JPH06291075A - Mark and method for matching and beam annealing equipment - Google Patents

Mark and method for matching and beam annealing equipment

Info

Publication number
JPH06291075A
JPH06291075A JP9697093A JP9697093A JPH06291075A JP H06291075 A JPH06291075 A JP H06291075A JP 9697093 A JP9697093 A JP 9697093A JP 9697093 A JP9697093 A JP 9697093A JP H06291075 A JPH06291075 A JP H06291075A
Authority
JP
Japan
Prior art keywords
alignment
irradiated
irradiation
stage
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9697093A
Other languages
Japanese (ja)
Inventor
Kunio Masushige
邦雄 増茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Technology Co Ltd
Original Assignee
AG Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AG Technology Co Ltd filed Critical AG Technology Co Ltd
Priority to JP9697093A priority Critical patent/JPH06291075A/en
Publication of JPH06291075A publication Critical patent/JPH06291075A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To optimize positioning by applying a beam to positioning patterns on a workpiece or points in proximity thereto, and detecting the positional deviation between the positioning patterns and points irradiated with the beam. CONSTITUTION:Before regularly processing the surface of a workpiece 1, a beam is applied to positioning patterns 1P on the surface a plurality of times. The positioning patterns 1P are appropriately formed in a matching region 1X, rather than a regular processing region 1T, on the periphery of the surface. The positional deviation TLn between the positioning patterns 1P and beam- annealed lines is imaged at the several points using a video camera 7. It is then measured and computed to obtain corresponding numeric values. The angle of a mobile stage 2 is corrected to determine initial values of the stage 2 movement, and regular beam annealing is performed. This makes positioning possible based on the median of the fluctuation in beam annealing position, and reducing fraction defective.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像表示素子等の大面
積、かつ精密な画素パターンを有する装置を製造する際
に用いられるビームアニール装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beam annealing apparatus used for manufacturing an apparatus such as an image display device having a large area and a precise pixel pattern.

【0002】[0002]

【従来の技術】従来よりレーザビーム等のエネルギービ
ームによる加工は産業の各分野で行われているが、被照
射体上に予め設けられたパターンに対してμmの単位で
精密に位置合わせするような例は少なかった。また、そ
のような精密なパターン上に加工を行う場合でもラスタ
ー走査等で被照射体全面にビーム照射を一度に施す場合
がほとんどであった。
2. Description of the Related Art Conventionally, processing with an energy beam such as a laser beam has been carried out in various fields of industry. However, it is necessary to perform precise alignment in a unit of μm with respect to a pattern provided in advance on an object to be irradiated. There were few examples. In addition, even when processing is performed on such a precise pattern, it is almost the case that the entire surface of the irradiation target is irradiated with the beam at once by raster scanning or the like.

【0003】レーザビームはフォトマスクアライナー等
の位置合わせ装置において位置合わせのために用いられ
ることもある。この場合は、低エネルギーのビームの被
照射体表面での反射散乱光を観察することにより、物理
的な位置のずれについての情報を得る。
The laser beam is sometimes used for alignment in an alignment device such as a photomask aligner. In this case, by observing the reflected and scattered light of the low-energy beam on the surface of the object to be irradiated, information on the physical displacement is obtained.

【0004】[0004]

【発明が解決しようとする課題】上記の被照射体全面に
べた一面でビーム照射を施す従来例においては、位置合
わせの必要は生じない。しかし、被照射体面内の特定部
分のみにエネルギービームによる加工を施す場合には、
位置合わせが必要となり、製造上かなりスループットを
悪化させ、またそのときエネルギーの無駄を生じさせ
る。また、被照射体の面内にビームアニールの照射によ
り悪影響が発生する部分が存在する場合はこの方法は適
用できない。
In the conventional example in which the beam irradiation is performed on the entire surface of the object to be irradiated as described above, there is no need for alignment. However, when processing with an energy beam only on a specific part within the surface of the irradiated body,
Alignment is required, which significantly degrades throughput in manufacturing and at the same time wastes energy. In addition, this method cannot be applied when there is a portion in the surface of the irradiated body that is adversely affected by the irradiation of the beam annealing.

【0005】また、低エネルギーのビームを位置合わせ
のために用い、被照射体表面からの反射散乱光を観察す
ることによりずれの情報を得る方法での場合には、実際
の本加工に用いられる高エネルギービームの場合に生じ
るずれおよびゆらぎの情報を完全に知ることが難しい。
したがって、必要な位置合わせ精度に対してずれおよび
ゆらぎが無視できない場合には、このような低エネルギ
ービームによって位置合わせを行う方法では十分な精度
を得られないという問題があった。
Further, in the case of a method in which a low energy beam is used for alignment and a deviation information is obtained by observing reflected and scattered light from the surface of an object to be irradiated, it is used for actual main processing. It is difficult to completely know the information on the deviation and fluctuation that occur in the case of a high energy beam.
Therefore, when the deviation and the fluctuation cannot be ignored with respect to the required alignment accuracy, there is a problem in that sufficient accuracy cannot be obtained by the method of performing alignment with such a low energy beam.

【0006】[0006]

【課題を解決するための手段】本発明は、ビームが照射
されることで加工が行われる被照射体の表面領域の一部
に形成され、本加工される領域との相対的な位置精度を
備えたパターンから構成されることを特徴とする整合用
マークを提供する。
SUMMARY OF THE INVENTION The present invention forms a part of the surface area of an object to be processed by irradiation with a beam, and improves relative positional accuracy with respect to the area to be main processed. An alignment mark is provided which is composed of a provided pattern.

【0007】また、ビームによって加工を行うビームア
ニール加工方法の一部分であって、予め整合用マークが
形成されている被照射体に対して、整合用マーク上また
はその近傍にビーム照射を行い、整合用マークとビーム
が照射された部分との位置のずれ量を検出し、そのずれ
量から位置合わせの最適化を行うことを特徴とする整合
方法を提供する。
Further, as a part of a beam annealing processing method for processing with a beam, a beam is irradiated onto the alignment mark or in the vicinity thereof with respect to an irradiation target object on which the alignment mark is formed in advance, and the alignment is performed. Provided is a matching method characterized by detecting a positional deviation amount between a working mark and a portion irradiated with a beam, and optimizing alignment based on the deviation amount.

【0008】また、ステージと、ステージの駆動系と、
ビーム照射系と、撮像装置と、画像処理装置と、コント
ローラとが設けられたビームアニール装置において、請
求項1の整合用マークを備えた被照射体に対して、予備
的なビーム照射を整合用マーク上または整合用マークの
近傍に行い、撮像装置でずれ量を撮像し、画像処理装置
で演算処理して、ずれ量を算出し、コントローラからビ
ーム照射系とステージの駆動系を制御して本加工時の最
適なビームと被照射体との位置合わせを行うビームアニ
ール装置を提供する。
A stage, a drive system for the stage,
In a beam annealing device provided with a beam irradiation system, an imaging device, an image processing device, and a controller, preliminary beam irradiation is performed for alignment with respect to an irradiation target having the alignment mark according to claim 1. Do this on the mark or in the vicinity of the alignment mark, image the deviation amount with the image pickup device, calculate the deviation amount with the image processing device, calculate the deviation amount, and control the beam irradiation system and stage drive system from the controller. Provided is a beam annealing device for optimally aligning a beam with an object to be irradiated during processing.

【0009】以下に図を参照しながら、ビームアニール
技術における整合マークと整合方法、そしてそのための
ビームアニール装置に関する本発明を説明する。
The present invention relating to a matching mark and a matching method in a beam annealing technique, and a beam annealing apparatus therefor will be described below with reference to the drawings.

【0010】予め整合マークが表面に形成された被照射
体をビームアニール装置のステージの上に載置する。
An object to be irradiated having alignment marks formed on its surface is placed on a stage of a beam annealing apparatus.

【0011】次に、被照射体面内の整合用マークとして
予め形成された位置合わせ用パターンを狙って、1回ま
たは複数回ビーム照射を行う。この予備的にビーム照射
された部分は、本加工のときと同様に加工される。ここ
で、位置合わせのための予備ビーム照射を行う回数は、
ビームの位置のゆらぎの大きさと必要な位置合わせ精度
との関係で決まる。
Next, beam irradiation is performed once or a plurality of times aiming at a positioning pattern previously formed as an alignment mark on the surface of the object to be irradiated. This preliminary beam-irradiated portion is processed in the same manner as in the main processing. Here, the number of times of preliminary beam irradiation for alignment is
It is determined by the relationship between the fluctuation of the beam position and the required alignment accuracy.

【0012】ビームの位置のゆらぎが小さいか、必要な
位置合わせ精度が緩い場合は被照射体とビーム照射系と
の位置および角度のずれを把握できる最小回数の(すな
わち二つの位置合わせパターンについての)ビーム照射
のみで十分である。しかし、ビームの位置のゆらぎが大
きいか、あるいは必要な位置合わせ精度が厳しい場合は
その程度に応じてビーム照射する整合用マークである位
置合わせパターンの数を増やし、ずれ量の平均値から被
照射体の位置決めを行うことにより位置合わせ精度を向
上させることができる。
When the fluctuation of the beam position is small or the required alignment accuracy is low, the minimum number of times (ie, the two alignment patterns for the position and angle of the irradiation object and the beam irradiation system) can be grasped. ) Beam irradiation alone is sufficient. However, if the fluctuation of the beam position is large or the required alignment accuracy is severe, the number of alignment patterns that are alignment marks for beam irradiation is increased according to the degree of alignment, and the irradiation amount is calculated from the average deviation amount. Positioning accuracy can be improved by positioning the body.

【0013】ただし使用する位置合わせパターンの数を
増やすと位置合わせに時間がかかることになる。被照射
体面内の本来加工すべき部分の面積が減少する等の生産
性への悪影響が生じるため無制限に増やすことはできな
い。基板の大きさなどにもよるが、生産性と位置合わせ
の精度から、3〜6回の範囲が好ましい。
However, if the number of alignment patterns to be used is increased, alignment will take time. The area cannot be increased indefinitely because it adversely affects the productivity, such as reducing the area of the originally processed portion in the surface of the irradiated body. Although it depends on the size of the substrate, the range of 3 to 6 times is preferable from the viewpoint of productivity and alignment accuracy.

【0014】位置合わせパターンとビームアニールされ
た部分との位置のずれはビデオカメラなどの撮像装置を
用い、画像認識装置等により画像データ処理した後、コ
ンピュータで演算処理することができる。
The positional deviation between the alignment pattern and the beam annealed portion can be calculated by a computer after image data processing is performed by an image recognition device or the like using an image pickup device such as a video camera.

【0015】ビデオカメラの視野の広がり大きさと、位
置合わせパターンの大きさについては、最初にステージ
上に被照射体を載置した際の位置精度を考慮し、かつ視
野内に位置合わせパターンとビーム照射された部分の両
方が入るよう決定されなければならない。
Regarding the size of the field of view of the video camera and the size of the alignment pattern, the position accuracy when the object to be irradiated is first placed on the stage is taken into consideration, and the alignment pattern and the beam are aligned within the field of view. It must be decided to enter both the illuminated parts.

【0016】コンピュータに最終的に入力された複数の
位置合わせパターンでのずれ量の演算値と、前もって観
察した位置合わせパターンの被照射体面内での座標か
ら、被照射体とビーム照射系との位置および角度のずれ
の最適な補正量を計算し、結果をビーム照射系のコント
ローラに出力し被照射体とビーム照射系の位置関係の補
正を行った後、ビームアニールによる本加工を開始す
る。
From the calculated values of the shift amounts in the plurality of alignment patterns finally input to the computer and the coordinates of the alignment patterns observed in advance on the surface of the irradiation target, the irradiation target and the beam irradiation system are determined. The optimum correction amount of the position and angle deviation is calculated, and the result is output to the controller of the beam irradiation system to correct the positional relationship between the irradiation target and the beam irradiation system, and then the main processing by beam annealing is started.

【0017】ビームアニール装置の構成としては、ビー
ムが固定されステージが動く構造でも、ステージが固定
されビームが動く構造でも、ステージとビームの両方が
動く構造でも、被照射体とビーム照射系の位置関係の補
正がコントローラからの出力により行うことができれ
ば、いずれの構成でもよい。
The structure of the beam anneal apparatus may be either the structure in which the beam is fixed and the stage moves, the structure in which the stage is fixed and the beam moves, or the structure in which both the stage and the beam move. Any configuration may be used as long as the relationship can be corrected by the output from the controller.

【0018】用いられるビームはエキシマレーザ等のパ
ルス光でも、アルゴンイオンレーザや、ヘリウムネオン
レーザ等の連続発振レーザでも、電子線等の他のエネル
ギービームでも、被照射体との組合せにおいてビーム照
射した部分と未照射部分とが可視光または赤外光等の光
学的方法により検知できるものであればよい。
The beam used may be pulsed light such as an excimer laser, continuous wave laser such as an argon ion laser or a helium neon laser, or other energy beam such as an electron beam, in combination with an object to be irradiated. The part and the non-irradiated part may be those that can be detected by an optical method such as visible light or infrared light.

【0019】位置ずれ検出系としては、上述のビデオカ
メラと画像処理装置の組合せでもよく、低エネルギーレ
ーザビームの被照射体表面での反射散乱光を検出する手
段等でもよい。被照射体とビーム照射系との位置および
角度のずれの最適補正量の計算アルゴリズムは、単純に
ずれの平均を最小にする方式でもよく、位置合わせパタ
ーンの位置およびずれの大きさ等に応じた重み付け等の
数値処理でもよい。
The position shift detecting system may be a combination of the above-mentioned video camera and image processing device, or may be a means for detecting the reflected and scattered light of the low energy laser beam on the surface of the object to be irradiated. The calculation algorithm of the optimum correction amount of the deviation of the position and the angle between the irradiation object and the beam irradiation system may be a method of simply minimizing the average deviation, and it may be adjusted according to the position of the alignment pattern and the size of the deviation. Numerical processing such as weighting may be used.

【0020】[0020]

【実施例】【Example】

(実施例1)液晶画像表示素子駆動用の逆スタガー型多
結晶シリコン薄膜トランジスタ基板を製造するための製
造工程のうちの一工程に、本発明のビームアニール装置
を用いたビームアニール方法を適用した。図1が全体の
配置を示すブロック図、図2〜3が被照射体の平面図、
図4〜5が被照射体の一部断面図である。全体の概略か
ら説明する。連続発振アルゴンイオンレーザを光源とし
て備えるビーム照射系4から被照射体1(ガラス基板上
のアモルファスシリコン)にビーム9を照射して、線状
にアニール加工(アモルファスシリコンを多結晶化)し
た。
(Example 1) The beam annealing method using the beam annealing apparatus of the present invention was applied to one of the manufacturing steps for manufacturing an inverted stagger type polycrystalline silicon thin film transistor substrate for driving a liquid crystal image display device. 1 is a block diagram showing the overall arrangement, FIGS. 2 to 3 are plan views of an irradiation target,
4 to 5 are partial cross-sectional views of the irradiated body. The overall outline will be described. A beam 9 was irradiated from a beam irradiation system 4 equipped with a continuous wave argon ion laser as a light source to the irradiation target 1 (amorphous silicon on a glass substrate), and linear annealing was performed (amorphous silicon was polycrystallized).

【0021】被照射体1は、ゲート電極としてパターン
化されたクロム薄膜上にゲート絶縁膜と、アモルファス
シリコンと、反射防止膜が製膜された100mm角のガ
ラス基板である。アモルファスシリコンがビーム9によ
って直接アニールされる。この被照射体1を移動ステー
ジ2の上に載せた。被照射体1の表面内の本加工に先だ
って被照射体1の表面内の周辺部に、本加工領域1Tと
は別個に設けた整合用領域1Xの中に適宜配置した整合
用マークである位置合わせ用パターンを狙って複数回ビ
ーム照射を行った。
The irradiation target 1 is a 100 mm square glass substrate in which a gate insulating film, amorphous silicon, and an antireflection film are formed on a chromium thin film patterned as a gate electrode. The amorphous silicon is annealed directly by the beam 9. The irradiation target 1 was placed on the moving stage 2. Prior to the main processing on the surface of the irradiated body 1, a position which is an alignment mark appropriately disposed in a peripheral area on the surface of the irradiated body 1 in an alignment area 1X provided separately from the main processing area 1T. Beam irradiation was performed multiple times aiming at the alignment pattern.

【0022】本実施例の整合用マークとなる位置合わせ
パターンは、ほぼ正方形の図形L1、L2、…Lnおよ
びR1、R2、…Rnである。これは、本加工領域1T
の各構成要素を形成するのと同様の工程によって形成
し、ゲート電極や、ソース電極や、ドレイン電極と同一
レベルのマスク工程によって位置合わせパターンとして
機能する層を形成することができる。アモルファスシリ
コンの層を介して、下の電極層(クロムなどが用いられ
る)が視認され得る。
The alignment patterns used as the alignment marks in this embodiment are substantially square figures L1, L2, ... Ln and R1, R2 ,. This is the main processing area 1T
It is possible to form a layer that functions as an alignment pattern by a masking step at the same level as the gate electrode, the source electrode, and the drain electrode by the same step as that of forming each of the constituent elements. The underlying electrode layer (such as chromium is used) is visible through the layer of amorphous silicon.

【0023】本加工領域1Tとの位置精度を保持して、
被照射体1の表面上の一端に整合用領域1Xを準備し、
その中に配置されている。または、両端に二か所整合用
領域1Xを設けておき一個一個の基板を形成するとき
に、ビーム照射の方向を交互に開始するようにしてもよ
い。さらに、この整合用領域1Xのビーム照射の走査方
向に沿った両端側にほぼ対称に、各端に一個ずつ正方形
の位置合わせパターンが形成され、かつ隣接する正方形
間のピッチは等しくされた。
While maintaining the positional accuracy with the main processing area 1T,
An alignment region 1X is prepared at one end on the surface of the irradiation target 1,
It is located in it. Alternatively, two alignment regions 1X may be provided at both ends, and the beam irradiation directions may be alternately started when each substrate is formed. Further, square alignment patterns were formed on both ends of the alignment area 1X along the scanning direction of the beam irradiation substantially symmetrically, one at each end, and the pitch between adjacent squares was made equal.

【0024】図3のように位置合わせパターンとして形
成した正方形の一辺は80μm幅で、整合用領域1Xの
左右に200μmピッチで配した。ビデオカメラの視野
の大きさは位置合わせパターン1個が観察できるように
調整した。なお、整合用領域1Xは基板から分離しても
よいし、面積が小さい場合はそのまま残しておいてもよ
い。
As shown in FIG. 3, one side of a square formed as an alignment pattern has a width of 80 μm and is arranged on the left and right of the matching area 1X at a pitch of 200 μm. The size of the visual field of the video camera was adjusted so that one alignment pattern could be observed. The matching region 1X may be separated from the substrate, or may be left as it is when the area is small.

【0025】ビーム照射のXY走査は、レーザ光をスキ
ャンミラーにより一方向に走査し、また直交する方向に
移動ステージ2を所定の長さだけステージの駆動系3で
動かした後、次ぎのレーザ光走査を行うことを繰り返す
ことによって行った。レーザパワーは9W、被照射体1
上でのビーム9の径は約100μm(レーザ光のビーム
半径またはビームスポット、ビームの振幅がz軸上の値
1/e倍になる距離を示す)、レーザ光の走査速度は1
5m/sで、駆動系3により200μmピッチで移動ス
テージ1をステップ移動し、レーザ光をビーム照射し
た。
In XY scanning of beam irradiation, laser light is scanned in one direction by a scan mirror, and the moving stage 2 is moved in a direction orthogonal to the driving system 3 of the stage for a predetermined length. This was done by repeating the scanning. Laser power is 9W, irradiation target 1
The diameter of the beam 9 is about 100 μm (the beam radius or beam spot of the laser beam, the distance at which the beam amplitude becomes 1 / e times the value on the z axis), and the scanning speed of the laser beam is 1.
The moving stage 1 was stepwise moved at a pitch of 200 μm by the drive system 3 at 5 m / s, and the laser beam was irradiated as a beam.

【0026】照射された部分は、ビームアニールされ多
結晶化された。ここでビーム照射を行う条件(レーザパ
ワー、走査速度等)は本加工と同じ条件とし、その回数
は10回とした。
The irradiated portion was beam annealed and polycrystallized. Here, the conditions for beam irradiation (laser power, scanning speed, etc.) were the same as those in the main processing, and the number of times was 10 times.

【0027】ビーム照射後、被照射体1上のレーザ光が
走査された部分は約40μm幅の黄色の多結晶シリコン
の線10(合計10本)となり、未照射の褐色のアモル
ファスシリコン部分と容易に判別できた。そして、これ
らの境界は自動計測によって判別が十分に可能であっ
た。
After the beam irradiation, the portion of the irradiated object 1 scanned by the laser beam becomes a yellow polycrystal silicon line 10 (10 lines in total) having a width of about 40 μm, which is easy to form with the unirradiated brown amorphous silicon part. I was able to determine. Then, these boundaries could be sufficiently discriminated by automatic measurement.

【0028】L1〜Ln、およびR1〜Rnの位置合わ
せパターンとビームアニールされた線10との各部での
位置のずれ、つまりTL1〜TLn(図3の左側部に位
置する)、およびTR1〜TRn(図3の右側部に位置
する)をビデオカメラ7から撮像し、画像処理装置によ
り画像データ処理し、そのずれ量を計測し、コンピュー
タで演算処理することにより数値として得ることができ
た。
Misalignment of the positions of the alignment patterns L1 to Ln and R1 to Rn and the beam annealed line 10, that is, TL1 to TLn (located on the left side of FIG. 3), and TR1 to TRn. It was possible to obtain a numerical value by picking up an image (located on the right side of FIG. 3) from the video camera 7, processing the image data by the image processing device, measuring the amount of deviation, and performing arithmetic processing by the computer.

【0029】最初に移動ステージ2上に被照射体1を載
せる際の位置精度は±20μm程度であるので視野内で
位置合わせパターンLn、Rnと多結晶シリコンとなっ
た予備アニール線10との位置関係を測定することがで
きた。その間隙をそれぞれTLnとTRnとした。
Since the positional accuracy when the irradiated object 1 is first placed on the moving stage 2 is about ± 20 μm, the positions of the alignment patterns Ln and Rn and the pre-annealed line 10 made of polycrystalline silicon in the visual field. I was able to measure the relationship. The gaps are designated as TLn and TRn, respectively.

【0030】図2のTL1〜TLn〜TL10の平均を
TLa、TR1〜TRn〜TR10の平均をTRaとす
る。TLaとTRaの差と観察した位置合わせパターン
Ln、Rnの被照射体1面内での座標から、位置および
角度のずれを計算し、移動ステージ2の角度の補正を行
い、移動ステージ1の移動の初期値を決定し、ビームア
ニール法による本加工を行った。
The average of TL1 to TLn to TL10 in FIG. 2 is TLa, and the average of TR1 to TRn to TR10 is TRa. From the difference between TLa and TRa and the coordinates of the observed alignment patterns Ln and Rn in the plane of the irradiated object 1, the displacement of the position and angle is calculated, the angle of the moving stage 2 is corrected, and the moving stage 1 is moved. The initial value of was determined and the main processing was performed by the beam annealing method.

【0031】本加工の終了後、試行した10枚の基板に
ついての検査の結果、多結晶化の必要な部分(フォトリ
ソグラフィー工程等を経て、最終的に得られた多結晶化
された半導体層は、5μm幅で200μmピッチであ
り、合計400本分)その全ての部分が多結晶化されて
いた。
After the completion of the main processing, as a result of the inspection of 10 trial substrates, a portion where polycrystallization is required (a polycrystallized semiconductor layer finally obtained through a photolithography process or the like is It had a width of 5 μm and a pitch of 200 μm, and a total of 400 pieces).

【0032】図4に、逆スタガー型の場合における、本
発明のビームアニールを行うときの断面構造を示す。図
3の予備アニール線10のほぼ直交方向での断面図に相
当する。図4には、ガラス基板1A、ゲート電極1G、
絶縁層1H、アモルファスシリコン層1M、無反射膜1
U、予備アニール線10、本加工アニール線20が示さ
れている。
FIG. 4 shows a sectional structure when the beam annealing of the present invention is performed in the case of the inverted stagger type. It corresponds to a cross-sectional view of the pre-annealed line 10 in FIG. In FIG. 4, the glass substrate 1A, the gate electrode 1G,
Insulating layer 1H, amorphous silicon layer 1M, anti-reflection film 1
U, the preliminary annealing line 10 and the main processing annealing line 20 are shown.

【0033】この場合には、ゲート電極1Gと同一のマ
スク工程で位置合わせパターン1Pが形成される。位置
合わせパターン1Pと予備アニール線10との差がTL
n(または、TRn)に相当する。
In this case, the alignment pattern 1P is formed in the same mask process as the gate electrode 1G. The difference between the alignment pattern 1P and the preliminary annealing line 10 is TL.
n (or TRn).

【0034】図5に、順スタガー型の場合における、断
面構造を示す。図5には、ガラス基板1A、ソース電極
1S、ドレイン電極1D、アモルファスシリコン層1
M、無反射膜1U、予備アニール線10、本加工アニー
ル線20が示されている。この場合には、ソース電極1
Sおよびドレイン電極1Dと同一のマスク工程で位置合
わせパターン1Pが形成される。位置合わせパターン1
Pと予備アニール線10との差がTLn(または、TR
n)に相当する。
FIG. 5 shows a sectional structure in the case of the forward stagger type. FIG. 5 shows a glass substrate 1A, a source electrode 1S, a drain electrode 1D, an amorphous silicon layer 1
M, the antireflection film 1U, the preliminary annealing line 10, and the main processing annealing line 20 are shown. In this case, the source electrode 1
The alignment pattern 1P is formed in the same mask process as the S and drain electrodes 1D. Alignment pattern 1
The difference between P and the preliminary annealing line 10 is TLn (or TR
n).

【0035】[0035]

【発明の効果】実施例にあげた加工の場合は、ビームア
ニールに用いるレーザ光のビーム径(ビームスポット)
の照射位置のゆらぎが±10μm程度ある。また、ゆら
ぎの大きさはレーザパワーに依存し、レーザパワーが大
きいとゆらぎは大きい。
In the case of the processing described in the embodiments, the beam diameter (beam spot) of the laser light used for beam annealing is obtained.
The fluctuation of the irradiation position is about ± 10 μm. Further, the magnitude of the fluctuation depends on the laser power, and the larger the laser power, the larger the fluctuation.

【0036】そのため低エネルギーレーザビームの被照
射体表面での反射散乱光を観察する方法や1回だけのレ
ーザ光走査の結果で位置合わせを行うと必ずしもゆらぎ
の中央値に合わせたことにならず、ビームアニールで加
工される面積が必要な面積に対してかなりの余裕をもっ
ていても、必要な部分が加工されず、不良品となる確率
がかなりあった。
Therefore, when the method of observing the reflected and scattered light of the low-energy laser beam on the surface of the object to be irradiated or the position alignment based on the result of only one laser beam scanning, the central value of the fluctuation is not necessarily adjusted. Even if the area to be processed by beam annealing has a considerable margin with respect to the necessary area, the necessary part was not processed and there was a considerable probability of becoming a defective product.

【0037】本発明によりビームアニールの位置のゆら
ぎの中央値に対して位置合わせすることができ、不良率
を大きく下げることができた。また、工程のでの流動性
が改善され、スループットが飛躍的に向上した。
According to the present invention, it was possible to perform alignment with respect to the median fluctuation of the beam annealing position, and it was possible to greatly reduce the defect rate. In addition, the fluidity in the process was improved, and the throughput was dramatically improved.

【0038】また、本発明はその効果を損しない範囲で
種々の応用が可能である。
Further, the present invention can be applied in various ways within a range that does not impair the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のビームアニール装置の構成を示すブロ
ック図。
FIG. 1 is a block diagram showing the configuration of a beam annealing apparatus of the present invention.

【図2】本発明で用いる被照射体1上の平面図。FIG. 2 is a plan view of an irradiation target 1 used in the present invention.

【図3】整合用マークの部分拡大平面図(a)と、整合
用領域1Xの部分拡大平面図(b)。
FIG. 3 is a partially enlarged plan view of an alignment mark (a) and a partially enlarged plan view of an alignment region 1X (b).

【図4】本発明の逆スタガー型のTFTの一部断面図。FIG. 4 is a partial cross-sectional view of an inverted stagger type TFT of the present invention.

【図5】本発明の順スタガー型のTFTの一部断面図。FIG. 5 is a partial cross-sectional view of a forward stagger type TFT of the present invention.

【符号の説明】[Explanation of symbols]

1:被照射体 2:移動ステージ 3:ステージ駆動系 4:ビーム照射系 5:コントローラ 6:画像処理装置 7:ビデオカメラ 9:レーザビーム 10:予備アニール線 20:本加工アニール線 1: irradiation target 2: moving stage 3: stage drive system 4: beam irradiation system 5: controller 6: image processing device 7: video camera 9: laser beam 10: preliminary annealing line 20: main processing annealing line

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ビームが照射されることで加工が行われる
被照射体の表面領域の一部に形成され、本加工される領
域との相対的な位置精度を備えたパターンから構成され
ることを特徴とする整合用マーク。
1. A pattern which is formed in a part of a surface region of an object to be processed by being irradiated with a beam and has a positional accuracy relative to a region to be main processed. Alignment mark characterized by.
【請求項2】ビームによって加工を行うビームアニール
加工方法の一部分であって、予め整合用マークが形成さ
れている被照射体に対して、整合用マーク上またはその
近傍にビーム照射を行い、整合用マークとビームが照射
された部分との位置のずれ量を検出し、そのずれ量から
位置合わせの最適化を行うことを特徴とする整合方法。
2. A part of a beam annealing method for processing with a beam, wherein a beam is irradiated onto or near the alignment mark for an irradiation target on which an alignment mark is formed in advance, and the alignment is performed. A matching method characterized in that the amount of positional deviation between the work mark and the portion irradiated with the beam is detected, and the alignment is optimized from the amount of deviation.
【請求項3】ステージと、ステージの駆動系と、ビーム
照射系と、撮像装置と、画像処理装置と、コントローラ
とが設けられたビームアニール装置において、請求項1
の整合用マークを備えた被照射体に対して、予備的なビ
ーム照射を整合用マーク上または整合用マークの近傍に
行い、 撮像装置でずれ量を撮像し、画像処理装置で演算処理し
て、ずれ量を算出し、コントローラからビーム照射系と
ステージの駆動系を制御して本加工時の最適なビームと
被照射体との位置合わせを行うビームアニール装置。
3. A beam annealing apparatus provided with a stage, a drive system for the stage, a beam irradiation system, an imaging device, an image processing device, and a controller.
Pre-beam irradiation is performed on or near the alignment mark for the irradiation target with the alignment mark, and the amount of deviation is imaged by the imaging device and processed by the image processing device. A beam anneal device that calculates the amount of deviation and controls the beam irradiation system and stage drive system from the controller to optimally align the beam with the irradiation target during main processing.
JP9697093A 1993-03-31 1993-03-31 Mark and method for matching and beam annealing equipment Withdrawn JPH06291075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9697093A JPH06291075A (en) 1993-03-31 1993-03-31 Mark and method for matching and beam annealing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9697093A JPH06291075A (en) 1993-03-31 1993-03-31 Mark and method for matching and beam annealing equipment

Publications (1)

Publication Number Publication Date
JPH06291075A true JPH06291075A (en) 1994-10-18

Family

ID=14179090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9697093A Withdrawn JPH06291075A (en) 1993-03-31 1993-03-31 Mark and method for matching and beam annealing equipment

Country Status (1)

Country Link
JP (1) JPH06291075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113445A (en) * 1990-07-09 1992-05-12 Symbol Technologies Inc. System for encoding data in machine readable graphic form
WO2007072744A1 (en) * 2005-12-20 2007-06-28 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method and method for manufacturing semiconductor device
JP2007194604A (en) * 2005-12-20 2007-08-02 Semiconductor Energy Lab Co Ltd Laser irradiation device and laser irradiation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113445A (en) * 1990-07-09 1992-05-12 Symbol Technologies Inc. System for encoding data in machine readable graphic form
WO2007072744A1 (en) * 2005-12-20 2007-06-28 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method and method for manufacturing semiconductor device
JP2007194604A (en) * 2005-12-20 2007-08-02 Semiconductor Energy Lab Co Ltd Laser irradiation device and laser irradiation method
US7929154B2 (en) 2005-12-20 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3343492B2 (en) Method for manufacturing thin film semiconductor device
KR100542645B1 (en) Method of forming semiconductor thin-film and laser apparatus used therefor
JP2000346618A (en) Method and apparatus for precise alignment for rectangular beam
JPH0142492B2 (en)
KR100237941B1 (en) Exposure apparatus and method of exposing wafer to the light
DE19846938A1 (en) Method for separating required chips from semiconductor wafer
JPH06291075A (en) Mark and method for matching and beam annealing equipment
US6768964B2 (en) Method and apparatus for determining dot-mark-forming position of semiconductor wafer
JPH07263308A (en) Method and device for electron beam exposure
JP4801634B2 (en) Laser processing apparatus and laser processing method
JPH054660B2 (en)
JPH0581357B2 (en)
JP3498420B2 (en) Exposure method and exposure apparatus
JPH04186725A (en) Laser annealing device and alignment method
JP3774320B2 (en) Wafer position grasping method, exposure method, and exposure apparatus
WO2019111732A1 (en) Exposure device and exposure method
JP2001007043A (en) Mask alignment for rectangular beam
JP2000329521A (en) Pattern measuring method and aligning method
JPS5885532A (en) Method of positioning via electron beam
JP4906378B2 (en) Method for detecting posture of laser processing mask and method for evaluating stage accuracy
JP2001092156A (en) Automatic alignment method for exposure device
JP3472078B2 (en) Exposure method and exposure apparatus
JPS60187020A (en) Element for manufacturing semiconductor circuit and positioning device thereof
JPS63307736A (en) Method of processing by using ion beam
JPS5967627A (en) Charged beam exposure method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704