JPH06287726A - Production of high strength and high electric conductivity copper alloy - Google Patents

Production of high strength and high electric conductivity copper alloy

Info

Publication number
JPH06287726A
JPH06287726A JP5074788A JP7478893A JPH06287726A JP H06287726 A JPH06287726 A JP H06287726A JP 5074788 A JP5074788 A JP 5074788A JP 7478893 A JP7478893 A JP 7478893A JP H06287726 A JPH06287726 A JP H06287726A
Authority
JP
Japan
Prior art keywords
strength
heat treatment
copper alloy
electric conductivity
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5074788A
Other languages
Japanese (ja)
Other versions
JP3325638B2 (en
Inventor
Kunihiro Naoe
邦浩 直江
Teruyuki Takayama
輝之 高山
Kazumoto Suzuki
和素 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP07478893A priority Critical patent/JP3325638B2/en
Publication of JPH06287726A publication Critical patent/JPH06287726A/en
Application granted granted Critical
Publication of JP3325638B2 publication Critical patent/JP3325638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector

Abstract

PURPOSE:To produce a high strength and high electric conductivity copper alloy improved in strength by subjecting an ingot having a copper alloy compsn. contg. a specified amt. of Ag to hot working at a specified temp., thereafter subjecting it to cold working and executing heat treatment under specified conditions in the process of the cold working. CONSTITUTION:An ingot having a copper allay compsn. contg., by weight, 1 to 10% Ag, and the balance Cu with inevitable impurities is subjected to hot working in the temp. range of 570 to 680 deg.C and is thereafter subjected to cold working. In the process of the cold working, heat treatment is executed in the temp. range of 400 to 550 deg.C for 0.5 to 40hr in a vacuum atmosphere or in an inert gas atmosphere. In this way, the high strength and high electric conductivity copper alloy remarkably improved in strength can be obtd. at a relatively low cost without deteriorating its electric conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度高導電率銅合金
であるCu−Ag合金の製造方法に関し、特にAg濃度
が1乃至10重量%のCu−Ag合金の強度を向上させ
た高強度高導電率銅合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Cu-Ag alloy which is a high-strength and high-conductivity copper alloy. The present invention relates to a method for producing a high-conductivity copper alloy.

【0002】[0002]

【従来の技術】電子部品等の軽量化、薄型化及び小型化
に伴い、近年、電子部品用電線も細線化してきていると
共に、この電子部品用電線には高強度と高導電率を兼ね
備えた特性が要求されている。しかし、導電材料用銅合
金の導電率と強度とは相反するものであり、強度を高め
るべく合金成分を添加すると、導電率が低下し、純度を
高めて導電率を高めると、強度が不足するというよう
に、高強度と高導電率とを両立させることは困難であ
る。
2. Description of the Related Art In recent years, along with the weight reduction, thinning and miniaturization of electronic parts and the like, electric wires for electronic parts have become thinner, and the electric wires for electronic parts have both high strength and high electrical conductivity. Characteristics are required. However, the conductivity and the strength of the copper alloy for a conductive material are contradictory to each other, and when alloy components are added to increase the strength, the conductivity decreases, and when the purity is increased to increase the conductivity, the strength is insufficient. Thus, it is difficult to achieve both high strength and high conductivity.

【0003】而して、このような問題点を解決した高強
度高導電率銅合金として、4〜32at%(6.5〜52
重量%)のAgを含有する銅合金及びその製造方法が提
案されている(特開平4-120227号)。この銅合金は、C
uに4〜32at%のAgを添加することにより、初晶C
uと、Cu及びAgの共晶相とを均一且つ微細に晶出さ
せたものである。そして、伸線加工を行うことにより、
初相Cuと共晶相がフィラメント状に引き延ばされて、
Cu−Ag合金の強度を向上させることができる。更
に、加工途中において、真空雰囲気又は不活性ガス中で
温度300〜550℃、熱処理時間0.5〜40時間の
条件で多段熱処理を施すことにより、初晶及び共晶相中
に固溶しているAg及びCuを析出させ、強度と共に導
電率を向上させることを可能としている。
As a high-strength and high-conductivity copper alloy that solves the above-mentioned problems, 4-32 at% (6.5-52 at%) is obtained.
A copper alloy containing (wt%) Ag and a method for producing the same have been proposed (JP-A-4-120227). This copper alloy is C
By adding 4 to 32 at% Ag to u, the primary crystal C
u and the eutectic phase of Cu and Ag are crystallized uniformly and finely. And by performing wire drawing,
The primary phase Cu and the eutectic phase are drawn into filaments,
The strength of the Cu-Ag alloy can be improved. Further, during processing, multi-stage heat treatment is performed in a vacuum atmosphere or an inert gas at a temperature of 300 to 550 ° C. and a heat treatment time of 0.5 to 40 hours to form a solid solution in the primary and eutectic phases. It is possible to precipitate Ag and Cu present and improve the electrical conductivity as well as the strength.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この従
来の製造方法により高強度高導電率銅合金を製造する場
合、4at%(6.5重量%)以上のように比較的高濃度
のAgを添加してあるものは問題ないが、6.5重量%
以下のようなAg添加量が少ないものは鋳造時のCuー
Ag合金の共晶相の晶出量が少ないため、伸線後に多段
熱処理を行う際に、1回目の熱処理時にCuマトリクス
が再結晶してしまうという難点がある。この再結晶によ
り、銅合金の強度が著しく低下する。更に、添加Ag量
が少ない場合、1回目の熱処理で初晶及び共晶相中に固
溶しているAg及びCuの大部分が析出してしまうた
め、2回目以降の熱処理での析出物の量は少なく、熱処
理を行う効果が殆ど認められない。このため、6.5重
量%以下のようにAg添加量が少ないCu−Ag合金に
おいては、熱処理によって強度を改善する効果が得られ
ず、高価なAgの添加及び熱処理コストが無駄であっ
た。
However, when a high-strength and high-conductivity copper alloy is manufactured by this conventional manufacturing method, a relatively high concentration of Ag such as 4 at% (6.5% by weight) or more is added. There is no problem with the product, but 6.5% by weight
When the amount of added Ag is small as described below, the crystallization amount of the eutectic phase of the Cu-Ag alloy during casting is small, so when performing multi-step heat treatment after wire drawing, the Cu matrix is recrystallized during the first heat treatment. There is a drawback that it does. This recrystallization significantly reduces the strength of the copper alloy. Further, when the amount of added Ag is small, most of Ag and Cu which are solid-solved in the primary crystal and the eutectic phase are precipitated in the first heat treatment, so that precipitates in the second and subsequent heat treatments The amount is small, and the effect of heat treatment is hardly recognized. For this reason, in a Cu-Ag alloy having a small Ag addition amount of 6.5% by weight or less, the effect of improving the strength by heat treatment cannot be obtained, and expensive Ag addition and heat treatment costs are wasted.

【0005】本発明はかかる問題点に鑑みてなされたも
のであって、比較的低濃度のAgを含有する銅合金にお
いても、その強度を高めることができ、強度及び導電率
の双方を改善することができる高強度高導電率銅合金の
製造方法を提供することを目的とする。
The present invention has been made in view of the above problems. Even in a copper alloy containing a relatively low concentration of Ag, its strength can be increased and both strength and conductivity are improved. An object of the present invention is to provide a method for producing a high-strength and high-conductivity copper alloy that can be manufactured.

【0006】[0006]

【課題を解決するための手段】本発明に係る高強度高導
電率銅合金の製造方法は、1乃至10重量%のAgを含
有し、残部がCu及び不可避的不純物からなる銅合金組
成の鋳塊に570乃至680℃で熱間加工を施し、更に
冷間加工を行い、この冷間加工の途中で、真空雰囲気又
は不活性ガス雰囲気中で、400乃至550℃の温度で
0.5乃至40時間にわたり熱処理を施すことを特徴と
する。
A method for producing a high strength and high conductivity copper alloy according to the present invention is a casting of a copper alloy composition containing 1 to 10% by weight of Ag and the balance being Cu and inevitable impurities. The ingot is subjected to hot working at 570 to 680 ° C. and further cold working. During the cold working, 0.5 to 40 at a temperature of 400 to 550 ° C. in a vacuum atmosphere or an inert gas atmosphere. It is characterized in that it is subjected to heat treatment for a period of time.

【0007】[0007]

【作用】本発明においては、1乃至10重量%のAgを
Cuに添加することにより初晶Cuと、CuとAgとの
共晶相を晶出させた鋳塊を熱間加工し、この熱間加工に
より、初晶及び共晶相中に固溶しているAg及びCuを
若干析出させながら、Cuマトリクスを再結晶させて粒
界を細かくする。その結果、その後工程で低温側での熱
処理を施した際に再結晶が起こらず、初晶及び共晶相中
に固溶している残りのAg及びCuを析出させて、強度
と共に導電率をも向上させることができる。
In the present invention, the ingot in which the primary crystal Cu and the eutectic phase of Cu and Ag are crystallized by adding 1 to 10% by weight of Ag to Cu is hot worked, By the inter-working, the Cu matrix is recrystallized and the grain boundaries are made finer while a small amount of Ag and Cu solid-solved in the primary crystal and the eutectic phase are precipitated. As a result, recrystallization does not occur when heat treatment is performed on the low temperature side in the subsequent step, and the remaining Ag and Cu solid-dissolved in the primary crystal and the eutectic phase are precipitated to improve strength and conductivity. Can also be improved.

【0008】本発明においては、Agの添加量は1乃至
10重量%である。Ag含有量が1重量%未満の場合で
は、共晶相の晶出量が極めて少ない。また、Ag含有量
が1重量%未満の場合には、後工程のAg及びCuを析
出させるための熱処理において、Ag及びCuの析出量
が少なくなるため、熱処理による特性改善の効果を殆ど
得ることができない。逆に、Agの添加量が10重量%
を超えると、低温側の析出を目的とした熱処理を施した
際に再結晶が起こりにくいので、熱間加工を特に行わな
くても、強度の著しい低下は見られなくなり、高価なA
gの過剰の添加は無駄である。以上の点から、Agの添
加量は1乃至10重量%とする。なお、本願発明におい
ては、Ag以外の種々の成分の存在は、不純物量程度で
あれば、合金の特性上さしつかえない。
In the present invention, the addition amount of Ag is 1 to 10% by weight. When the Ag content is less than 1% by weight, the crystallization amount of the eutectic phase is extremely small. Further, when the Ag content is less than 1% by weight, the precipitation amount of Ag and Cu is reduced in the heat treatment for precipitating Ag and Cu in the subsequent step, so that the effect of improving the characteristics by the heat treatment is almost obtained. I can't. Conversely, the amount of Ag added is 10% by weight
If it exceeds, recrystallization is less likely to occur when a heat treatment for precipitation on the low temperature side is performed, so that no significant decrease in strength is observed even if hot working is not particularly performed, and expensive A
Excessive addition of g is useless. From the above points, the addition amount of Ag is set to 1 to 10% by weight. In the invention of the present application, the presence of various components other than Ag may be sufficient for the characteristics of the alloy as long as the amount of impurities is approximately.

【0009】本願発明においては、熱間加工の温度範囲
が570乃至680℃である。570℃未満の温度で熱
間加工を行うと、固溶していたAg及びCuの析出量は
多いが、この熱間熱処理時に再結晶を起こし、次の低温
側での熱処理時にAg及びCuが殆ど析出しないため、
強度が上がらない。また、熱間加工温度が680℃を超
える場合には、Ag及びCuがいずれも固溶してしま
い、Ag及びCuの析出が全く生じないため、次の低温
側での熱処理時に再結晶が起こりやすくなり、低温側熱
処理で強度が著しく低下する。
In the present invention, the hot working temperature range is 570 to 680 ° C. When hot working is performed at a temperature of less than 570 ° C., the amount of solid solution Ag and Cu precipitated is large, but recrystallization occurs during this hot heat treatment, and Ag and Cu are dissolved during the heat treatment at the next low temperature side. Because it hardly precipitates,
The strength does not increase. Further, when the hot working temperature exceeds 680 ° C., Ag and Cu both form a solid solution and no precipitation of Ag and Cu occurs, so recrystallization occurs during the heat treatment on the next low temperature side. It becomes easy, and the strength is remarkably reduced by heat treatment on the low temperature side.

【0010】このCu−Ag合金は鋳造後、570乃至
680℃の高温で熱間加工した後、冷間加工を行い、4
00乃至550℃の低温側での熱処理によってCu又は
Agを析出させ、強度と導電率を上昇させているが、高
温側の熱処理(熱間加工)を省くと次の低温側熱処理時
に再結晶が起こり、強度が著しく低下してしまう。この
ため、冷間加工に先立ち570℃〜680℃の温度で熱
間加工を行い、Agを若干析出させるが、この熱処理に
際しては、次の低温側での熱処理時の析出用として、全
てのAgを析出させることなく、固溶中に残しておくよ
うにするのが好ましい。
This Cu-Ag alloy is hot-worked at a high temperature of 570 to 680 ° C. after casting and then cold-worked.
Cu or Ag is precipitated by the heat treatment at the low temperature side of 00 to 550 ° C. to increase the strength and the conductivity. However, if the heat treatment at the high temperature side (hot working) is omitted, recrystallization occurs at the next heat treatment at the low temperature side. Occurs and the strength is significantly reduced. Therefore, prior to cold working, hot working is performed at a temperature of 570 ° C. to 680 ° C. to slightly precipitate Ag. In this heat treatment, all Ag is used for precipitation during heat treatment on the next low temperature side. It is preferable to leave the solid solution in the solid solution without precipitating it.

【0011】[0011]

【実施例】次に、本発明の実施例について、その比較例
と比較して説明する。Cuに1〜10重量%の範囲の種
々の割合でAgを添加し、真空又は不活性ガス雰囲気中
でCu−Ag合金の鋳塊を溶製した。次いで、この鋳塊
の表面を研削した後、スウェージングによる熱間加工を
570℃、600℃、680℃の温度で夫々減面率50
%まで行った。
EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples. Ag was added to Cu at various ratios in the range of 1 to 10% by weight, and ingots of Cu-Ag alloy were melted in a vacuum or an inert gas atmosphere. Then, after grinding the surface of the ingot, hot working by swaging is performed at a temperature of 570 ° C., 600 ° C., and 680 ° C. to reduce the surface reduction rate of 50.
Went up to.

【0012】更に、減面率70%まで冷間伸線加工を施
し、その後400℃〜500℃で0.5〜5時間の熱処
理を施した。更に、減面率80%まで冷間伸線加工を施
した後、再度400〜500℃で0.5〜1時間の熱処
理を施したものも作製した。熱処理後、再び伸線加工を
行い、所定の径で室温での引張試験及び導電率測定を行
った。
Further, cold drawing was carried out to a surface reduction rate of 70%, and then heat treatment was carried out at 400 ° C. to 500 ° C. for 0.5 to 5 hours. Furthermore, after cold-drawing was performed up to a surface reduction rate of 80%, a heat treatment was again performed at 400 to 500 ° C. for 0.5 to 1 hour, to prepare a product. After the heat treatment, wire drawing was performed again, and a tensile test and a conductivity measurement were performed at room temperature with a predetermined diameter.

【0013】図1は、横軸にAg添加量(重量%)をと
り、縦軸に引張強さ(kgf/mm2)をとって、9
9.3%の減面率まで伸線加工した場合の、Ag添加量
と、引張強さ及び導電率との関係を示すグラフ図であ
る。図1中白抜き○、□は本発明にて規定した熱間加工
を行った後、冷間伸線加工した場合、黒●、■は従来の
ように熱間加工せずに冷間伸線とその途中の熱処理のみ
を施した場合である。本発明の場合は、従来法と比較す
ると、導電率が低下することなく、強度が大きく上昇し
ている。特に、Ag添加量が1〜7重量%という低Ag
含有量の場合にも引張強さが極めて高い。
In FIG. 1, the horizontal axis represents the amount of Ag added (% by weight), and the vertical axis represents the tensile strength (kgf / mm 2 ).
It is a graph which shows the relationship of Ag addition amount, tensile strength, and electrical conductivity at the time of wire-drawing to the area reduction rate of 9.3%. In FIG. 1, white circles ◯ and □ are black wire drawn by cold drawing after hot working specified in the present invention. And the case where only the heat treatment in the middle is performed. In the case of the present invention, as compared with the conventional method, the electrical conductivity is not lowered and the strength is greatly increased. Especially, low Ag of 1 to 7 wt% is added.
Even in the case of the content, the tensile strength is extremely high.

【0014】また、図2はCu−5重量%Ag合金の伸
線加工の減面率に対する強度の変化を示したものであ
る。図中の曲線2は非熱処理材を示し、曲線3は減面率
70%まで冷間伸線加工し、その後450℃で1時間の
熱処理を行った後、再度伸線加工したもの、曲線1は本
実施例にて減面率50%まで600℃で熱間加工(スウ
ェージング)を行い、その後冷間伸線加工し、減面率7
0%において、450℃で1時間の熱処理を行った後、
再度伸線加工したものを示している。非熱処理材(曲線
2)及び低温側の熱処理のみを行ったもの(曲線3)と
比較して、熱間加工及び低温側の熱処理を併せて行った
もの(曲線1)は、最終製品において、強度が高いこと
がわかる。
FIG. 2 shows the change in strength with respect to the area reduction rate in the wire drawing of a Cu-5 wt% Ag alloy. Curve 2 in the figure shows a non-heat treated material, curve 3 is cold drawn to 70% reduction in area, then heat treated at 450 ° C. for 1 hour and then drawn again, curve 1 In this example, hot working (swaging) was performed at 600 ° C. to a surface reduction rate of 50%, and then cold wire drawing was performed to obtain a surface reduction rate of 7
After heat treatment at 0% at 450 ° C. for 1 hour,
The drawing is performed again. Compared with the non-heat treated material (curve 2) and the one subjected to only the heat treatment on the low temperature side (curve 3), the one subjected to the hot working and the heat treatment on the low temperature side (curve 1) is It can be seen that the strength is high.

【0015】また、下記表1はCu−3重量%Ag合金
の強度と導電率に及ぼす熱間加工及び熱処理の効果を示
したものである。熱間加工及び熱処理条件により強度及
び導電率が著しく変化し、熱間加工(スウェージング)
を行ってから低温側で熱処理を行ったものが導電率を低
下させずに強度を向上させていることがわかる。
Table 1 below shows the effects of hot working and heat treatment on the strength and conductivity of Cu-3 wt% Ag alloy. Strength and electrical conductivity change significantly depending on hot working and heat treatment conditions, and hot working (swaging)
It can be seen that the result of performing the heat treatment on the low temperature side after performing the heat treatment improves the strength without lowering the conductivity.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上説明したように、本発明は鋳塊の熱
間加工(スウェージング)を570乃至680℃の温度
で行うことにより、低濃度のAgを添加したCu合金に
おいて、導電率を低下させることなく、強度を著しく向
上させることができる。その結果、比較的安価に高強度
及び高導電性を兼ね備えた線材を得ることができる。
As described above, according to the present invention, the hot working (swaging) of the ingot is performed at a temperature of 570 to 680 ° C., so that the conductivity of the Cu alloy containing a low concentration of Ag is increased. The strength can be significantly improved without lowering. As a result, it is possible to obtain a wire having high strength and high conductivity at a relatively low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ag添加量と引張強さ及び導電率との関係を本
発明方法と従来方法との場合を比較して示すグラフ図で
ある。
FIG. 1 is a graph showing the relationship between the amount of Ag added and the tensile strength and the electrical conductivity in comparison between the method of the present invention and the conventional method.

【図2】減面率に対する強度の変化を、本発明方法、従
来方法及び熱処理なしの場合と比較して示すグラフ図で
ある。
FIG. 2 is a graph showing a change in strength with respect to a surface reduction rate in comparison with the method of the present invention, the conventional method, and the case without heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1乃至10重量%のAgを含有し、残部
がCu及び不可避的不純物からなる銅合金組成の鋳塊に
570乃至680℃で熱間加工を施し、更に冷間加工を
行い、この冷間加工の途中で、真空雰囲気又は不活性ガ
ス雰囲気中で、400乃至550℃の温度で0.5乃至
40時間にわたり熱処理を施すことを特徴とする高強度
高導電率銅合金の製造方法。
1. An ingot of a copper alloy composition containing 1 to 10% by weight of Ag, the balance of which is Cu and inevitable impurities, is hot-worked at 570 to 680 ° C., and further cold-worked, A method for producing a high-strength and high-conductivity copper alloy, characterized in that, during this cold working, a heat treatment is performed in a vacuum atmosphere or an inert gas atmosphere at a temperature of 400 to 550 ° C. for 0.5 to 40 hours. .
JP07478893A 1993-03-31 1993-03-31 Method for producing high-strength high-conductivity copper alloy Expired - Lifetime JP3325638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07478893A JP3325638B2 (en) 1993-03-31 1993-03-31 Method for producing high-strength high-conductivity copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07478893A JP3325638B2 (en) 1993-03-31 1993-03-31 Method for producing high-strength high-conductivity copper alloy

Publications (2)

Publication Number Publication Date
JPH06287726A true JPH06287726A (en) 1994-10-11
JP3325638B2 JP3325638B2 (en) 2002-09-17

Family

ID=13557384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07478893A Expired - Lifetime JP3325638B2 (en) 1993-03-31 1993-03-31 Method for producing high-strength high-conductivity copper alloy

Country Status (1)

Country Link
JP (1) JP3325638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163110B2 (en) 2004-05-24 2012-04-24 Hitachi Cable, Ltd. Superfine copper alloy wire and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163110B2 (en) 2004-05-24 2012-04-24 Hitachi Cable, Ltd. Superfine copper alloy wire and method for manufacturing same

Also Published As

Publication number Publication date
JP3325638B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
JP2002241873A (en) High strength and highly electrically conductive copper alloy and method for producing copper alloy material
CN111411256B (en) Copper-zirconium alloy for electronic components and preparation method thereof
US5322574A (en) Method of manufacturing a high strength, high conductivity copper-silver alloy
JPH0718354A (en) Copper alloy for electronic appliance and its production
JP3325639B2 (en) Manufacturing method of high strength and high conductivity copper alloy
JPH1136055A (en) Production of copper alloy material for electronic equipment
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JP3325640B2 (en) Method for producing high-strength high-conductivity copper alloy
JP4144188B2 (en) Manufacturing method of heat-resistant aluminum alloy wire for electric conduction
JP3325638B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH0635633B2 (en) Copper alloy for electric and electronic parts and method for producing the same
JP2000017355A (en) High strength and high conductivity copper alloy and working method therefor
JPH06103809A (en) Manufacture of cu-ag alloy wire
JP2001049367A (en) High strength, high conductivity and high heat resistance copper base alloy and its production
JP2646430B2 (en) High conductivity and high heat resistant copper alloy and method for producing the same
JPH05132745A (en) Production of aluminum alloy excellent in formability
JP2001131719A (en) HEAT RESISTANT Al ALLOY WIRE ROD FOR ELECTRICAL CONDUCTION AND PRODUCING METHOD THEREFOR
JP2566877B2 (en) Method for producing Cu-Ag alloy conductor
JP2002266043A (en) CONDUCTIVE HEAT-RESISTING Al-ALLOY WIRE, AND ITS MANUFACTURING METHOD
JP3320455B2 (en) Method for producing Cu-Ag alloy conductor
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH10152736A (en) Copper alloy material and its production
JPH09143597A (en) Copper alloy for lead frame and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11