JPH06290773A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH06290773A
JPH06290773A JP5096799A JP9679993A JPH06290773A JP H06290773 A JPH06290773 A JP H06290773A JP 5096799 A JP5096799 A JP 5096799A JP 9679993 A JP9679993 A JP 9679993A JP H06290773 A JPH06290773 A JP H06290773A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
secondary battery
lithium
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5096799A
Other languages
Japanese (ja)
Inventor
Katsuhiko Suzuki
克彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5096799A priority Critical patent/JPH06290773A/en
Publication of JPH06290773A publication Critical patent/JPH06290773A/en
Priority to US08/386,363 priority patent/US5494762A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To can be suppressed from its production to provide low internal resistance with high battery voltage further with an excellent charge/discharge cycle characteristic. CONSTITUTION:In a lithium secondary battery comprising a positive pole 1, negative pole 2 formed of lithium metal and a nonaqueous electrolyte 3, the negative pole has a lithium ion conductive layer in the surface. As the lithium ion conductive layer, it consists of a solid electrolyte layer 21 or any of amorphous layer, refined crystal grain layer, dissimilar element diffusion layer. The solid electrolyte layer 21 consists of the first additional element of one kind or more selected from, for instance, Li and a group of P, S, Cl, I, Fe, Mn, Mg, to suppress dendrite from its production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,充放電サイクル特性に
優れた,リチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having excellent charge / discharge cycle characteristics.

【0002】[0002]

【従来技術】リチウム二次電池は,正極として例えばL
2 MnO4 を用い,負極としてリチウム金属を用い,
両者の間に非水電解液を介在させて構成されている。そ
して,充電時には,正極活物質からリチウムイオンが非
水電解液を通って負極のリチウム金属に析出する。
2. Description of the Related Art A lithium secondary battery has, for example, an L
i 2 MnO 4 was used, lithium metal was used as the negative electrode,
A non-aqueous electrolyte is interposed between the two. Then, during charging, lithium ions from the positive electrode active material pass through the non-aqueous electrolyte and deposit on the lithium metal of the negative electrode.

【0003】ところで,負極に用いるリチウム金属は,
充放電を繰り返す間に,充電時にその表面にデンドライ
トが生成する。そのため,充放電サイクル特性が低下し
てしまう。このデンドライト状リチウムの生成は,負極
におけるリチウム金属の結晶粒界等による表面エネルギ
ーの不均一性により生ずる。そこで,この問題を解決す
るため,負極の表面に,Liなどからなるリチウム合金
被膜を形成することが提案されている(例えば,特開昭
53−75434,特開昭63−178449)。
By the way, the lithium metal used for the negative electrode is
During repeated charging and discharging, dendrites are generated on the surface during charging. Therefore, the charge / discharge cycle characteristics deteriorate. The generation of dendrite-like lithium occurs due to the nonuniformity of the surface energy due to the crystal grain boundaries of lithium metal in the negative electrode. Therefore, in order to solve this problem, it has been proposed to form a lithium alloy coating film of Li or the like on the surface of the negative electrode (for example, JP-A-53-75434, JP-A-63-178449).

【0004】[0004]

【解決しようとする課題】しかしながら,上記の負極に
おいては,これを上記のごとく合金化すると,正極との
電位差が小さくなり,電池電圧の低下を生ずる。そのた
め,リチウム二次電池を高い電圧で使用することができ
ない。
However, if the above-mentioned negative electrode is alloyed as described above, the potential difference between the negative electrode and the positive electrode becomes small and the battery voltage drops. Therefore, the lithium secondary battery cannot be used at a high voltage.

【0005】また,高電圧で使用できないため,リチウ
ム二次電池の体積エネルギーが悪くなる。本発明はかか
る従来の問題点に鑑み,デンドライトの生成を抑制で
き,内部抵抗が低く,高い電池電圧を有し,かつ充放電
サイクル特性に優れたリチウム二次電池を提供しようと
するものである。
Further, since the lithium secondary battery cannot be used at a high voltage, the volume energy of the lithium secondary battery is deteriorated. In view of such conventional problems, the present invention aims to provide a lithium secondary battery that can suppress the generation of dendrites, has a low internal resistance, has a high battery voltage, and has excellent charge-discharge cycle characteristics. .

【0006】[0006]

【課題の解決手段】本発明は,正極と,リチウム金属よ
りなる負極と,両者の間に配置した非水電解液とからな
るリチウム二次電池において,上記負極は,その表面
に,固体電解質層,非晶質層,微細結晶粒層,又は異種
元素拡散層のいずれかよりなるリチウムイオン導伝層を
有することを特徴とするリチウム二次電池にある。
The present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode made of lithium metal, and a non-aqueous electrolytic solution disposed between the positive and negative electrodes, wherein the negative electrode has a solid electrolyte layer on its surface. , A non-crystalline layer, a fine crystal grain layer, or a heterogeneous element diffusion layer, which is a lithium ion conductive layer.

【0007】本発明において,最も注目すべきことは,
負極がその表面に上記リチウムイオン導伝層を有するこ
とである。上記リチウムイオン導伝層は,負極の表面に
おいて非水電解液と対面する部分に形成されている。該
リチウムイオン導伝層は,上記固体電解質層のごとく,
負極の表面に被膜状態に形成するものと,非晶質層,微
細結晶粒層及び異種元素拡散層のごとく負極の表面自体
に形成するものとがある。
The most remarkable thing in the present invention is that
That is, the negative electrode has the lithium ion conductive layer on the surface thereof. The lithium ion conductive layer is formed on the surface of the negative electrode at a portion facing the non-aqueous electrolyte. The lithium ion conductive layer is, like the solid electrolyte layer,
Some are formed in a film state on the surface of the negative electrode, and some are formed on the surface of the negative electrode itself such as an amorphous layer, a fine crystal grain layer, and a different element diffusion layer.

【0008】上記固体電解質層は,負極であるリチウム
金属の表面に,P2 5 −Li2 S−LiIなどの,固
体電解質層の被膜を形成させることにより設ける。即
ち,上記固体電解質層は,Li(リチウム)と,P(リ
ン),S(イオウ),Cl(塩素),I(ヨウ素),F
e(鉄),Mn(マンガン),Mg(マグネシウム)の
グループから選択される一種以上の第1添加元素とより
形成する。この場合には,ガラス質の固体電解質層が形
成される。
The solid electrolyte layer is provided by forming a film of the solid electrolyte layer, such as P 2 S 5 -Li 2 S-LiI, on the surface of lithium metal, which is the negative electrode. That is, the solid electrolyte layer includes Li (lithium), P (phosphorus), S (sulfur), Cl (chlorine), I (iodine), and F.
It is formed from one or more first additive elements selected from the group consisting of e (iron), Mn (manganese), and Mg (magnesium). In this case, a glassy solid electrolyte layer is formed.

【0009】また,上記固体電解質層は,Liと,O
(塩素)と,P,Si(珪素),V(バナジウム),A
s(ヒ素),Ge(ゲルマニウム),Ti(チタン)の
グループから選択される1種以上の第2添加元素とより
形成する場合もある。この場合には,セラミック質の固
体電解質層が形成される。上記2種類の固体電解質層の
形成に当たっては,例えば,P2 5 −Li2 S−Li
Iの非晶質体を,或いはLi3 PO4 とLi3 SiO4
とを用い,これをリチウム金属の表面にスパッタリング
する。
The solid electrolyte layer comprises Li, O and
(Chlorine), P, Si (silicon), V (vanadium), A
It may be formed from one or more second additive elements selected from the group consisting of s (arsenic), Ge (germanium), and Ti (titanium). In this case, a ceramic solid electrolyte layer is formed. The two types of solid In forming the electrolyte layer, for example, P 2 S 5 -Li 2 S -Li
I amorphous material, or Li 3 PO 4 and Li 3 SiO 4
And are sputtered on the surface of the lithium metal.

【0010】次に,上記非晶質層は,リチウム金属の非
晶質体(アモルファス)である。上記非晶質層は,リチ
ウム金属の表面に対して,例えばP,Bなどを注入する
ことによって形成できる。即ち,このP等の注入によっ
て,リチウム金属における結晶粒界を破壊し,非晶質体
とする。
Next, the amorphous layer is an amorphous body of lithium metal. The amorphous layer can be formed by implanting P, B or the like into the surface of lithium metal. That is, by implanting P or the like, the crystal grain boundaries in the lithium metal are destroyed to form an amorphous body.

【0011】次に,上記微細結晶粒層は,リチウム金属
の表面を微細な結晶粒の状態となしたものである。この
ような微細結晶粒層は,例えば溶融したリチウム金属
を,低温状態にある集電体上に注湯して,キャスティン
グすることにより得られる。この方法によれば,内部ま
で微細化したリチウム金属の負極が作製できる。
Next, the fine crystal grain layer is one in which the surface of lithium metal is in the state of fine crystal grains. Such a fine crystal grain layer is obtained, for example, by pouring molten lithium metal on a current collector in a low temperature state and casting it. According to this method, a lithium metal negative electrode whose inside is miniaturized can be manufactured.

【0012】次に,上記異種元素拡散層は,リチウム金
属の表面に,下記の第3添加元素を拡散させた構造を有
する。即ち,上記異種元素拡散層は,負極の表面に対し
て,P,B(ホウ素),N(窒素),F(フッ素)から
選ばれる一種以上の第3添加元素が注入され,これらが
熱処理により拡散されて,形成されている。
Next, the different element diffusion layer has a structure in which the following third additive element is diffused on the surface of lithium metal. That is, in the heterogeneous element diffusion layer, one or more third additive elements selected from P, B (boron), N (nitrogen), and F (fluorine) are injected into the surface of the negative electrode, and these are added by heat treatment. Diffused and formed.

【0013】この場合には,注入された上記第3添加元
素である異種金属が,熱処理によってリチウム金属の欠
陥部分に,拡散移動する(図3参照)。そのため,エネ
ルギーの高いリチウム金属の欠陥部分が,上記第3添加
元素によって埋められ,その表面エネルギーが均一化さ
れる。
In this case, the implanted dissimilar metal that is the third additive element diffuses and moves to the defective portion of the lithium metal by heat treatment (see FIG. 3). Therefore, the defect portion of the high energy lithium metal is filled with the third additive element, and the surface energy is made uniform.

【0014】また,上記のリチウムイオン導伝層は,い
ずれも,0.1〜3μmの厚みとすることが好ましい。
0.1μm未満ではデンドライトの抑制効果が少なく,
一方3μmを越えると負極内へのリチウムイオンの伝導
が低下するおそれがある。また,上記正極としては,L
2 MnO4 などの,リチウムを吸蔵又は放出しうる金
属化合物を用いる。また,非水電解液としては,PC
(プロピレンカーボネート)にLiClを添加したもの
を用いる。
It is preferable that each of the lithium ion conducting layers described above has a thickness of 0.1 to 3 μm.
When it is less than 0.1 μm, the dendrite suppressing effect is small,
On the other hand, if it exceeds 3 μm, the conduction of lithium ions into the negative electrode may decrease. Further, as the positive electrode, L
A metal compound capable of inserting or extracting lithium, such as i 2 MnO 4 , is used. As the non-aqueous electrolyte, PC
(Propylene carbonate) with LiCl added is used.

【0015】[0015]

【作用及び効果】本発明のリチウム二次電池において
は,負極であるリチウム金属の表面に上記リチウムイオ
ン導伝層を設けている。そして,上記リチウムイオン導
伝層は,リチウム二次電池の充電時に正極活物質からリ
チウムイオンが非水電解液を通って負極のリチウム金属
に析出する際,上記リチウムイオンが部分的に集中する
ことを防止する。
In the lithium secondary battery of the present invention, the lithium ion conductive layer is provided on the surface of the lithium metal which is the negative electrode. The lithium ion conductive layer is such that when lithium ions from the positive electrode active material pass through the non-aqueous electrolyte and are deposited on the lithium metal of the negative electrode during charging of the lithium secondary battery, the lithium ions are partially concentrated. Prevent.

【0016】そのため,リチウムは負極表面にほぼ均一
に析出する。すなわち,上記リチウムイオン導伝層は,
負極の表面エネルギーを均一化又は分散化する機能を有
すると考えられる。そのため,充電時における,負極の
表面へのデンドライトの生成が抑制される。
Therefore, lithium is substantially uniformly deposited on the surface of the negative electrode. That is, the lithium ion conducting layer is
It is considered to have a function of making the surface energy of the negative electrode uniform or dispersed. Therefore, the generation of dendrites on the surface of the negative electrode during charging is suppressed.

【0017】また,リチウムイオン導伝層は,負極の表
面上又は負極の添加元素層内に薄い層として密着形成さ
れている。そのため,正極と負極との間に非水電解液及
びセパレータが入っていても,正極と負極間においては
高いイオン導伝性を示す。それ故,電池の内部抵抗が低
く,また,ショートの安全性も確保できる。
Further, the lithium ion conductive layer is closely formed as a thin layer on the surface of the negative electrode or in the additive element layer of the negative electrode. Therefore, even if the non-aqueous electrolyte and the separator are contained between the positive electrode and the negative electrode, high ion conductivity is exhibited between the positive electrode and the negative electrode. Therefore, the internal resistance of the battery is low and the safety of short circuit can be secured.

【0018】また,前記従来例のごとく,負極活物質で
あるリチウム金属を合金化していないため,電池電圧も
低下しない。そのため,高い電池電圧を有し,充放電サ
イクル特性にも優れている。したがって,本発明によれ
ば,内部抵抗が低く,デンドライトの生成を抑制でき,
内部抵抗が低く,高い電池電圧を有し,かつ充放電サイ
クル特性に優れたリチウム二次電池を提供することがで
きる。
Further, unlike the above-mentioned conventional example, since lithium metal which is the negative electrode active material is not alloyed, the battery voltage does not decrease. Therefore, it has a high battery voltage and excellent charge / discharge cycle characteristics. Therefore, according to the present invention, the internal resistance is low, the generation of dendrites can be suppressed,
A lithium secondary battery having low internal resistance, high battery voltage, and excellent charge / discharge cycle characteristics can be provided.

【0019】[0019]

【実施例】 実施例1 本発明の実施例にかかるリチウム二次電池につき図1を
用いて説明する。まず,上記リチウム二次電池は,図1
に示すごとく,正極1と,リチウム金属よりなる負極2
と両者の間に配置した非水電解液3とからなる。上記負
極2は,その表面にリチウムイオン導伝層としての固体
電解質層21を有している。
Example 1 A lithium secondary battery according to an example of the present invention will be described with reference to FIG. First, the lithium secondary battery shown in FIG.
As shown in, positive electrode 1 and negative electrode 2 made of lithium metal
And a non-aqueous electrolyte solution 3 disposed between the two. The negative electrode 2 has a solid electrolyte layer 21 as a lithium ion conductive layer on the surface thereof.

【0020】そして,同図に示すごとく,正極1,負極
2,非水電解液3は,ボックス状の絶縁体5の中に収容
されている。そして,該絶縁体5の周囲にはステンレス
鋼製ケースの負極端子20がカバーしてある。また,負
極端子20は負極2と接続され,一方正極端子10は正
極1と接続されている。上記の固体電解質層21は,P
2 5 −LiS−LiIからなるガラス層の被膜であ
る。
Then, as shown in the figure, the positive electrode 1, the negative electrode 2, and the non-aqueous electrolyte 3 are contained in a box-shaped insulator 5. Around the insulator 5, a negative electrode terminal 20 of a stainless steel case is covered. The negative electrode terminal 20 is connected to the negative electrode 2, while the positive electrode terminal 10 is connected to the positive electrode 1. The solid electrolyte layer 21 is made of P
It is a film of a glass layer made of 2 S 5 —LiS—LiI.

【0021】以下,本例のリチウム二次電池につき,固
体電解質層21の作製法と共に説明する。即ち,まず負
極用のリチウム金属を準備し,その表面の酸化物被膜を
除去するために,アルゴンイオンを用いて,スパッタ法
による表面エッチングを行なった。その後,このリチウ
ム金属を集電体上にセットした。
Hereinafter, the lithium secondary battery of this example will be described together with the method for forming the solid electrolyte layer 21. That is, first, lithium metal for the negative electrode was prepared, and in order to remove the oxide film on the surface, surface etching was performed by a sputtering method using argon ions. Then, this lithium metal was set on the current collector.

【0022】一方,固体電解質層形成用材料としてのタ
ーゲットには,前記第1添加元素を含むP2 5 −Li
S−LiIの非晶質物をセットした。次に,常温におい
て,1mA/cm2 ,3時間のスパッタリング処理を行
なった。これにより,負極の表面にP2 5 −LiS−
LiIの被膜,即ち固体電解質層が形成された。その厚
みは約1μmであった。
On the other hand, the target as the solid electrolyte layer forming material is P 2 S 5 -Li containing the first additive element.
An amorphous material of S-LiI was set. Next, at room temperature, a sputtering process was performed at 1 mA / cm 2 for 3 hours. As a result, P 2 S 5 -LiS-
A film of LiI, that is, a solid electrolyte layer was formed. Its thickness was about 1 μm.

【0023】リチウム二次電池を構成するに当たって
は,上記固体電解質層を形成した負極2を用い,正極1
としてLi2 MnO4 を用いた。非水電解液としては,
PC(プロピレンカーボネート)にLiCl1mol/
lを添加したものを用いた。
In constructing a lithium secondary battery, the negative electrode 2 on which the solid electrolyte layer is formed is used, and the positive electrode 1
Was used as Li 2 MnO 4 . As a non-aqueous electrolyte,
LiCl 1 mol / in PC (propylene carbonate)
The one to which 1 was added was used.

【0024】次に,上記リチウム二次電池について,1
mA/cm2 の電流,4.1〜2.0V(ボルト)の電
圧において,充放電を繰り返した。一方,比較のため
に,上記固体電解質層を形成していない負極を用い,他
は同様にして比較用のリチウム二次電池を構成し,上記
充放電繰り返しを行なった。
Next, regarding the lithium secondary battery,
Charging and discharging were repeated at a current of mA / cm 2 and a voltage of 4.1 to 2.0 V (volt). On the other hand, for comparison, a lithium secondary battery for comparison was constructed in the same manner except that the negative electrode on which the solid electrolyte layer was not formed was used, and the charging and discharging were repeated.

【0025】そして,充放電100サイクルの時点で電
池容量を測定した。その結果,後者の比較リチウム二次
電池は当初の約50%の電池容量しか示さなかった。ま
た,その負極の表面にはデンドライトが多量に生成して
いた。これに対し,前者の本発明にかかるリチウム二次
電池は,当初の約70%の電池容量を示した。また,こ
のリチウム二次電池は負極の表面に殆どデンドライトが
生成していなかった。
Then, the battery capacity was measured at the time of 100 cycles of charging and discharging. As a result, the latter comparative lithium secondary battery showed only about 50% of the initial battery capacity. In addition, a large amount of dendrite was formed on the surface of the negative electrode. On the other hand, the former lithium secondary battery according to the present invention showed a battery capacity of about 70% of the initial value. In addition, almost no dendrite was formed on the surface of the negative electrode of this lithium secondary battery.

【0026】上記のごとく,本発明のリチウム二次電池
が優れた充放電サイクル特性を示す理由は,負極へのデ
ンドライトの生成が抑制されるためである。即ち,上記
固体電解質層によって,負極の表面エネルギーが均一
化,分散されているため,充電時にリチウムイオンが負
極の表面に部分的に集中することなく析出し,均一に拡
散される。
As described above, the reason why the lithium secondary battery of the present invention exhibits excellent charge / discharge cycle characteristics is that dendrite formation on the negative electrode is suppressed. That is, since the surface energy of the negative electrode is made uniform and dispersed by the solid electrolyte layer, lithium ions are deposited without being partially concentrated on the surface of the negative electrode during charging and uniformly diffused.

【0027】そのため,リチウムイオンは,固体電解質
層とリチウム金属の界面に,分散された状態で到達す
る。それ故,部分的なエネルギーの集中がなく,デンド
ライトの生成が抑制される。また,固体電解質層21
は,前記のごとく,非常に薄い被膜であるため正極と負
極間におけるイオン導伝性も高く,内部抵抗も低い。ま
た,従来例のごとくリチウム金属を合金化していないた
め,本例のリチウム二次電池は,電池電圧も高い。
Therefore, the lithium ions reach the interface between the solid electrolyte layer and the lithium metal in a dispersed state. Therefore, there is no partial energy concentration and dendrite formation is suppressed. In addition, the solid electrolyte layer 21
As mentioned above, since it is a very thin film, the ion conductivity between the positive electrode and the negative electrode is high, and the internal resistance is low. Further, unlike the conventional example, lithium metal is not alloyed, so that the lithium secondary battery of this example has a high battery voltage.

【0028】実施例2 本例は,実施例1において,その固体電解質層の形成に
当たり,上記ターゲットとして,前記第2添加元素を含
むLi3 PO4 とLi3 SiO4 を用い, 両者を同時に
負極に対してスパッタリングし,被膜を形成したもので
ある。そして,上記被膜の形成の後に,アルゴン雰囲気
中において,150℃,10時間加熱の熱処理を行な
い,負極の表面に均一で厚み約1μmの固体電解質層を
形成した。該固体電解質層はLiTiPOの組成よりな
るリチウムイオン導伝性セラミックスである。
Example 2 In this example, in forming the solid electrolyte layer in Example 1, Li 3 PO 4 and Li 3 SiO 4 containing the second additive element were used as the target , and both of them were used as a negative electrode at the same time. The film is formed by sputtering on. After the formation of the coating film, heat treatment was performed at 150 ° C. for 10 hours in an argon atmosphere to form a uniform solid electrolyte layer having a thickness of about 1 μm on the surface of the negative electrode. The solid electrolyte layer is a lithium ion conductive ceramic having a composition of LiTiPO.

【0029】次に,上記負極を用いリチウム二次電池を
構成した。その他は,実施例1と同様である。上記リチ
ウム二次電池につき,実施例1と同様の充放電サイクル
テストを行なった。その結果,実施例1と同様に優れた
充放電サイクル特性を示した。その他実施例1と同様の
効果を得ることができる。
Next, a lithium secondary battery was constructed using the above negative electrode. Others are the same as in the first embodiment. The lithium secondary battery was subjected to the same charge / discharge cycle test as in Example 1. As a result, as in Example 1, excellent charge / discharge cycle characteristics were exhibited. Other effects similar to those of the first embodiment can be obtained.

【0030】実施例3 本例のリチウム二次電池は,リチウムイオン導伝層が非
晶質層である負極を用いたものである。上記非晶質層
は,リチウム金属の非晶質体である。上記非晶質層の形
成に当たっては,まず負極としてのリチウム金属を準備
する。次に,該負極の表面に対して,常温下,400K
eVにおいて,P(リン)を1018/cm2 注入した。
Example 3 The lithium secondary battery of this example uses a negative electrode whose lithium ion conducting layer is an amorphous layer. The amorphous layer is an amorphous body of lithium metal. In forming the amorphous layer, first, lithium metal as a negative electrode is prepared. Next, with respect to the surface of the negative electrode, at 400 K at room temperature.
At eV, 10 18 / cm 2 of P (phosphorus) was injected.

【0031】上記Pの注入により,リチウム金属の表面
は,その結晶粒界が破壊され,非晶質層が形成された。
非晶質層は,厚みが約1μmであった。上記負極を用い
て,実施例1と同様にしてリチウム二次電池を構成し
た。その結果,充放電サイクル特性のバラツキもなく,
実施例1のリチウム二次電池と同様の効果が得られた。
By the implantation of P, the crystal grain boundaries of the surface of the lithium metal were destroyed and an amorphous layer was formed.
The amorphous layer had a thickness of about 1 μm. A lithium secondary battery was constructed in the same manner as in Example 1 using the above negative electrode. As a result, there is no variation in charge / discharge cycle characteristics,
The same effect as that of the lithium secondary battery of Example 1 was obtained.

【0032】実施例4 本例のリチウム二次電池は,リチウムイオン導伝層が微
細結晶粒層である負極を用いたものである。上記微細結
晶粒層を有する負極の作製に当たっては,まずアルゴン
雰囲気中において,リチウム金属を加熱し,溶融した。
次いで,その溶湯を,金型内に配置した集電体の上に注
湯し,キャスティング(鋳造)を行なった。
Example 4 The lithium secondary battery of this example uses a negative electrode in which the lithium ion conductive layer is a fine crystal grain layer. In producing the negative electrode having the fine crystal grain layer, first, lithium metal was heated and melted in an argon atmosphere.
Then, the molten metal was poured onto a current collector arranged in a mold and casting was performed.

【0033】上記集電体は,約−20℃の低温であっ
た。これにより,表面に微細結晶粒層を有する負極を作
製した。上記微細結晶粒層は,上記キャスティング時に
急冷されたため,微細化形成されたものである。上記微
細結晶粒層は,負極であるリチウム金属の表面が微細粒
子の層を形成しているもので,その厚みは約50μmで
あった。
The current collector had a low temperature of about -20 ° C. Thus, a negative electrode having a fine crystal grain layer on the surface was produced. Since the fine crystal grain layer was rapidly cooled during the casting, it was formed finely. In the fine crystal grain layer, the surface of lithium metal, which is the negative electrode, forms a layer of fine grains, and the thickness thereof was about 50 μm.

【0034】上記負極を用いて,実施例1と同様にリチ
ウム二次電池を構成した。本例においても,実施例1と
同様の効果を得ることができた。また,本例によれば,
容易,確実に微細結晶粒層を形成することができ,また
その微細結晶粒層は集電体に密着している。そのため,
生産工程の簡略化ができる。更には,負極の表面に損傷
を生じても,電池性能に悪影響がない。
A lithium secondary battery was constructed in the same manner as in Example 1 using the above negative electrode. Also in this example, the same effect as in Example 1 could be obtained. Also, according to this example,
A fine crystal grain layer can be formed easily and reliably, and the fine crystal grain layer is in close contact with the current collector. for that reason,
The production process can be simplified. Furthermore, even if the surface of the negative electrode is damaged, the battery performance is not adversely affected.

【0035】実施例5 本例のリチウム二次電池は,リチウムイオン導伝層が異
種元素拡散層である負極を用いたものである。上記異種
元素拡散層を形成するに当たっては,まずリチウム金属
の負極を準備し,その表面に常温下,400KeVにお
いて,Pを1015/cm2 注入した。次に,この負極を
アルゴン雰囲気中において,150℃,3時間熱処理
し,上記Pをリチウム金属の欠陥部分へ拡散移行させ
た。
Example 5 The lithium secondary battery of this example uses a negative electrode in which the lithium ion conducting layer is a different element diffusion layer. In forming the heterogeneous element diffusion layer, first, a lithium metal negative electrode was prepared, and 10 15 / cm 2 of P was injected into the surface of the negative electrode at room temperature and 400 KeV. Next, this negative electrode was heat-treated at 150 ° C. for 3 hours in an argon atmosphere to diffuse and transfer the P to the defective portion of lithium metal.

【0036】上記の注入,拡散につき,図2を用いて説
明する。まず,図2(A)は,負極2の表面部分を示し
ており,そこには多くの亀裂状の欠陥部分24が見られ
る。この欠陥部分はエネルギーが高く,前記のごとく,
デンドライトの生成の原因となる。そこで,上記負極2
の表面部分に上記のごとく,第3の添加元素としてのP
(リン)25を注入する(図示略)。次いで,上記のご
とく,これを熱処理する。
The above implantation and diffusion will be described with reference to FIG. First, FIG. 2A shows the surface portion of the negative electrode 2, in which many crack-like defect portions 24 are seen. This defective portion has high energy, and as described above,
It causes the generation of dendrites. Therefore, the negative electrode 2
As described above, P as the third additional element on the surface of the
(Phosphorus) 25 is injected (not shown). Then, this is heat-treated as described above.

【0037】これにより,図2(B)に示すごとく,上
記P25が移行拡散し,上記欠陥部分24に入る。それ
故,負極2の表面のエネルギーが均一化され,デンドラ
イトの発生が抑制される。また,本例の上記負極を用い
て,実施例1と同様にリチウム二次電池を構成し,同様
に充放電サイクル特性の試験を行なった。その結果,実
施例1と同様の優れた効果を得ることができた。
As a result, as shown in FIG. 2B, the P25 migrates and diffuses and enters the defective portion 24. Therefore, the energy of the surface of the negative electrode 2 is made uniform and the generation of dendrites is suppressed. Further, a lithium secondary battery was constructed in the same manner as in Example 1 using the above-mentioned negative electrode of this example, and similarly tested for charge / discharge cycle characteristics. As a result, the same excellent effects as in Example 1 could be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のリチウム二次電池の断面図。FIG. 1 is a cross-sectional view of a lithium secondary battery of Example 1.

【図2】実施例5における異種元素拡散層形成の説明
図。
FIG. 2 is an explanatory view of forming a different element diffusion layer in Example 5.

【符号の説明】[Explanation of symbols]

1...正極, 10...正極端子, 2...負極, 20...負極端子, 21...固体電解質層, 3...非水電解液, 5...絶縁体, 1. . . Positive electrode, 10. . . Positive electrode terminal, 2. . . Negative electrode, 20. . . Negative electrode terminal, 21. . . Solid electrolyte layer, 3. . . Non-aqueous electrolyte solution, 5. . . Insulator,

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極と,リチウム金属よりなる負極と,
両者の間に配置した非水電解液とからなるリチウム二次
電池において,上記負極は,その表面に,固体電解質
層,非晶質層,微細結晶粒層,又は異種元素拡散層のい
ずれかよりなるリチウムイオン導伝層を有することを特
徴とするリチウム二次電池。
1. A positive electrode and a negative electrode made of lithium metal,
In a lithium secondary battery composed of a non-aqueous electrolyte disposed between the two, the above-mentioned negative electrode has a solid electrolyte layer, an amorphous layer, a fine crystal grain layer, or a heterogeneous element diffusion layer on its surface. Lithium secondary battery having the following lithium ion conductive layer.
【請求項2】 請求項1において,上記固体電解質層
は,Liと,P,S,Cl,I,Fe,Mn,Mgのグ
ループから選択される一種以上の第1添加元素とからな
ることを特徴とするリチウム二次電池。
2. The solid electrolyte layer according to claim 1, comprising Li and one or more first additive elements selected from the group consisting of P, S, Cl, I, Fe, Mn, and Mg. Characteristic lithium secondary battery.
【請求項3】 請求項1において,上記固体電解質層
は,Liと,Oと,P,Si,V,As,Ge,Tiの
グループから選択される1種以上の第2添加元素とから
なることを特徴とするリチウム二次電池。
3. The solid electrolyte layer according to claim 1, comprising Li, O, and one or more second additive elements selected from the group consisting of P, Si, V, As, Ge, and Ti. A lithium secondary battery characterized in that
【請求項4】 請求項1において,上記非晶質層は,リ
チウム金属の非晶質体であることを特徴とするリチウム
二次電池。
4. The lithium secondary battery according to claim 1, wherein the amorphous layer is an amorphous body of lithium metal.
【請求項5】 請求項1において,上記異種元素拡散層
は,負極の表面に対して,P,B,N,Fから選ばれる
一種以上の第3添加元素が注入され,これらが熱処理に
より拡散されていることを特徴とするリチウム二次電
池。
5. The heterogeneous element diffusion layer according to claim 1, wherein one or more third additive elements selected from P, B, N, and F are injected into the surface of the negative electrode, and these are diffused by heat treatment. Lithium secondary battery characterized by being.
JP5096799A 1992-01-16 1993-03-30 Lithium secondary battery Pending JPH06290773A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5096799A JPH06290773A (en) 1993-03-30 1993-03-30 Lithium secondary battery
US08/386,363 US5494762A (en) 1992-01-16 1995-02-09 Non-aqueous electrolyte lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5096799A JPH06290773A (en) 1993-03-30 1993-03-30 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH06290773A true JPH06290773A (en) 1994-10-18

Family

ID=14174677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5096799A Pending JPH06290773A (en) 1992-01-16 1993-03-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH06290773A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302617A (en) * 1994-04-28 1995-11-14 Nippondenso Co Ltd Nonaqueous electrolyte battery and its manufacture
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
US6365300B1 (en) 1998-12-03 2002-04-02 Sumitomo Electric Industries, Ltd. Lithium secondary battery
JP2002319391A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Negative electrode for lithium battery, and manufacturing method therefor
JP2003100285A (en) * 2001-09-25 2003-04-04 Nec Corp Negative electrode for secondary battery, electrolyte for secondary battery and secondary battery using them
JP2004134403A (en) * 2002-10-12 2004-04-30 Samsung Sdi Co Ltd Lithium metal anode for lithium battery
JP2004247317A (en) * 1998-12-03 2004-09-02 Sumitomo Electric Ind Ltd Lithium secondary battery
JP2008166171A (en) * 2006-12-28 2008-07-17 Sumitomo Electric Ind Ltd Electrode for lithium secondary battery, and its manufacturing method
US7416815B2 (en) 2004-04-01 2008-08-26 Sumitomo Electric Industries, Ltd. Negative electrode member for lithium battery and process for producing the same
CN106684432A (en) * 2017-01-25 2017-05-17 浙江大学 High ionic conductivity sulfide solid electrolyte material, and preparation method and application thereof
WO2017145654A1 (en) * 2016-02-24 2017-08-31 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP2017152358A (en) * 2016-02-24 2017-08-31 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP2017532736A (en) * 2014-09-23 2017-11-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrochemical cell with protected negative electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381919A (en) * 1976-12-27 1978-07-19 Toshiba Ray O Vac Solid electrolyte battery
JPS6326951A (en) * 1986-07-19 1988-02-04 Hitachi Maxell Ltd Lithium secondary battery
JPS63298980A (en) * 1987-05-28 1988-12-06 Yuasa Battery Co Ltd Solid electrolyte battery
JPH01225063A (en) * 1988-03-01 1989-09-07 Bridgestone Corp Lithium cell
JPH0428172A (en) * 1990-05-22 1992-01-30 Sanyo Electric Co Ltd Secondary battery
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
JPH06168715A (en) * 1992-11-30 1994-06-14 Canon Inc Lithium secondary battery
JPH06251764A (en) * 1993-02-22 1994-09-09 Fuji Elelctrochem Co Ltd Lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381919A (en) * 1976-12-27 1978-07-19 Toshiba Ray O Vac Solid electrolyte battery
JPS6326951A (en) * 1986-07-19 1988-02-04 Hitachi Maxell Ltd Lithium secondary battery
JPS63298980A (en) * 1987-05-28 1988-12-06 Yuasa Battery Co Ltd Solid electrolyte battery
JPH01225063A (en) * 1988-03-01 1989-09-07 Bridgestone Corp Lithium cell
JPH0428172A (en) * 1990-05-22 1992-01-30 Sanyo Electric Co Ltd Secondary battery
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
JPH06168715A (en) * 1992-11-30 1994-06-14 Canon Inc Lithium secondary battery
JPH06251764A (en) * 1993-02-22 1994-09-09 Fuji Elelctrochem Co Ltd Lithium secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302617A (en) * 1994-04-28 1995-11-14 Nippondenso Co Ltd Nonaqueous electrolyte battery and its manufacture
JP2004247317A (en) * 1998-12-03 2004-09-02 Sumitomo Electric Ind Ltd Lithium secondary battery
JP2000340257A (en) * 1998-12-03 2000-12-08 Sumitomo Electric Ind Ltd Lithium secondary battery
US6365300B1 (en) 1998-12-03 2002-04-02 Sumitomo Electric Industries, Ltd. Lithium secondary battery
JP2002319391A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Negative electrode for lithium battery, and manufacturing method therefor
JP2003100285A (en) * 2001-09-25 2003-04-04 Nec Corp Negative electrode for secondary battery, electrolyte for secondary battery and secondary battery using them
JP2004134403A (en) * 2002-10-12 2004-04-30 Samsung Sdi Co Ltd Lithium metal anode for lithium battery
US7416815B2 (en) 2004-04-01 2008-08-26 Sumitomo Electric Industries, Ltd. Negative electrode member for lithium battery and process for producing the same
JP2008166171A (en) * 2006-12-28 2008-07-17 Sumitomo Electric Ind Ltd Electrode for lithium secondary battery, and its manufacturing method
JP2017532736A (en) * 2014-09-23 2017-11-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrochemical cell with protected negative electrode
US10511013B2 (en) 2014-09-23 2019-12-17 Applied Materials, Inc. Electrochemical cell with protected negative electrode
WO2017145654A1 (en) * 2016-02-24 2017-08-31 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP2017152358A (en) * 2016-02-24 2017-08-31 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
US10833323B2 (en) 2016-02-24 2020-11-10 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
CN106684432A (en) * 2017-01-25 2017-05-17 浙江大学 High ionic conductivity sulfide solid electrolyte material, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100389655B1 (en) Lithium-ion secondary thin-film battery exhibiting good cycling stability and high ion-conductivity
KR20230022199A (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
JPS63285865A (en) Nonaqueous electrolyte secondary battery
JP5348607B2 (en) All-solid lithium secondary battery
JPH06290773A (en) Lithium secondary battery
JP2012221749A (en) Nonaqueous electrolyte battery
KR20120093833A (en) Non-aqueous electrolyte cell
US5024908A (en) Lead storage battery
KR100416140B1 (en) Negative active material for lithium secondary battery and method of preparing same
JPS61208750A (en) Lithium organic secondary battery
KR20110001934A (en) Non-balanced lithium-ion microbattery
JPH09134730A (en) Solid electrolyte battery and its manufacture
JPH0212385B2 (en)
US3710201A (en) Coulometer with solid electrolyte
JPS6039766A (en) Manufacture of electrode base body for lead storage battery
CN111430720B (en) Electrode protection layer and preparation method thereof, electrode and lithium battery
JPH10302776A (en) Totally solid lithium secondary battery
US6130004A (en) Electrode materials and electrochemical devices using same
KR20010037099A (en) Lithium secondary battery and fabrication method thereof
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
US20230327190A1 (en) Solid-state battery and method for manufacturing same by protonation
JPH0636763A (en) Lithium alloy negative electrode for secondary battery
JP2012185974A (en) Nonaqueous electrolyte battery
JPS58198860A (en) Lead storage battery