JPH06288714A - Measuring device - Google Patents

Measuring device

Info

Publication number
JPH06288714A
JPH06288714A JP5074029A JP7402993A JPH06288714A JP H06288714 A JPH06288714 A JP H06288714A JP 5074029 A JP5074029 A JP 5074029A JP 7402993 A JP7402993 A JP 7402993A JP H06288714 A JPH06288714 A JP H06288714A
Authority
JP
Japan
Prior art keywords
light receiving
measured
image
receiving element
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5074029A
Other languages
Japanese (ja)
Inventor
Kotaro Hosaka
光太郎 保坂
Tadayoshi Kasahara
忠義 笠原
Hiroyuki Sugimoto
廣行 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5074029A priority Critical patent/JPH06288714A/en
Publication of JPH06288714A publication Critical patent/JPH06288714A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly measure a plurality of areas of an object to be measured without reducing an imaging magnification by providing a plurality of optical systems for one line receiving element and by focusing images of respective parts requiring measurement of the object to be measured at one time on the areas of the light receiving element. CONSTITUTION:When an area of a light receiving element is smaller than an object to be measured 107 and an imaging magnification can not be reduced but the total area of a plurality of points of the object to be measured requiring actual measurement is accommodated in one light receiving element, a plurality of optical systems for one light receiving element are provided, while being composed of a mirror 103 for guiding the image of the object to be measured 107 to an image pickup face 101, a focusing lens 104 for focusing the image of the object to be measured 107 on the image pickup face 101 and an illuminating lamp 105 for illuminating the object to be measured 107. And by focusing the images of respective parts requiring measurement of the object to be measured 107 at one time on the area of the light receiving element, a plurality of areas of the object to be measured are rapidly measured without preparing a movement mechanism for one light receiving element and a driving amplifier of the light receiving element and without reducing the imaging magnification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は計測装置、特に測定対象
物の寸法や形状などを測定する部品計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device, and more particularly to a component measuring device for measuring the size and shape of an object to be measured.

【0002】[0002]

【従来の技術】従来の、結像光学系による被測定物の像
を画像処理して被測定物の寸法及び形状等を計測する部
品計測装置では、被測定物が受光素子の取り込むことの
できるエリアに比べて大きいときは縮小光学系を組み、
像を縮小して受光素子に結像したり、計測精度の都合上
像を縮小できず等倍あるいは拡大しなければならないと
きは被測定物をいくつかのエリアに分けて、結像光学系
と受光素子を前記分けたエリアの数と同じだけ用意した
り、結像光学系と受光素子若しくは被測定物を移動機構
に搭載し、結像エリアを移動させて複数箇所の像を取り
込むことによって受光素子のエリアよりも広い範囲を縮
小することなく計測している。
2. Description of the Related Art In a conventional component measuring apparatus for processing an image of an object to be measured by an imaging optical system to measure the size and shape of the object to be measured, the object to be measured can be taken in by a light receiving element. If it is larger than the area, install a reduction optical system,
If the image is reduced and focused on the light receiving element, or if the image cannot be reduced due to measurement accuracy and it is necessary to enlarge or magnify it, divide the object to be measured into several areas and use it as an imaging optical system. The number of light-receiving elements is the same as the number of divided areas, or the imaging optical system and the light-receiving element or the object to be measured are mounted on the moving mechanism, and the imaging area is moved to capture images at multiple points. Measurement is performed without reducing the area wider than the element area.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
例では複数の結合光学系と受光素子を用意する場合で
は、結像光学系や受光素子そして受光素子の駆動アンプ
等を被測定物の分割したエリアと同数用意する必要があ
りコストがかかるという問題がある。また結像光学系と
受光素子若しくは被測定物を移動機構に搭載し、画像と
して取り込むエリアを移動させて複数箇所の像を取り込
む方法の場合は、駆動装置がコスト高になるのはもちろ
ん、像を取り込む時間が移動時間を含めて長くなってし
まうという問題がある。
However, in the case of preparing a plurality of coupling optical systems and a light receiving element in the above-mentioned conventional example, the imaging optical system, the light receiving element, and the drive amplifier of the light receiving element are divided into areas to be measured. It is necessary to prepare the same number as the above, and there is a problem that it is costly. Also, in the case of a method in which the imaging optical system and the light receiving element or the object to be measured are mounted on the moving mechanism and the area for capturing as an image is moved to capture images at a plurality of locations, the driving device costs not only high but also the image. There is a problem that the time to take in becomes long, including the moving time.

【0004】[0004]

【課題を解決するための手段】本発明によれば、光学系
によって受光素子に被測定物の像を結像させ画像処理に
よって前記像から前記被測定物の形状及び寸法等を計測
する部品計測装置において、受光素子のエリアが被測定
物よりせまくかつ、結像倍率を小さくできなくても実際
に計測したい被測定物の複数箇所の総エリアが一つ受光
素子内におさまるとき、一つの受光素子に対して複数の
光学系を用意し、前記受光素子のエリアに被測定物の計
測したい各部分の像を一度に結像させることによって、
一つの受光素子と受光素子の駆動アンプで移動機構を用
意することなしに被測定物の複数のエリアを結像倍率を
小さくすることもなく、一つのエリアを計測するのとほ
ぼ同じ時間で計測することが可能となる。
According to the present invention, a component measurement for forming an image of an object to be measured on a light receiving element by an optical system and measuring the shape and size of the object to be measured from the image by image processing. In the device, when the area of the light receiving element is smaller than the object to be measured and the total area of multiple points of the object to be measured actually falls within one light receiving element even if the imaging magnification cannot be reduced, one light receiving element By preparing a plurality of optical systems for the element, by forming an image of each portion of the object to be measured at once in the area of the light receiving element,
Measurement is performed in approximately the same time as measuring one area without reducing the imaging magnification of multiple areas of the DUT without preparing a moving mechanism with one light receiving element and drive amplifier of the light receiving element. It becomes possible to do.

【0005】[0005]

【実施例】図1に本発明による光学系の実施例、図2に
本発明による計測装置のデータ処理系全体の実施例、図
3、図4、図5に本発明による計測装置のデータ処理フ
ローの実施例を示す。
1 shows an embodiment of an optical system according to the present invention, FIG. 2 shows an embodiment of the entire data processing system of a measuring apparatus according to the present invention, and FIGS. 3, 4 and 5 show data processing of the measuring apparatus according to the present invention. An example of a flow is shown.

【0006】図1において、101は測定画像取り込み
用撮像カメラ、102は撮像カメラ101の撮像面、1
03は計測対象物の像を撮像面101に導くためのミラ
ー、104は計測対象物の像を撮像面101に結ばせる
ための結像レンズ、105は計測対象物を照明するため
の照明ランプ、106は計測面に迷光が入り込むのを防
ぐカバー、107は測定対象物である。図2において、
201はデータ処理用コンピュータ、202はデータ処
理用コンピュータ201のモニター、203は画像処理
装置、204は撮像カメラ101用の電源、205は画
像処理用専用モニター、206は結果を出力するための
プリンター、207は図1における103、104、1
05が搭載された光学系ユニット、208は自動測定を
行うために測定物の搬送や位置決め等を制御する外部機
器装置である。図3はデータ処理用コンピュータ201
の自動測定ルーチンである。図3において、301は外
部機器からの信号を入力する外部信号入力処理ルーチ
ン、302は外部機器からの信号によって測定を開始す
るかどうかを判断する測定開始判断処理、303は画像
処理装置203から撮像カメラ101によって取り込ん
だ画像データを入力する画像取り込み処理、304は画
像データから測定物の所定距離を算出する画像処理ルー
チン、305は測定結果から良否信号の処理を行う測定
結果処理ルーチンである。図4は画像処理ルーチンで図
3における304の処理内容である。図4において、4
01は画像データからヒストグラムを計算するヒストグ
ラム計算処理、402は401で算出したヒストグラム
のグラフのスムージングを行うヒストグラムのスムージ
ング処理、403はヒストグラムグラフのゲインを調整
するヒストグラムのゲイン調整処理、404はヒストグ
ラムグラフより距離を計算する距離計算処理、405は
404で算出した距離を規格値と比べる距離の規格値比
較処理、406は距離が規格値と比べて良品か不良品か
を判断する良否判断処理、407は良否フラグを良品に
するフラグ処理、408は良否フラグを不良にするフラ
グ処理である。図5は測定結果処理ルーチンで図3にお
ける305の処理内容である。図5において、501は
測定が異常だったかどうかを判断する測定異常判断処
理、502は測定異常信号を外部機器に出力する異常信
号出力処理、503は測定結果が良品か不良品かを判断
する良否判断処理、504は測定物不良品の信号を外部
機器に出力する不良信号出力処理、505は投入台数と
不良品台数のカウンターを加算するカウンター加算処
理、506は測定物良品の信号を外部機器に出力する良
品信号出力処理、507は投入台数と良品台数のカウン
ターを加算するカウンター加算処理である。図6(a)
は図1における測定物107を計測面側からみた図であ
る。図6(a)において、601と602が計測の対象
となる部分である。図7(a)は撮像カメラ101によ
って取り込まれた測定物107の画像で603が画面で
ある。図7(b)は撮像画面603にデータ処理用のウ
ィンドウ604を表示した画面である。図8はウィンド
ウ604によって切りとられた画像データ701と画像
データ701から算出したヒストグラムのグラフ702
である。
In FIG. 1, 101 is an image pickup camera for capturing a measurement image, 102 is an image pickup surface of the image pickup camera 101,
Reference numeral 03 denotes a mirror for guiding the image of the measurement object to the imaging surface 101, 104 denotes an imaging lens for forming the image of the measurement object on the imaging surface 101, and 105 an illumination lamp for illuminating the measurement object. Reference numeral 106 is a cover for preventing stray light from entering the measurement surface, and 107 is an object to be measured. In FIG.
201 is a data processing computer, 202 is a monitor of the data processing computer 201, 203 is an image processing apparatus, 204 is a power source for the imaging camera 101, 205 is an image processing dedicated monitor, 206 is a printer for outputting the result, 207 is 103, 104, 1 in FIG.
Reference numeral 05 is an optical system unit, and 208 is an external device that controls the conveyance, positioning, and the like of a measured object for automatic measurement. FIG. 3 shows a data processing computer 201.
Is an automatic measurement routine of. In FIG. 3, 301 is an external signal input processing routine for inputting a signal from an external device, 302 is a measurement start determination process for determining whether to start measurement by a signal from the external device, and 303 is an image captured by the image processing device 203. Image capturing processing for inputting image data captured by the camera 101, 304 is an image processing routine for calculating a predetermined distance of the measurement object from the image data, and 305 is a measurement result processing routine for processing a quality signal from the measurement result. FIG. 4 shows an image processing routine, which is the processing content of 304 in FIG. In FIG. 4, 4
Reference numeral 01 is a histogram calculation process for calculating a histogram from image data, 402 is a histogram smoothing process for smoothing the histogram graph calculated in 401, 403 is a histogram gain adjustment process for adjusting the gain of the histogram graph, and 404 is a histogram graph A distance calculation process for further calculating a distance, 405 is a standard value comparison process for comparing the distance calculated in 404 with a standard value, 406 is a quality determination process for determining whether the distance is a non-defective product or a defective product compared with the standard value, 407. Is a flag process for making the pass / fail flag a good product, and 408 is a flag process for making the pass / fail flag a defect. FIG. 5 is a measurement result processing routine, and shows the processing contents of 305 in FIG. In FIG. 5, reference numeral 501 is a measurement abnormality determination processing for determining whether or not the measurement is abnormal, 502 is an abnormality signal output processing for outputting a measurement abnormality signal to an external device, and 503 is a pass / fail determination for determining whether the measurement result is a good product or a bad product. Judgment processing, 504 is a defective signal output processing for outputting a signal of a defective measured object to an external device, 505 is a counter addition processing for adding a counter of the number of input products and the number of defective products, and 506 is a signal of a measured good product to an external device. A non-defective signal output process for outputting, and 507 is a counter addition process for adding counters for the number of input products and the number of non-defective products. Figure 6 (a)
FIG. 3 is a diagram of the measurement object 107 in FIG. 1 viewed from the measurement surface side. In FIG. 6A, 601 and 602 are the portions to be measured. FIG. 7A shows an image of the measurement object 107 captured by the imaging camera 101, and 603 is a screen. FIG. 7B is a screen in which a data processing window 604 is displayed on the imaging screen 603. FIG. 8 is a graph 702 of the image data 701 cut by the window 604 and the histogram calculated from the image data 701.
Is.

【0007】次に本実施例における機能を説明する。本
実施例は図6(a)に示す測定物の所定部分601と6
02の間隔a1及びa2の距離を測定するもので、図6
(a)を見てもあきらかなように計測に必要ない部分が
多く撮像面102に計測対象601と602を計測する
のに必要な倍率で結像させると図6(b)のように撮像
面102から601か602のどちらかがはみだしてし
まう。そこで図1に示す光学系によって測定に必要な2
箇所のエリアを一つの撮像面102に導くことによって
撮像倍率をさげずに601及び602の画像を取り込め
るようにしたもので、撮像面102には図7(a)のよ
うに像が結ばれる。撮像カメラ101に映し込まれた画
像は画像処理装置203に取り込まれデータ処理用コン
ピュータ201の指令によって処理される。
Next, the function of this embodiment will be described. In this embodiment, the predetermined portions 601 and 6 of the measurement object shown in FIG.
The distances a1 and a2 of 02 are measured.
As is apparent from FIG. 6A, there are many portions that are not necessary for measurement, and when image formation is performed on the image pickup surface 102 at a magnification necessary for measuring the measurement targets 601 and 602, as shown in FIG. Either 102 to 601 or 602 will overflow. Therefore, the optical system shown in FIG.
The image of 601 and 602 can be taken in without reducing the image pickup magnification by guiding the area of one place to one image pickup surface 102, and an image is formed on the image pickup surface 102 as shown in FIG. 7A. The image projected on the imaging camera 101 is captured by the image processing device 203 and processed by a command from the data processing computer 201.

【0008】次に本実施例における自動測定時における
処理フローについて説明する。まず図3において測定フ
ローは処理301によって外部機器からの信号を取り込
み判断302にて測定開始信号が入力されたかどうか判
断する。測定開始信号が入力されない場合は処理301
に戻り処理301および判断302を繰り返す。測定開
始信号が外部機器より入力されると判断302より処理
303に分岐し、処理303にて画像データの取り込み
が行われる。このとき画像データとして図7(a)のよ
うな像が取り込まれる。画像データの取り込みが終了す
ると処理304すなわち図4の画像処理ルーチンへ進
む。図4の画像処理ルーチンにおいて、処理401にて
図7(b)のデータ処理ウィンドウ604内の画像デー
タ、即ち図8の701よりX軸方向の画像濃淡データを
加算し、Y軸方向の濃淡データグラフであるヒストグラ
ムグラフ702を計算する。次にヒストグラムグラフの
ノイズを取るためのスムージング処理402とヒストグ
ラムグラフのゲイン調整処理403を行い処理404に
て計測対象の距離である図8のA、即ち図6(a)のa
1およびa2の距離を計算する。a1、a2の距離が算
出されたら処理405で予め登録されている規格値と比
較する。比較の結果判断406で良品ならば処理407
において良否フラグを良品(ON)にし、不良品ならば
処理408で良否フラグを不良(OFF)にして画像処
理ルーチンを抜ける。画像処理ルーチンが終ると処理3
05、即ち図5の測定結果処理ルーチンへ進む。図5に
おいて、判断501で測定が異常だったかどうか判断し
異常ならば処理502で外部機器に異常信号を出力して
処理505で投入台数と不良品台数のカウンターを一つ
アップさせて測定結果処理ルーチンを抜ける。判断50
1で測定異常でないと判断したときは判断503で測定
の結果、被測定物が良品か不良品かを判断する。良品な
らば処理506で良品信号を外部機器に出力し、処理5
07で投入台数と良品台数のカウンターを一つアップさ
せて測定結果処理ルーチンを抜ける。判断503におい
て被測定物が不良品と判断されたときは処理504へ分
岐し、不良信号を外部機器に出力して処理505で投入
台数と不良品台数のカウンターを一つアップさせて測定
結果処理ルーチンを抜ける。測定結果処理ルーチンを終
るとシーケンスは図3に戻り、再び処理301より上記
のフローを繰り返し自動測定がつづけられる。以上が本
実施例における自動測定のフローである。
Next, a processing flow at the time of automatic measurement in this embodiment will be described. First, in FIG. 3, in the measurement flow, in step 301, a signal from an external device is taken in and it is determined in step 302 whether a measurement start signal is input. If the measurement start signal is not input, process 301
Returning to step 301, the processing 301 and the determination 302 are repeated. When the measurement start signal is input from the external device, the determination 302 branches to the process 303, and in the process 303, the image data is captured. At this time, an image as shown in FIG. 7A is captured as image data. When the acquisition of the image data is completed, the process proceeds to the process 304, that is, the image processing routine of FIG. In the image processing routine of FIG. 4, in process 401, image data in the data processing window 604 of FIG. 7B, that is, image grayscale data in the X axis direction from 701 of FIG. 8 is added, and grayscale data in the Y axis direction is added. A histogram graph 702 which is a graph is calculated. Next, a smoothing process 402 for removing noise from the histogram graph and a gain adjustment process 403 for the histogram graph are performed, and in process 404, the distance of the measurement target is A in FIG. 8, that is, a in FIG. 6A.
Calculate the distance of 1 and a2. When the distances a1 and a2 are calculated, the standard value registered in advance is compared in step 405. If it is a non-defective product in the comparison result judgment 406, the process 407
In step 408, the pass / fail flag is set to a good item (ON), and if it is a defective item, the pass / fail flag is set to defective (OFF) in step 408, and the image processing routine is exited. Processing 3 when the image processing routine is completed
05, that is, the measurement result processing routine of FIG. In FIG. 5, a judgment 501 judges whether or not the measurement is abnormal, and if abnormal, a process 502 outputs an abnormal signal to an external device, and a process 505 increments the counters of the number of input and defective products to process the measurement result. Exit the routine. Judgment 50
When it is determined in 1 that the measurement is not abnormal, a determination 503 determines whether the measured object is a good product or a defective product. If it is a non-defective product, a non-defective signal is output to an external device in process 506, and process 5
At 07, the counters for the number of input products and the number of non-defective products are incremented by 1, and the measurement result processing routine is exited. When it is determined in the determination 503 that the DUT is a defective product, the process branches to a process 504, a defect signal is output to an external device, and in a process 505, a counter for the number of input devices and the number of defective products is incremented to process the measurement result. Exit the routine. When the measurement result processing routine is finished, the sequence returns to FIG. 3, and the above flow is repeated from the processing 301 again to continue the automatic measurement. The above is the flow of the automatic measurement in the present embodiment.

【0009】本発明は上記実施例の他にプリント基盤検
査におけるハンダ付け良否判定装置などの様な検査装置
にも応用できる。
The present invention can be applied to an inspection apparatus such as a soldering quality determination apparatus in a print substrate inspection in addition to the above embodiment.

【0010】以上実施例では、単一の受光素子に対して
二つの結像光学系を用いたが、これに限らず更に多数の
結像光学系で複数の像を受光素子の受光面に結像させて
もよい。また、単一の特殊な光学系を用いて、非常に離
れた被測定領域間の領域を縮小させることによって、複
数の被測定領域を受光素子の受光面内に同時に結像させ
るようにすることもできる。
In the above embodiments, two image forming optical systems are used for a single light receiving element. However, the number of image forming optical systems is not limited to this, and a plurality of images are formed on the light receiving surface of the light receiving element. You may make it a statue. In addition, a single special optical system is used to reduce the area between the measurement areas that are very far apart so that multiple measurement areas can be imaged simultaneously on the light receiving surface of the light receiving element. You can also

【0011】[0011]

【発明の効果】以上説明したように、本発明の光学系を
搭載した部品計測装置によれば、受光素子のエリアが被
測定物よりせまくかつ、結像倍率を小さくできなくても
実際に計測したい被測定物の部分の総エリアが一つの受
光素子内におさまるとき、一つの受光素子に対して複数
の光学系を用意し、前記受光素子のエリアに被測定物の
計測したい各部分の像を一度に結像させることによっ
て、一つの受光素子と一つの受光素子用駆動アンプで移
動機構を用意することなしに被測定物の複数のエリアを
結像倍率を小さくすることもなく一つのエリアを計測す
るのとほぼ同じ時間で計測することが可能となった。
As described above, according to the component measuring apparatus equipped with the optical system of the present invention, even if the area of the light receiving element is narrower than the object to be measured and the imaging magnification cannot be reduced, actual measurement is performed. When the total area of the part of the object to be measured fits within one light receiving element, multiple optical systems are prepared for one light receiving element, and the image of each part of the part to be measured on the area of the light receiving element is prepared. By imaging at one time, multiple areas of the DUT can be created without reducing the imaging magnification without preparing a moving mechanism with one light receiving element and one light receiving element drive amplifier. It became possible to measure in about the same time as measuring.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複数の部分を一つの受光素子に結像さ
せるための光学系を表したブロック図。
FIG. 1 is a block diagram showing an optical system for forming an image of a plurality of portions of the present invention on a single light receiving element.

【図2】本発明を利用した自動部品計測装置の処理系全
体のブロック図。
FIG. 2 is a block diagram of an entire processing system of an automatic component measuring device using the present invention.

【図3】データ処理用コンピュータプログラムの自動測
定メインルーチン。
FIG. 3 is an automatic measurement main routine of a data processing computer program.

【図4】データ処理用コンピュータプログラムの画像処
理ルーチン。
FIG. 4 is an image processing routine of a data processing computer program.

【図5】データ処理用コンピュータプログラムの測定結
果処理ルーチン。
FIG. 5 is a measurement result processing routine of a data processing computer program.

【図6】図1における測定物を計測面側からみた図。FIG. 6 is a view of the measurement object in FIG. 1 viewed from the measurement surface side.

【図7】撮像カメラによって取り込まれた測定物の画
像。
FIG. 7 is an image of a measurement object captured by an imaging camera.

【図8】図7のウィンドウ604によって切りとられた
画像データ。
8 is image data clipped by a window 604 of FIG.

【符号の説明】[Explanation of symbols]

101 撮像カメラ 102 撮像面 103 ミラー 104 結像レンズ 105 照明用ランプ 106 迷光防止用カバー 107 被測定物 201 データ処理用コンピュータ 202 モニター 203 画像処理装置 204 電源 205 画像処理用モニター 206 プリンター 207 光学系ユニット 208 外部機器装置 101 Imaging Camera 102 Imaging Surface 103 Mirror 104 Imaging Lens 105 Lighting Lamp 106 Stray Light Preventing Cover 107 DUT 201 Data Processing Computer 202 Monitor 203 Image Processing Device 204 Power Supply 205 Image Processing Monitor 206 Printer 207 Optical System Unit 208 External device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光学系によって受光素子の受光面に被測
定物の像を結像させ、画像処理によって前記像をもとに
前記被測定物の形状や寸法等を計測する計測装置におい
て、一つの受光素子に対して複数の光学系を配し、前記
被測定物上の相異なる複数の領域の像を、前記複数の光
学系によって前記受光面の相異なる領域に結像さすこと
を特徴とする計測装置。
1. A measuring device for forming an image of an object to be measured on a light receiving surface of a light receiving element by an optical system, and measuring the shape, size, etc. of the object to be measured based on the image by image processing. A plurality of optical systems are arranged for one light receiving element, and images of a plurality of different areas on the DUT are formed on different areas of the light receiving surface by the plurality of optical systems. Measuring device.
【請求項2】 光学系によって受光素子の受光面に被測
定物の像を結像させ、画像処理によって前記像をもとに
前記被測定物の形状や寸法等を計測する計測装置におい
て、前記像面において前記受光面の長手方向より長い距
離離れた、前記被測定物の相異なる被測定領域の像を前
記受光面の相異なる位置に結像さす光学系を有すること
を特徴とする計測装置。
2. A measuring device for forming an image of an object to be measured on a light receiving surface of a light receiving element by an optical system and measuring the shape, size, etc. of the object to be measured based on the image by image processing, A measuring apparatus having an optical system for forming images of different measured regions of the measured object, which are separated from each other on the image plane by a distance longer than the longitudinal direction of the light receiving surface, at different positions of the light receiving surface. .
【請求項3】 光学系によって結像する被測定物の像
を、該像面より小さな受光面を有する受光素子によって
取り込み、画像処理によって前記受光素子により取り込
んだ像をもとに前記被測定物の形状や寸法等を計測する
計測方法において、前記被測定物上の互いに所定距離離
れた、前記受光面より小さな第1、第2の領域の像を前
記光学系により前記受光面の相異なる位置に結像さすこ
とを特徴とする計測方法。
3. An object to be measured formed by an optical system is captured by a light receiving element having a light receiving surface smaller than the image plane, and the object to be measured is based on the image captured by the light receiving element by image processing. In the measuring method for measuring the shape, size, etc., the images of the first and second regions on the object to be measured, which are separated from each other by a predetermined distance and are smaller than the light receiving surface, are different positions of the light receiving surface by the optical system. A measuring method characterized by forming an image on the.
JP5074029A 1993-03-31 1993-03-31 Measuring device Withdrawn JPH06288714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074029A JPH06288714A (en) 1993-03-31 1993-03-31 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5074029A JPH06288714A (en) 1993-03-31 1993-03-31 Measuring device

Publications (1)

Publication Number Publication Date
JPH06288714A true JPH06288714A (en) 1994-10-18

Family

ID=13535310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074029A Withdrawn JPH06288714A (en) 1993-03-31 1993-03-31 Measuring device

Country Status (1)

Country Link
JP (1) JPH06288714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092485A (en) * 2007-10-06 2009-04-30 Djtech Co Ltd Print solder inspection device
WO2009110064A1 (en) * 2008-03-04 2009-09-11 グローリー株式会社 Optical sensor and optical waveguide prism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092485A (en) * 2007-10-06 2009-04-30 Djtech Co Ltd Print solder inspection device
WO2009110064A1 (en) * 2008-03-04 2009-09-11 グローリー株式会社 Optical sensor and optical waveguide prism

Similar Documents

Publication Publication Date Title
US6031607A (en) System and method for inspecting pattern defect
US6141038A (en) Alignment correction prior to image sampling in inspection systems
US5774224A (en) Linear-scanning, oblique-viewing optical apparatus
US6360005B1 (en) Apparatus and method for microscopic inspection of articles
US4886958A (en) Autofocus system for scanning laser inspector or writer
EP0563829B1 (en) Device for inspecting printed cream solder
EP0930498A2 (en) Inspection apparatus and method for detecting defects
US6928185B2 (en) Defect inspection method and defect inspection apparatus
JPH10325711A (en) Method and apparatus for inspection as well as manufacture of semiconductor substrate
JPH05249656A (en) Mask inspecting device
JP4632564B2 (en) Surface defect inspection equipment
JPH11271038A (en) Painting defect inspection device
US4969200A (en) Target autoalignment for pattern inspector or writer
JPH0996513A (en) Image acquisition apparatus
JP4375596B2 (en) Surface inspection apparatus and method
JP2001155160A (en) Device for inspecting external appearance of electronic component
JPH06288714A (en) Measuring device
JPH11248643A (en) Detection device for foreign matter in transparent film
JP2006275780A (en) Pattern inspection method
JPH0756446B2 (en) Inspection method for rod-shaped protrusions
JPS63134940A (en) Pattern inspection device
JP2701872B2 (en) Surface inspection system
JPS63134937A (en) Pattern inspection device
JPH06347233A (en) Visual inspection apparatus
JPH04278555A (en) Microdimensional measurement device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704