)を吸収して可視光(550、6
65nm付近)を発するところから、赤外光から可視光へ
の波長変換材料として広く応用できる。特に、近赤外領
域に発振線を有するNd:YAGレーザー、各種半導体
レーザーなどの発振光波長変換、光路モニターなどとし
て利用可能である。
(Effects of the Invention) As described in detail above, according to the present invention, since the content of the rare earth element can be increased in the component system of the specific composition, infrared light (900 to 1100 nm) is absorbed and visible light ( 550, 6
Since it emits around 65 nm), it can be widely applied as a wavelength conversion material from infrared light to visible light. In particular, it can be used as an Nd: YAG laser having an oscillation line in the near infrared region, wavelength conversion of oscillation light of various semiconductor lasers, an optical path monitor, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例で得られたガラスにおいてNd:YAG
レーザー光(1.064μm、約300mw)を入射した
時の可視領域の発光スペクトルを示す図である。
FIG. 1 shows Nd: YAG in the glasses obtained in the examples.
It is a figure which shows the emission spectrum of a visible region at the time of making a laser beam (1.064 micrometer, about 300 mw) incident.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で(以下、同じ)、ZrF4:40
〜50%、BaF2:20〜25%、LaF3:2〜5
%、AlF3:2〜8%、NaF:0.1〜6%及びI
nF3:0.4〜0.8%と、更にErF3及びYbF3
を合計で15〜25%含有することを特徴とする希土類
含有フッ化物ガラス。
1. ZrF 4 : 40 in% by weight (hereinafter the same)
~50%, BaF 2: 20~25% , LaF 3: 2~5
%, AlF 3: 2~8%, NaF: 0.1~6% and I
nF 3 : 0.4 to 0.8%, further ErF 3 and YbF 3
15 to 25% in total of the rare earth-containing fluoride glass.
【請求項2】前記ガラスが、更にNaCl:6%以下を
含有するものである請求項1に記載の希土類含有フッ化
物ガラス。
2. The rare earth-containing fluoride glass according to claim 1, wherein the glass further contains NaCl: 6% or less.
JP2115497A 1990-05-01 1990-05-01 Fluoride glass containing rare earth Expired - Lifetime JPH0629150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115497A JPH0629150B2 (en) 1990-05-01 1990-05-01 Fluoride glass containing rare earth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115497A JPH0629150B2 (en) 1990-05-01 1990-05-01 Fluoride glass containing rare earth

Publications (2)

Publication Number Publication Date
JPH0412035A JPH0412035A (en) 1992-01-16
JPH0629150B2 true JPH0629150B2 (en) 1994-04-20

Family

ID=14663975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115497A Expired - Lifetime JPH0629150B2 (en) 1990-05-01 1990-05-01 Fluoride glass containing rare earth

Country Status (1)

Country Link
JP (1) JPH0629150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103319087A (en) * 2013-06-04 2013-09-25 中山大学 Rare earth phosphate scintillating glass and preparation method of same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368290A (en) * 1992-01-16 1994-11-29 Fujitsu Limited Paper transport mechanism
CN1042217C (en) * 1993-08-12 1999-02-24 武汉大学 Preparing fluozirconate glass by homogeneous coprecipitation method
CN1313404C (en) * 2005-08-24 2007-05-02 中国科学院上海光学精密机械研究所 Preparation method of low refractivity glass doped with erbium, fluorine and phosphor
CN102167975A (en) * 2011-02-23 2011-08-31 蚌埠市德力防伪材料有限责任公司 Infrared anti-counterfeiting luminous material and preparation method and application thereof
CN113816604B (en) * 2021-10-21 2022-11-15 中国计量大学 Fluoride laser glass with high erbium doping and low hydroxyl content of 3.5 microns and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027621A (en) * 1983-07-27 1985-02-12 Agency Of Ind Science & Technol Infrared transmission glass
JPS62278144A (en) * 1986-05-26 1987-12-03 Nippon Telegr & Teleph Corp <Ntt> Infrared optical fiber
JPS63112440A (en) * 1986-10-30 1988-05-17 Sumitomo Electric Ind Ltd Fiber laser medium and light amplifier using the same
JPS63143508A (en) * 1986-12-05 1988-06-15 Kokusai Denshin Denwa Co Ltd <Kdd> Preform for fluoride glass fiber and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103319087A (en) * 2013-06-04 2013-09-25 中山大学 Rare earth phosphate scintillating glass and preparation method of same

Also Published As

Publication number Publication date
JPH0412035A (en) 1992-01-16

Similar Documents

Publication Publication Date Title
JP2008544944A (en) Bismuth-containing fluorophosphate glass and method for producing the same
US5240885A (en) Rare earth-doped, stabilized cadmium halide glasses
Fujimoto et al. Multi-colour laser oscillation in Pr3+-doped fluoro-aluminate glass fibre pumped by 442.6 nm GaN-semiconductor laser
JPH0629150B2 (en) Fluoride glass containing rare earth
US7115536B2 (en) Rare earth containing P2O5-WO3-Na2O glass for laser applications
CN1113045C (en) Ge-Ga-S-based glass composition having light amplifying characteristic and apparatus for optical communications using the same
US6272277B1 (en) Optical fiber for light amplifier
JP5516413B2 (en) Light amplification glass
JP6901560B2 (en) Fluorophosphate-based glass for active devices
JPH06191882A (en) Transparent glass
US20040042515A1 (en) Laser system utilizing highly doped laser glass
JPS5988339A (en) Phosphate laser glass with small cross-sectional area for induced emission
JP3425225B2 (en) High-power infrared laser light detector and manufacturing method thereof
US20140217336A1 (en) Solar-pumped laser device, solar-pumped amplifier and light-amplifying glass
JP2006248800A (en) Blue fluorescent glass
Seshadri et al. Luminescent glass for lasers and solar concentrators
KR100383608B1 (en) Alkaloid halogen doped sulfide glasses for optical amplifier and fabrication method thereof
Adam et al. Active fluoride glass optical waveguides for laser sources
US6480663B1 (en) Optical fiber for optical amplifier
WO1998001401A1 (en) Optical glass and waveguide devices
JPH0648770A (en) Er-tm-ho-doped laser glass emitting light at 2mum wavelength
JPH07133135A (en) Infrared-visible wavelength changing glass material
JP3346533B2 (en) Fluoride glass composition
JPH0648769A (en) Yb-tm-ho-doped laser glass emitting light at 2mum wavelength
JPH06219775A (en) Yb-doped laser glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term