JPH06287076A - Production of functionally gradient material - Google Patents

Production of functionally gradient material

Info

Publication number
JPH06287076A
JPH06287076A JP5098802A JP9880293A JPH06287076A JP H06287076 A JPH06287076 A JP H06287076A JP 5098802 A JP5098802 A JP 5098802A JP 9880293 A JP9880293 A JP 9880293A JP H06287076 A JPH06287076 A JP H06287076A
Authority
JP
Japan
Prior art keywords
outer frame
metal
ceramic
molding outer
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5098802A
Other languages
Japanese (ja)
Other versions
JPH0784352B2 (en
Inventor
Tamotsu Akashi
保 明石
Masao Tokita
正雄 鴇田
Masakazu Kawahara
正和 川原
Shigeru Matsui
滋 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP5098802A priority Critical patent/JPH0784352B2/en
Publication of JPH06287076A publication Critical patent/JPH06287076A/en
Publication of JPH0784352B2 publication Critical patent/JPH0784352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To retain excellent characteristics of a material, minimize the residual stress and improve the efficiency, quality and reliability by using a forming outer frame as an electrically conductive passage and regulating the wall thickness thereof. CONSTITUTION:A lower pressing rod (2B) is set in a forming outer frame 2 made of a cermet material such as a metal or graphite and a raw material powder green compact 3 is filled therein. An upper pressing rod (2B) is then pushed into the forming outer frame 2 to press the raw material powder green compact under loads (2A1) and (2B1). When the melting points are (a1)<(a2) [(a1) is the melting of metal; (a2) is the melting point of ceramic], a part where the wall thickness is continuously and/or stepwise reduced from the side of the metal to the side of the ceramic is at least partially provided in the forming outer frame 2. When the melting points are (a1)>(a2), a part where the wall thickness is continuously and/or stepwise reduced from the side of the ceramic to the side of the metal is at least partially provided in the forming outer frame 2, which is used as at least one electrically conductive passage so as to form a temperature gradient in the direction of the pressurizing axis during the electrical conduction. Thereby, a pulsed DC electric current is applied across an upper electrode (2A2) and a lower electrode (2B2) to superpose discharge plasma effects on intergranular discharge effects. As a result, the green compact is sintered at a low temperature in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属材料とセラミック材
料の組み合わせからなる傾斜機能材の製造方法に係わる
ものであり、特に、この種の傾斜機能材を粉末冶金法に
より高品位、かつ低コストに製造する方法を提供するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a functionally graded material composed of a combination of a metal material and a ceramic material. In particular, this type of functionally graded material is manufactured by powder metallurgy to obtain high quality and low cost. To provide a manufacturing method.

【0002】[0002]

【従来の技術】傾斜機能材は、セラミック100%の部
分と金属100%よりなる部分の間をそれらの混合傾斜
層により接合または結合した部分を少なくとも、その材
料の1部として有する新しいタイプの機能材料である。
構造材料としての他、生体材料をはじめとした各種機能
性材料としても期待されている。この種の材料における
セラミックから金属への傾斜組成部分は、金属100%
の部分から順次セラミック分を増やした混合粉末をステ
ップまたは連続してセラミック100%まで積層してい
き、これを型成形で圧粉体とした後、常圧焼結したり、
ホットプレス法により焼結、一体化されている。また、
図1に示したような原料粉末圧粉体3を単純円筒型の成
形外枠と押し棒を用いて加圧しながら通電して焼結、一
体化する通電焼結法によっても製造されている。
2. Description of the Related Art A functionally graded material is a new type of function which has, as at least a part of its material, at least a portion in which a portion made of 100% ceramic and a portion made of 100% metal are joined or joined by their mixed graded layers. It is a material.
In addition to structural materials, it is also expected as various functional materials including biomaterials. The ceramic-to-metal graded composition portion of this type of material is 100% metal.
The mixed powder with the ceramic content increased in sequence from step 1 is laminated stepwise or continuously to 100% ceramic, and this is molded into a green compact, which is then sintered under normal pressure.
Sintered and integrated by hot pressing. Also,
The raw powder compact 3 as shown in FIG. 1 is also manufactured by an electric sintering method in which a simple cylindrical molding outer frame and a push rod are used to sinter and integrate electricity while applying pressure.

【0003】[0003]

【発明が解決しようとする課題】従来の焼結方法では、
融点やその他の熱的性質の異なる金属100%の部分と
セラミック100%の部分が同じ温度で加熱、焼結され
る。また、冷却も、熱容量差による僅かの差はあるかも
しれないが、ほぼ同じ速さで冷却されることになる。従
って、熱膨張率に大きな差のある金属とセラミック材料
の組み合わせの場合は、その冷却時に両材料中に大きな
熱収縮歪が発生することになる。多くの場合、脆性なセ
ラミック側にその影響が現われやすく、割れを発生した
り、割れの発生に至らなくても残留応力のために強度の
低下を来すなどの問題があった。
In the conventional sintering method,
A metal 100% portion and a ceramic 100% portion having different melting points and other thermal properties are heated and sintered at the same temperature. Further, the cooling is performed at almost the same speed although there may be a slight difference due to the difference in heat capacity. Therefore, in the case of a combination of a metal and a ceramic material having a large difference in coefficient of thermal expansion, a large heat shrinkage strain is generated in both materials during cooling. In many cases, the brittle ceramic side is likely to be affected, and there has been a problem that cracking occurs, or even if cracking does not occur, strength decreases due to residual stress.

【0004】また、従来の焼結方法では本来焼結、固化
に必要な温度の異なる異種材料を一つの温度で同時に焼
結するものであり、セラミックの最適条件で焼結しても
金属側では過焼結状態となり、空孔が発生したり、融点
近くでは目的形状が保てなくなるという問題が発生し
た。逆に、融点の低い金属側の最適温度で焼結すると、
セラミック側では温度が低すぎて焼結不良となるという
問題があった。本発明は以上のような事情に鑑みなされ
たもので、金属とセラミック材料の組み合わせからなる
傾斜機能材の優れた特性を保持させながら、上記のよう
な従来の製造方法における問題点を改良し、信頼性の高
い高品位の傾斜機能材を低コストに製造しようとするも
のである。
Further, in the conventional sintering method, different materials having different temperatures required for sintering and solidification are simultaneously sintered at one temperature, and even if they are sintered under optimum conditions of ceramics, they are not on the metal side. There was a problem that the sintered body was over-sintered and voids were generated, or the target shape could not be maintained near the melting point. On the contrary, if sintering is performed at the optimum temperature on the metal side with a low melting point,
On the ceramic side, there was a problem that the temperature was too low and sintering failed. The present invention has been made in view of the above circumstances, while maintaining the excellent characteristics of the functionally gradient material made of a combination of metal and ceramic material, while improving the problems in the conventional manufacturing method as described above, It is intended to manufacture a reliable and high-quality functionally graded material at low cost.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記のよ
うな問題点を解決するため主に次の2点より研究を続け
てきた。 1.組成に傾斜のある材料をその傾斜に合わせて無理な
く焼結する手段と方法の探索。 2.残留応力を最小とするための低温、短時間焼結を可
能にする焼結方法の探索。 その結果、加圧条件下での通電焼結法において、成形外
枠をその通電経路の一つとしてもつ型構成となるように
設計し、その成形外枠の肉厚を適当に調節し、そこでの
発熱量を制御することにより、試料部分の加圧軸方向に
必要に応じた温度傾斜をつけることができ、焼結状態の
過不足のない、かつ、残留応力の極めて少ない傾斜機能
材の得られることを見出しこの発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have mainly continued research from the following two points in order to solve the above problems. 1. Search for a means and method for reasonably sintering a material with a gradient in composition according to the gradient. 2. Search for a sintering method that enables low temperature and short time sintering to minimize residual stress. As a result, in the electric current sintering method under pressure, the molding outer frame is designed to have a mold configuration having one of its current-carrying paths, and the thickness of the molding outer frame is appropriately adjusted. By controlling the amount of heat generated in the sample, it is possible to obtain a temperature gradient in the direction of the pressing axis of the sample part as required, and to obtain a functionally graded material that does not have excess or deficiency in the sintered state and has very little residual stress. The present invention has been accomplished and the present invention has been completed.

【0006】すなわち、この発明は、金属とセラミック
の間にそれら両成分よりなる傾斜混合層を有する傾斜機
能材を成形外枠と押し棒を用いて通電焼結により製造す
る方法において、該金属の融点をal、該セラミックの
融点をa2としたとき、a1<a2となる組み合わせに
おいて、成形外枠の肉厚が該金属側から該セラミック側
へ連続および/またはステップ状に減少する部分を少な
くとも該成形外枠の一部に持ち、また、a1>a2とな
る組み合わせにおいて、該成形外枠の肉厚が該セラミッ
ク側から該金属側へ連続および/またはステップ状に減
少する部分を少なくとも該成形外枠の一部に持ち、該成
形外枠を少なくとも1つの通電経路とし、通電中に該傾
斜機能材の加圧軸方向に温度傾斜を形成する傾斜機能材
の製造方法を提供するものである。
That is, the present invention provides a method for producing a functionally gradient material having a gradient mixed layer composed of both components between a metal and a ceramic by current-flow sintering using a molding outer frame and a push rod. When the melting point is al and the melting point of the ceramic is a2, in a combination of a1 <a2, at least a portion where the thickness of the molding outer frame continuously and / or stepwise decreases from the metal side to the ceramic side is In a combination having a part of the molding outer frame and having a1> a2, at least a portion where the wall thickness of the molding outer frame continuously and / or stepwise decreases from the ceramic side to the metal side is outside the molding side. Provided is a method for manufacturing a functionally graded material, which is provided in a part of a frame and has the molding outer frame as at least one energization path, and forms a temperature gradient in a pressure axis direction of the functionally graded material during energization. Is shall.

【0007】通常の通電焼結法では、図3を参照して黒
鉛製の成形外枠2と上下押し棒2A,2Bを用いたもの
となっている。そこでまず、成形外枠2に下押し棒2B
をセットした状態で焼結しようとする原料粉末圧粉体3
を充填した後、上押し棒2Aを押し込み加圧する。この
状態で上下押し棒を通じて直流または交流、あるいはそ
れらの重畳した電流を流し、試料の電気抵抗を利用して
ジュール熱により焼結する。図中、2A1は上部電極、
2B1は下部電極、2A2,2B2は油圧による荷重、
2Cは電源をそれぞれ示す。
[0007] In the usual energization sintering method, referring to FIG. 3, a molded outer frame 2 made of graphite and vertical push rods 2A and 2B are used. Therefore, first, the lower push rod 2B is attached to the molding outer frame 2.
Raw material powder compact 3 to be sintered in the state of setting
Then, the upper push rod 2A is pushed in and pressurized. In this state, a direct current, an alternating current, or a current in which they are superimposed is passed through the vertical push rod, and the electrical resistance of the sample is used to sinter by Joule heat. In the figure, 2A1 is an upper electrode,
2B1 is a lower electrode, 2A2 and 2B2 are hydraulic loads,
2C indicates a power source, respectively.

【0008】この方法は、投入エネルギーに対し効率よ
く焼結できるが、材料の焼結温度自体を低くすることに
は大きな効果は期待できない。しかし、ここで印加する
直流を連続でなくパルス状とすると、全投入電気エネル
ギーは同じであっても、パルス状に投入することによっ
て瞬間的に大きな電気エネルギーを投入する事が可能と
なり、これにより粒間での放電効果、さらにそれに付随
した放電プラズマによる効果が重畳される。これらの効
果により粉末粒子表面は著しく活性化されるため、より
低い温度での短時間の焼結が可能となる。
Although this method can efficiently sinter with respect to the input energy, it cannot be expected to have a great effect on lowering the sintering temperature of the material itself. However, if the direct current applied here is pulsed instead of continuous, even if the total input electric energy is the same, it is possible to instantaneously input a large amount of electric energy by applying it in a pulsed manner. The discharge effect between grains and the effect of discharge plasma accompanying it are superposed. Due to these effects, the surface of the powder particles is remarkably activated, so that sintering at a lower temperature for a short time becomes possible.

【0009】また、ここで成形外枠が一つの通電経路と
なるように形成型を設計し、かつ、その成形外枠の肉厚
を加圧軸方向に変化させると、その厚み変化に応じてそ
こでの発熱量をコントロールでき、試料部分の加圧軸方
向に凹凸を含む温度傾斜を付けることができることが分
かった。成形外枠の肉厚を他より薄くした部分では、電
気抵抗が高くなり、一定電流のもとでの発熱量は多く高
温となる。一方、厚い部分では逆に抵抗が低く、発熱は
少なく低温域を形成する。この方法により、焼結に高温
を要する材料側ではその周囲の成形外枠の肉厚を他より
薄くすることによって、温度を高くでき、同時にもう一
方の材料側では必要以上に温度が高くならないように抑
制できる。
If the forming die is designed so that the molding outer frame serves as one energizing path and the wall thickness of the molding outer frame is changed in the pressing axis direction, the thickness of the molding outer frame is changed in accordance with the change in thickness. It has been found that the amount of heat generated there can be controlled and a temperature gradient including irregularities can be provided in the direction of the pressing axis of the sample portion. In the part where the wall thickness of the molding outer frame is thinner than the other parts, the electrical resistance is high, and the amount of heat generated under a constant current is large and the temperature is high. On the other hand, in the thick portion, on the contrary, the resistance is low, the heat generation is small and the low temperature region is formed. By this method, on the side of the material that requires high temperature for sintering, the temperature can be raised by making the thickness of the surrounding molding frame thinner than others, and at the same time, on the other side, the temperature does not become higher than necessary. Can be suppressed to.

【0010】焼結中に温度傾斜を付けるための成形外枠
の肉厚変化の程度は、傾斜機能材を構成する材料の融点
の差を一つの目安として採用することができるが、成形
外枠には低圧ながら圧力容器としての役割もあり、その
強度的に許される範囲であることが必要である。この方
法により、従来の方法による傾斜機能材の焼結における
問題点であった過焼結現象や焼結不良は解決でき、残留
応力の発生もかなり改善できるが、本発明に係わる傾斜
機能材の製造方法をより効果的に実施するためには焼結
温度はできるだけ低いほうが好ましく、パルス通電法と
組み合わせた低温、短時間焼結法の利用が望ましい。
Regarding the degree of change in the wall thickness of the molding outer frame for imparting a temperature gradient during sintering, the difference in the melting points of the materials forming the functionally gradient material can be used as one guide, but the molding outer frame Although it has a low pressure, it also has a role as a pressure vessel, and it is necessary that the strength be within the range allowed. By this method, the over-sintering phenomenon and the sintering failure, which are problems in the sintering of the functionally gradient material by the conventional method, can be solved, and the generation of residual stress can be considerably improved. In order to carry out the manufacturing method more effectively, it is preferable that the sintering temperature is as low as possible, and it is desirable to use a low-temperature, short-time sintering method combined with the pulse current method.

【0011】[0011]

【実施例】以下、本発明を実施例を用いて具体的に説明
する。図1,図2は、本発明の傾斜機能材の製造方法に
用いる原料粉末圧粉体3,4の断面の実施例を示したも
のである。原料粉末圧粉体3,4の構成は、図1のよう
に金属層3A、セラミック層3Cのいずれかを両端に持
ち、その間に両成分の傾斜混合層3Bが入る構成のもの
や、また図2のように厚さ方向中央部に金属層4Aまた
はセラミック層4Cの第1成分が配置され、その両端
に、両成分の混合傾斜層4Bを介して、もう一方の第2
成分が配置される構成を採ることもできる。そして、こ
れら両端成分の厚みや混合傾斜層の厚みは目的に応じて
適宣選択できるものである。
EXAMPLES The present invention will be specifically described below with reference to examples. 1 and 2 show examples of cross sections of raw material powder compacts 3 and 4 used in the method for producing a functionally graded material of the present invention. The raw powder green compacts 3 and 4 have a structure in which either the metal layer 3A or the ceramic layer 3C is provided at both ends as shown in FIG. 1, and the gradient mixed layer 3B of both components is inserted between them, or As shown in FIG. 2, the first component of the metal layer 4A or the ceramic layer 4C is arranged in the central portion in the thickness direction, and the second component of the other component is disposed on both ends of the first component through the mixed gradient layer 4B of both components.
It is also possible to adopt a configuration in which the components are arranged. The thickness of these both end components and the thickness of the mixed gradient layer can be appropriately selected according to the purpose.

【0012】図4は本発明の1実施例を説明するための
パルス通電焼結法の概略を示したものである。セラミッ
ク成分より低い融点を持ち、その焼結に要する温度もセ
ラミック成分のそれより低い金属成分が下押し棒1B側
となるように傾斜機能材の原料粉末圧粉体3を成形外枠
1にセットして焼結する例を示したものである。原料粉
末圧粉体3の構成に合わせて肉厚加工を施した成形外枠
1に下押し棒1Bをセットし、次に原料粉末圧粉体3を
充填する。これに上押し棒1Aをセットし、上電極1A
1と下電極1B1を介して油圧による荷重1A2,1B
2により原料粉末圧粉体3を加圧する。
FIG. 4 shows an outline of the pulse current sintering method for explaining one embodiment of the present invention. The raw material powder compact 3 of the functionally gradient material is set in the molding outer frame 1 so that the metal component having a melting point lower than that of the ceramic component and the temperature required for sintering thereof is lower than that of the ceramic component is on the side of the lower push rod 1B. It shows an example of sintering. The lower push rod 1B is set on the molding outer frame 1 which has been subjected to the wall thickness processing according to the structure of the raw material powder compact 3, and then the raw material powder compact 3 is filled. Set the upper push rod 1A on this and set the upper electrode 1A
Load 1A2, 1B by hydraulic pressure through 1 and lower electrode 1B1
The raw material powder compact 3 is pressed by 2.

【0013】この状態で上電極1A1と下電極1B1を
通じてパルス電源1Cにより原料粉末圧粉体3にパルス
電圧を印加し、原料粉末圧粉体の自己発熱と、同時に成
形外枠1の発熱で作られる制御された温度傾斜場により
原料粉末圧粉体3を低温、短時間に焼結する。成形外枠
1の形状は本発明の重要な構成要素であるが、その材質
は耐熱性があり導電性材料であれば特に制約はなく、金
属、黒鉛、超硬などのサーメット材料を利用することが
できる。上下押し棒についても同様であり、金属、黒
鉛、サーメット材料により構成することができる。
In this state, a pulse voltage is applied to the raw material powder compact 3 through the upper electrode 1A1 and the lower electrode 1B1 by the pulse power source 1C, and the self-heating of the raw material powder compact and the heat generation of the molding outer frame 1 at the same time are performed. The raw material powder compact 3 is sintered at a low temperature in a short time by the controlled temperature gradient field. The shape of the molding outer frame 1 is an important component of the present invention, but the material is not particularly limited as long as it is a heat resistant and conductive material, and a cermet material such as metal, graphite, or cemented carbide should be used. You can The same applies to the vertical push rod, which can be made of metal, graphite, or cermet material.

【0014】図5から図8は、本発明に係わる製造方法
に利用できる成形外枠1と傾斜機能材の原料粉末圧粉体
3の断面形状の例を示したものである。図5ないし図8
では、成形外枠1の肉厚が下方に行くほどステップ状に
厚くなるよう構成されている。傾斜機能材としての最終
形状に応じて適宣これらの最適形状を選択する。
5 to 8 show examples of the cross-sectional shapes of the molding outer frame 1 and the raw material powder compact 3 of the functionally gradient material which can be used in the manufacturing method according to the present invention. 5 to 8
Then, the thickness of the molding outer frame 1 is configured so as to increase stepwise as it goes downward. These optimum shapes are appropriately selected according to the final shape as the functionally gradient material.

【0015】図9から図12は、本発明の傾斜機能材の
製造方法に利用できる成形外枠の断面形状の例を示した
ものである。図9,図10で示す成形外枠11,12で
は肉厚が下方に行くほど連続的に厚くなるよう構成され
ている。図11で示す成形外枠13では、肉厚が当該成
形外枠における加圧軸方向における中央部が断面台形状
窪みを呈するように肉薄に構成されている。図12で示
す成形外枠14では、肉厚が当該成形外枠における加圧
軸方向における中央部が断面台形状突条を呈するように
肉厚に構成されている。
9 to 12 show examples of the cross-sectional shape of the molding outer frame which can be used in the method of manufacturing a functionally graded material of the present invention. The molding outer frames 11 and 12 shown in FIGS. 9 and 10 are configured such that the wall thickness increases continuously as it goes downward. In the molding outer frame 13 shown in FIG. 11, the wall thickness is thin so that the central portion in the pressing axis direction of the molding outer frame exhibits a trapezoidal depression in cross section. In the molding outer frame 14 shown in FIG. 12, the wall thickness is configured such that the central portion in the pressing axis direction of the molding outer frame exhibits a trapezoidal ridge in cross section.

【0016】そこで、融点が互いに異なり、必要焼結温
度の異なる金属とセラミックをその両端層とし、その間
にそれらの混合傾斜組成をもつ傾斜機能材の原料粉末圧
粉体3の焼結では、その融点の低い方の材料を成形外枠
の厚肉側に配置して焼結し、図9、図10のような断面
形状を持つ成形外枠11,12を利用すると良い。
Therefore, in the sintering of the raw material powder compact 3 of the functionally gradient material having the mixed gradient composition of metal and ceramic having different melting points and different required sintering temperatures as the both end layers, It is advisable to arrange the material having the lower melting point on the thicker side of the molding outer frame and sinter it, and use the molding outer frames 11 and 12 having the cross-sectional shapes as shown in FIGS. 9 and 10.

【0017】また、厚み方向中央部に融点の高い、焼結
に高温を要する金属層またはセラミック層が配置され、
その両サイドにそれらの混合傾斜層があり、その層を介
して両端に融点の低い、焼結に中央成分ほど高温を要し
ない金属層またはセラミック層をもつ構成の傾斜機能材
の原料粉末圧粉体4の焼結では、その中央部の成分が図
11で示す成形外枠13において肉厚の薄くなった部分
の中央部にくるようにセットして焼結する。また、この
逆に、中央成分の方が融点が低く、焼結にも高温を要し
ないような構成の傾斜機能材の原料粉末圧粉体4の焼結
では、図12で示す断面形状の成形外枠14が利用で
き、原料粉末圧粉体を高さ方向中央部にセットし、温度
傾斜を利用して焼結する。
Further, a metal layer or a ceramic layer having a high melting point and requiring a high temperature for sintering is arranged in the central portion in the thickness direction,
Raw material powder compact of functionally graded material having a mixed gradient layer on both sides, and having a metal layer or a ceramic layer with a low melting point at both ends, which does not require a high temperature as much as the central component for sintering, through the layer In the sintering of the body 4, the component of the central portion is set and sintered so as to come to the central portion of the thinned portion in the molding outer frame 13 shown in FIG. On the contrary, in the sintering of the raw material powder compact 4 of the functionally-graded material in which the central component has a lower melting point and does not require a high temperature for sintering, the cross-sectional shape shown in FIG. 12 is formed. The outer frame 14 can be used, the green compact of the raw material powder is set in the central portion in the height direction, and is sintered by utilizing the temperature gradient.

【0018】本発明に係わる傾斜機能材の製造方法にお
いては成形外枠1と上下押し棒1A,1Bとの嵌合具合
は、通電中の目的とした温度傾斜を実現する上で極めて
重要な要素である。成形外枠と上下押し棒とのクリアラ
ンスは、その両者の隙間に特に導電性材料を満たさない
場合には2/100mm以下、好ましくは1/100m
m以下である。
In the method of manufacturing a functionally graded material according to the present invention, the fitting condition between the molding outer frame 1 and the vertical push rods 1A and 1B is a very important factor in achieving the desired temperature gradient during energization. Is. The clearance between the molding outer frame and the vertical push rod is 2/100 mm or less, preferably 1/100 m, when the gap between the two is not filled with a conductive material.
m or less.

【0019】(実施例1)平均粒径5μmのステンレス
粉末、粒径1μm以下のY23 3%添加部分安定化ジ
ルコニア及びそれらの材料をステンレス/ジルコニア体
積比で3/1,1/1,1/3に混合して作成した混合
粉末を傾斜機能材の原料粉末として用いた。ステンレス
粉末の融点は約1440℃、部分安定化ジルコニアの融
点は2680℃であった。成形外枠には図9の断面形状
をもつ、高さ40mmで中孔径φ20mmの黒鉛製の成
形外枠11を用いた。この成形外枠の肉厚は、その一端
から17mmまで肉厚7mm、下から17mmまで肉厚
20mmとし、その間を20mmから7mmまで連続し
て厚みを減少させた。
Example 1 Stainless steel powder having an average particle size of 5 μm, Y 2 O 3 3% partially stabilized zirconia having a particle size of 1 μm or less, and those materials were used in a stainless steel / zirconia volume ratio of 3/1, 1/1. , 1/3 was used as the raw material powder of the gradient functional material. The melting point of the stainless powder was about 1440 ° C, and the melting point of the partially stabilized zirconia was 2680 ° C. As the molding outer frame, a molding outer frame 11 made of graphite having a sectional shape of FIG. 9 and a height of 40 mm and a medium hole diameter of φ20 mm was used. The thickness of this molding outer frame was 7 mm from one end to 17 mm and 20 mm from the bottom to 17 mm, and the thickness was continuously reduced from 20 mm to 7 mm between them.

【0020】また、この成形外枠の薄肉側を上としたと
きの、上から17mmの位置と、同じく上から23mm
の位置にφ3mmのキリ孔を中孔からの距離で4mmと
なるように明け、焼結中の温度を2箇所で放射温度計に
より測定した。上下押し棒は長さ20mmの黒鉛製と
し、成形外枠の中孔とのクリアランスは1/100mm
以下とした。これらの焼結部品を用いて、まず、肉厚の
大きい方を下にした状態の成形外枠に下押し棒をセット
し、次に、これに接してステンレス粉末を厚み3mm、
その上に混合粉末をステンレス/ジルコニア比3/1,
1/1,1/3mmの順に各1mmづつ、さらにその上
にジルコニア粉末を厚み3mmとなるように圧力100
kg/cm2 で充填した。
Also, when the thin side of this molding outer frame is up, the position is 17 mm from the top and 23 mm from the top.
A hole having a diameter of 3 mm was opened at a position of 4 mm so that the distance from the inner hole was 4 mm, and the temperature during sintering was measured at two points with a radiation thermometer. The vertical push rod is made of graphite with a length of 20 mm, and the clearance with the inner hole of the molding outer frame is 1/100 mm.
Below. Using these sintered parts, first, the lower push rod was set on the molding outer frame with the larger wall thickness facing down, and then the lower push rod was brought into contact with this to push the stainless powder to a thickness of 3 mm,
On top of that, mix powder with a stainless steel / zirconia ratio of 3/1,
1 mm each in the order of 1/1, 1/3 mm, and zirconia powder on the pressure of 100 mm so that the thickness becomes 3 mm.
It was filled with kg / cm 2 .

【0021】これに上押し棒をセットし、試料部が成形
外枠の高さ方向の中央部にくるように外にでている上下
押し棒長さを調整した後、この焼結試料構成を通電焼結
機にセットし、圧力500kg/cm2 まで加圧した。
この圧力に加圧しながらパルス通電を開始し、焼結を始
めた。ここでは、直流パルスのon/off比は12/
2とした。焼結は、ジルコニア粉末側での測定温度で1
200℃に達して後、試料部の収縮が止まって1分保持
の条件で実施した。
After setting the upper push rod on this and adjusting the length of the vertical push rod protruding outward so that the sample portion comes to the center in the height direction of the molding outer frame, this sintered sample constitution is It was set in an electric sintering machine and pressurized to a pressure of 500 kg / cm 2 .
While pressurizing to this pressure, pulse energization was started to start sintering. Here, the on / off ratio of the DC pulse is 12 /
It was set to 2. Sintering is 1 at the temperature measured on the zirconia powder side.
After the temperature reached 200 ° C., the shrinkage of the sample portion stopped and the test was carried out under the condition of holding for 1 minute.

【0022】この条件での1200℃での全焼結保持時
間は2.5分であった。また、焼結保持時間中のステン
レス粉末側の温度は840℃から880℃であった。冷
却後、焼結試料構成から取り出した焼結体の高さは約
5.4mmであった。その切断面を研磨、観察したとこ
ろ、割れの発生や気孔は認められず、良好な傾斜機能材
として焼結できていた。この試料のジルコニア100%
側での微小硬さは1350kg/mm2 であった。
The total sintering holding time at 1200 ° C. under these conditions was 2.5 minutes. The temperature on the stainless steel powder side during the sintering holding time was 840 ° C to 880 ° C. After cooling, the height of the sintered body taken out from the sintered sample structure was about 5.4 mm. When the cut surface was polished and observed, no cracks or pores were observed, and it could be sintered as a good functionally gradient material. Zirconia 100% of this sample
The microhardness on the side was 1350 kg / mm 2 .

【0023】(比較例)成形外枠には図3で示す断面形
状をもつ外径50mm,中孔径20mm,高さ40mm
の黒鉛単純円筒を、実施例1に用いた黒鉛と同じ材質の
黒鉛から作製したものを用いたほかは、実施例1と同様
の温度測定用孔加工を施し、また、実施例1と同様の上
下押し棒を用いた。これらの焼結部品を用いて、実施例
1と同様の原料粉末を同様の方法と手順で焼結試料構成
に組み込み、通電焼結装置にセットした。
(Comparative Example) The molding outer frame has an outer diameter of 50 mm, a hole diameter of 20 mm, and a height of 40 mm having the cross-sectional shape shown in FIG.
The graphite simple cylinder of No. 1 was made of graphite of the same material as the graphite used in Example 1, and the same temperature measurement hole processing as in Example 1 was performed, and the same as in Example 1. A vertical push rod was used. Using these sintered parts, the same raw material powder as in Example 1 was incorporated into a sintered sample structure by the same method and procedure and set in an electric sintering apparatus.

【0024】次に、実施例1と同じ500kg/cm2
まで加圧し、パルス通電を開始した。 直流パルスのo
n/off比は実施例1と同じく12/2とした。焼結
は、ジルコニア側での測定温度で1200℃に達し、収
縮が止まって後、1分保持の条件で実施した。このとき
の1200℃での全保持時間は2分であった。
Next, the same as in Example 1 500 kg / cm 2
It was pressurized up to, and pulse energization was started. DC pulse o
The n / off ratio was set to 12/2 as in Example 1. Sintering was carried out under the condition of holding for 1 minute after the temperature reached 1200 ° C. on the zirconia side and the shrinkage stopped. At this time, the total holding time at 1200 ° C. was 2 minutes.

【0025】冷却後、焼結構成を取り出したところ、ス
テンレス側の押し棒のところに数mmの金属球が観察さ
れ、ステンレスの一部が融解し、しみだしが起きたこと
が分かった。回収した時点で焼結体はジルコニア100
%層の部分で破壊した。また、ステンレス100%層の
断面には多数の気孔の発生が観察された。
After cooling, when the sintered structure was taken out, a metal ball of several mm was observed at the push rod on the stainless steel side, and it was found that part of the stainless steel melted and exudation occurred. When recovered, the sintered body is zirconia 100
Destroyed at the% layer. Further, generation of many pores was observed in the cross section of the 100% stainless steel layer.

【0026】(実施例2)外径20mm、高さ5mmで
密度3.15g/cm3 の窒化珪素(Si34)焼結
体ペレット、平均粒径0.3μmのSi34 粉末、粒
径10μm以下の鉄粉末、及びそれら粉末のSi34
/鉄比、4/1,2/1,1/1,1/2,1/4の5
種混合粉末を傾斜機能材の原料粉末及び焼結体として用
いた。窒化珪素の融点は1900℃、鉄の融点は153
0℃であった。成形外枠は高さ50mm、中孔径20m
mで、その一端より15mmまでの肉厚が6.0mm,
15mmから20mmまでの肉厚が10.0mm、さら
に20mmから50mmまでの肉厚が20mmの不連続
な3ステップからなるものを使用し、肉厚15mm側を
上とした場合の上から17.5mmの位置と、上から3
0mmの位置に径3mmの測温用の孔を成形外枠の中孔
からの距離で4mmとなるように加工した。
Example 2 A silicon nitride (Si 3 N 4 ) sintered body pellet having an outer diameter of 20 mm, a height of 5 mm and a density of 3.15 g / cm 3 , Si 3 N 4 powder having an average particle size of 0.3 μm, Iron powder having a particle size of 10 μm or less, and Si 3 N 4 of those powders
/ Iron ratio, 4/1, 2/1, 1/1, 1/2, 1/4 5
The seed mixed powder was used as the raw material powder and the sintered body of the functionally gradient material. The melting point of silicon nitride is 1900 ° C, and the melting point of iron is 153.
It was 0 ° C. The outer frame has a height of 50 mm and a medium hole diameter of 20 m.
m, the thickness from one end to 15 mm is 6.0 mm,
A thickness of 15 mm to 20 mm is 10.0 mm, and a thickness of 20 mm to 50 mm is 20 mm, which consists of three discontinuous steps, and the thickness of 15 mm is 17.5 mm from the top. Position and 3 from the top
A temperature measuring hole having a diameter of 3 mm was machined at a position of 0 mm so that the distance from the center hole of the molding outer frame was 4 mm.

【0027】上下押し棒は長さ25mmとし、成形外枠
の中孔とのクリアランスは1/100mm以下とした。
原料粉末の充填では、まず、成形外枠の肉厚6.0mm
側を上にしてセットし、これに下押し棒をセットする。
この下押し棒に接して鉄100%層を厚さ20mmに充
填し、次にSi34/鉄比1/4,1/2,1/1,
2/1,4/4の混合粉末を順に各1mmずつを圧力1
00kg/cm2 で充填する。
The vertical push rod had a length of 25 mm, and the clearance from the central hole of the molding outer frame was 1/100 mm or less.
When filling the raw material powder, first, the thickness of the molding outer frame is 6.0 mm.
Set with the side up and the bottom push rod on it.
A 100% iron layer was filled to a thickness of 20 mm in contact with this lower push rod, and then a Si 3 N 4 / iron ratio of 1/4, 1/2, 1/1,
2/1, 4/4 mixed powder in order of 1mm each, pressure 1
Fill with 00 kg / cm 2 .

【0028】さらに、これに接して厚さ5mmのSi3
4 焼結体を配置し、上押し棒をセットした。この焼結
用試料構成を通電焼結機にセットし、圧力600kg/
cm2 まで加圧した後、加圧状態でパルス通電を開始し
た。ここでのパルスon/off比は20/1とした。
焼結はSi34 側の温度で1350℃で行い、その温
度で試料部の収縮が止まって後、1分保持の条件で実施
した。1350℃での全焼結保持時間は1.5分であっ
た。このときの鉄100%層側で測定した温度は810
℃から830℃であった。回収された焼結体の断面には
割れや気孔の発生は認められず、良好な傾斜機能材が得
られた。
Further, in contact with this, Si 3 having a thickness of 5 mm
The N 4 sintered body was arranged and the upper push rod was set. This sample composition for sintering was set in an electric sintering machine and the pressure was 600 kg /
After pressurizing to cm 2 , pulse energization was started in a pressurized state. The pulse on / off ratio here was 20/1.
Sintering was performed at 1350 ° C. at the temperature of the Si 3 N 4 side, and after the shrinkage of the sample portion stopped at that temperature, it was held for 1 minute. The total sintering holding time at 1350 ° C. was 1.5 minutes. At this time, the temperature measured on the 100% iron layer side is 810.
The temperature was from ℃ to 830 ℃. No cracks or pores were found in the cross section of the recovered sintered body, and a good functionally graded material was obtained.

【0029】(実施例3)平均粒径1μmのアルミナ粉
末、粒径5μm以下のNiTi合金粉末、およびそれら
のアルミナ/NiTi体積比1/3,1/1,3/1の
3種の混合粉末を傾斜機能材の原料粉末として用いた。
アルミナの融点は2050℃、NiTi合金の融点は1
380℃であった。焼結には、図11に示す断面形状を
もつ中孔径20mmの黒鉛製の成形外枠13を利用し、
その肉厚は両端から15.5mmまでを肉厚30mm,
成形外枠の高さ方向の中心部8mm幅を厚み10mmと
し、その間を肉厚30mmから10mmへ連続して減少
させた。
Example 3 Alumina powder having an average particle size of 1 μm, NiTi alloy powder having a particle size of 5 μm or less, and three kinds of mixed powders having an alumina / NiTi volume ratio of 1/3, 1/1, 3/1. Was used as the raw material powder of the functionally gradient material.
The melting point of alumina is 2050 ° C, and the melting point of NiTi alloy is 1
It was 380 ° C. For sintering, a molded outer frame 13 made of graphite having a cross-sectional shape shown in FIG.
The thickness is 30 mm from both ends to 15.5 mm,
The center portion 8 mm width in the height direction of the molding outer frame had a thickness of 10 mm, and the space between them was continuously reduced from 30 mm to 10 mm.

【0030】温度測定用には成形外枠の高さ方向の中央
部に径3mm、深さ6mmの孔を明けた。上下押し棒は
長さ25mm,成形外枠の中孔とのクリアランスを1/
100mm以下とした。成形外枠の一端に下押し棒をセ
ットし、それに接してまず、NiTi合金粉末を厚み4
mm、次にアルミナ/NiTi合金混合粉末を1/3,
1/1,3/1の順に厚み各1mm、更にこれに接して
アルミナ100%粉末を厚み5mmとなるように圧力1
50kg/cm2 で充填した。
For temperature measurement, a hole having a diameter of 3 mm and a depth of 6 mm was opened in the center of the molding outer frame in the height direction. The vertical push rod has a length of 25 mm, and the clearance with the inner hole of the molding outer frame is 1 /
It was set to 100 mm or less. Set a lower push rod on one end of the molding outer frame, and contact it with NiTi alloy powder to a thickness of 4
mm, then 1/3 of the alumina / NiTi alloy mixed powder
The thickness was 1 mm in the order of 1/1 and 3/1, and further 100% of alumina powder was applied to this to obtain a pressure of 1 mm so that the thickness was 5 mm.
It was filled with 50 kg / cm 2 .

【0031】さらに、このアルミナ層に接して、アルミ
ナ/NiTi合金混合粉末を1/3,1/1,3/1の
順に厚み各1mm,それに接してNiTi合金100%
層を厚み4mmとなるようにこれも圧力150kg/c
2 で充填した。これに上押し棒をセットし、上下押し
棒の外に出ている部分の長さを調節して原料粉末の位置
を成形外枠の高さ方向の中央部に来るように調整した
後、通電焼結機にセットし、圧力500kg/cm2
で加圧した。この加圧状態でパルス通電を開始した。パ
ルスのon/off比は32/2とした。
Further, the alumina / NiTi alloy mixed powder was brought into contact with the alumina layer in the order of 1/3, 1/1 and 3/1 to have a thickness of 1 mm, and the NiTi alloy 100% was brought into contact therewith.
This pressure is also 150 kg / c so that the layer has a thickness of 4 mm.
filled with m 2 . Set the upper push rod on this, adjust the length of the part protruding outside the vertical push rod to adjust the position of the raw material powder so that it comes to the center of the molding outer frame in the height direction, and then turn on the power. It was set in a sintering machine and pressurized to a pressure of 500 kg / cm 2 . Pulse energization was started in this pressurized state. The on / off ratio of the pulse was 32/2.

【0032】焼結は、中央部のアルミナ側で測定した温
度で1200℃で行い、試料の収縮が止まって後、1分
保持して通電を停止した。このときの1200℃での全
焼結保持時間は約2.2分であった。冷却後回収された
焼結体は厚み約10.8mmであり、その断面には割れ
や気孔の発生は観察されず、良好な傾斜機能材として焼
結できていた。このときのアルミナ100%部分の微小
硬さは1950kg/mm2 であった。
Sintering was carried out at 1200 ° C. at the temperature measured on the alumina side of the central portion, and after the shrinkage of the sample stopped, it was held for 1 minute to stop the energization. At this time, the total sintering holding time at 1200 ° C. was about 2.2 minutes. The sintered body recovered after cooling had a thickness of about 10.8 mm, and cracks and pores were not observed on its cross section, and it could be sintered as a good functionally gradient material. At this time, the microhardness of the 100% alumina portion was 1950 kg / mm 2 .

【0033】作用について効果と共に説明する。The operation and effects will be described.

【0034】[0034]

【発明の効果】以上のように、この発明によれば金属と
セラミック材料の組み合わせからなる傾斜機能材の通電
焼結法による製造において、その成形外枠の加圧軸方向
の肉厚を焼結しようとする傾斜機能材の構成材料の熱的
性質に応じて適切に調整することにより、傾斜機能材を
その傾斜組成に合わせた温度傾斜のもとで無理なく焼結
できる。この方法により短時間に、高効率に、高品位の
信頼性の高い傾斜機能材を製造できる。
As described above, according to the present invention, in the production of a functionally gradient material made of a combination of a metal and a ceramic material by an electric current sintering method, the wall thickness of the molding outer frame in the pressure axis direction is sintered. By appropriately adjusting the thermal properties of the constituent material of the functionally gradient material to be obtained, the functionally gradient material can be reasonably sintered under a temperature gradient matched to the gradient composition. By this method, a highly functional and highly functional gradient material can be manufactured with high efficiency in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の傾斜機能材の製造方法に用いる原料粉
末圧粉体の断面図である。
FIG. 1 is a cross-sectional view of a raw material powder compact used in the method of manufacturing a functionally gradient material of the present invention.

【図2】本発明の傾斜機能材の製造方法に用いる原料粉
末圧粉体の断面図である。
FIG. 2 is a cross-sectional view of a raw material powder compact used in the method for producing a functionally graded material of the present invention.

【図3】従来の単純円筒型の成形外枠を用いた通電燒結
法を説明する縦断面図的概略図である。
FIG. 3 is a schematic vertical cross-sectional view illustrating an electric sintering method using a conventional simple cylindrical molding outer frame.

【図4】本発明の通電焼結法を説明する概略図である。FIG. 4 is a schematic view illustrating an electric current sintering method of the present invention.

【図5】A−A線断面図である。FIG. 5 is a sectional view taken along line AA.

【図6】A−A線における他の実施例の断面図である。FIG. 6 is a sectional view of another embodiment taken along line AA.

【図7】A−A線における他の実施例の断面図である。FIG. 7 is a sectional view of another embodiment taken along line AA.

【図8】A−A線における他の実施例の断面図である。FIG. 8 is a sectional view of another embodiment taken along line AA.

【図9】成形外枠部分の他の実施例の縦断面図である。FIG. 9 is a vertical sectional view of another embodiment of the molding outer frame portion.

【図10】成形外枠部分の他の実施例の縦断面図であ
る。
FIG. 10 is a vertical cross-sectional view of another embodiment of the molding outer frame portion.

【図11】成形外枠部分の他の実施例の縦断面図であ
る。
FIG. 11 is a vertical cross-sectional view of another embodiment of the molding outer frame portion.

【図12】成形外枠部分の他の実施例の縦断面図であ
る。
FIG. 12 is a vertical cross-sectional view of another embodiment of the molding outer frame portion.

【符号の説明】[Explanation of symbols]

1 成形外枠 1A 上押し棒 1A1 上電極 1A2 荷重 1B 下押し棒 1B1 下電極 1B2 荷重 1C パルス電源 3 原料粉末圧粉体 3A 金属層 3B 傾斜混合層 3C セラミック層 4 原料粉末圧粉体 4A 金属層 4B 混合傾斜層 4C セラミック層 11,12,13,14 成形外枠 1 Molding outer frame 1A Upper push rod 1A1 Upper electrode 1A2 Load 1B Lower push rod 1B1 Lower electrode 1B2 Load 1C Pulse power supply 3 Raw powder compact 3A Metal layer 3B Gradient mixing layer 3C Ceramic layer 4 Raw powder compact 4A Metal layer 4B Mixed gradient layer 4C Ceramic layer 11, 12, 13, 14 Molded outer frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 滋 東京都千代田区丸の内一丁目4番5号 住 友石炭鉱業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Matsui 1-4-5 Marunouchi, Chiyoda-ku, Tokyo Sumitomo Coal Mining Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属とセラミックの間にそれら両成分よ
りなる傾斜混合層を有する傾斜機能材を成形外枠と押し
棒を用いて通電焼結により製造する方法において、該金
属の融点をal、該セラミックの融点をa2としたと
き、a1<a2となる組み合わせにおいて、成形外枠の
肉厚が該金属側から該セラミック側へ連続および/また
はステップ状に減少する部分を少なくとも該成形外枠の
一部に持ち、また、a1>a2となる組み合わせにおい
て、該成形外枠の肉厚が該セラミック側から該金属側へ
連続および/またはステップ状に減少する部分を少なく
とも該成形外枠の一部に持ち、該成形外枠を少なくとも
1つの通電経路とし、通電中に該傾斜機能材の加圧軸方
向に温度傾斜を形成することを特徴とする傾斜機能材の
製造方法。
1. A method for producing a functionally gradient material having a gradient mixed layer composed of both components between a metal and a ceramic by electric current sintering using a molding outer frame and a push rod, wherein the melting point of the metal is al, When the melting point of the ceramic is a2, in a combination of a1 <a2, at least a portion where the wall thickness of the molding outer frame continuously and / or stepwise decreases from the metal side to the ceramic side is formed in the molding outer frame. In a combination having a part and a1> a2, at least a part of the molding outer frame where the wall thickness of the molding outer frame continuously and / or stepwise decreases from the ceramic side to the metal side And a temperature gradient is formed in the pressure axis direction of the functionally gradient material during energization by using the molding outer frame as at least one current-carrying path.
JP5098802A 1993-03-31 1993-03-31 Method of manufacturing functionally graded material Expired - Fee Related JPH0784352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5098802A JPH0784352B2 (en) 1993-03-31 1993-03-31 Method of manufacturing functionally graded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5098802A JPH0784352B2 (en) 1993-03-31 1993-03-31 Method of manufacturing functionally graded material

Publications (2)

Publication Number Publication Date
JPH06287076A true JPH06287076A (en) 1994-10-11
JPH0784352B2 JPH0784352B2 (en) 1995-09-13

Family

ID=14229483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5098802A Expired - Fee Related JPH0784352B2 (en) 1993-03-31 1993-03-31 Method of manufacturing functionally graded material

Country Status (1)

Country Link
JP (1) JPH0784352B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773202A2 (en) 1995-11-07 1997-05-14 Sumitomo Electric Industries, Ltd. Composite material and method of manufacturing the same
EP0774527A2 (en) 1995-11-15 1997-05-21 Sumitomo Electric Industries, Ltd. Superhard composite member and method of manufacturing the same
JP2000158422A (en) * 1998-11-25 2000-06-13 Akane:Kk Manufacture of composite material and manufacturing device therefor
US6612474B2 (en) 2000-12-22 2003-09-02 Kumud Shah Hand-held tape dispenser with brake mechanism
KR100784742B1 (en) * 1999-03-31 2007-12-13 에스피에스 신텍스 가부시키가이샤 Method and system for automatic pulse electrical sintering
JP2008069052A (en) * 2006-09-15 2008-03-27 National Institute Of Advanced Industrial & Technology Functionally gradient material and method of manufacturing the same
US7637981B2 (en) 2005-01-25 2009-12-29 Tix Corporation Composite wear-resistant member and method for manufacture thereof
KR101053879B1 (en) * 2010-07-07 2011-08-04 (재)대구기계부품연구원 Cemented carbide-steel bonding body and method for manufacturing the same
WO2017141697A1 (en) * 2016-02-18 2017-08-24 セイコーエプソン株式会社 Ceramic component and three-dimensional production method for ceramic component
CN108748620A (en) * 2018-05-04 2018-11-06 中国科学院上海硅酸盐研究所 A kind of resistance sintering mold
CN110465664A (en) * 2019-08-12 2019-11-19 江苏大学 It is used to prepare the combined type discharging plasma agglomeration mold of gradient porous composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418788B (en) * 2013-07-23 2015-05-20 浙江大学 Device and method for thermoforming gradient materials

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773202A2 (en) 1995-11-07 1997-05-14 Sumitomo Electric Industries, Ltd. Composite material and method of manufacturing the same
US5989731A (en) * 1995-11-07 1999-11-23 Sumitomo Electric Industries, Ltd. Composite material and method of manufacturing the same
EP0774527A2 (en) 1995-11-15 1997-05-21 Sumitomo Electric Industries, Ltd. Superhard composite member and method of manufacturing the same
US5889219A (en) * 1995-11-15 1999-03-30 Sumitomo Electric Industries, Ltd. Superhard composite member and method of manufacturing the same
JP2000158422A (en) * 1998-11-25 2000-06-13 Akane:Kk Manufacture of composite material and manufacturing device therefor
KR100784742B1 (en) * 1999-03-31 2007-12-13 에스피에스 신텍스 가부시키가이샤 Method and system for automatic pulse electrical sintering
US6612474B2 (en) 2000-12-22 2003-09-02 Kumud Shah Hand-held tape dispenser with brake mechanism
US7637981B2 (en) 2005-01-25 2009-12-29 Tix Corporation Composite wear-resistant member and method for manufacture thereof
JP2008069052A (en) * 2006-09-15 2008-03-27 National Institute Of Advanced Industrial & Technology Functionally gradient material and method of manufacturing the same
JP4701402B2 (en) * 2006-09-15 2011-06-15 独立行政法人産業技術総合研究所 Functionally gradient material and manufacturing method thereof
KR101053879B1 (en) * 2010-07-07 2011-08-04 (재)대구기계부품연구원 Cemented carbide-steel bonding body and method for manufacturing the same
WO2017141697A1 (en) * 2016-02-18 2017-08-24 セイコーエプソン株式会社 Ceramic component and three-dimensional production method for ceramic component
JP2017145178A (en) * 2016-02-18 2017-08-24 セイコーエプソン株式会社 Ceramic component and method for three-dimensionally manufacturing ceramic component
CN108748620A (en) * 2018-05-04 2018-11-06 中国科学院上海硅酸盐研究所 A kind of resistance sintering mold
CN110465664A (en) * 2019-08-12 2019-11-19 江苏大学 It is used to prepare the combined type discharging plasma agglomeration mold of gradient porous composite material
CN110465664B (en) * 2019-08-12 2021-07-20 江苏大学 Combined type discharge plasma sintering mold for preparing gradient porous composite material

Also Published As

Publication number Publication date
JPH0784352B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
Grasso et al. Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008
JP2004535665A (en) Dissipative ceramic bonding tooltip
JPH06287076A (en) Production of functionally gradient material
CN108558398B (en) Method for pulse discharge room temperature flash sintering nano ceramic material
KR20200032062A (en) Manufacturing method of boroncarbide sintered body and shaping die
US5139720A (en) Method of producing sintered ceramic material
CN107226708A (en) The manufacture method of conjugant and conjugant
JP4449847B2 (en) Method of manufacturing discharge surface treatment electrode and apparatus for manufacturing the same
JP2001105124A (en) Heat radiation substrate for semi conductor device
JPH06102803B2 (en) Method of manufacturing functionally graded material
CN105803283A (en) Nb-Si-Ti-W-Cr alloy bar and production method thereof
JP2611934B2 (en) Cemented carbide-based wear-resistant material and method for producing the same
US5753574A (en) Metal infiltrated ceramic electrical conductor
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
KR19980087242A (en) Manufacturing Method of Base Material of Vacuum Valve
JP4355431B2 (en) Piston manufacturing method
JP3776277B2 (en) Stress relaxation type functionally gradient material and method for producing the same
JP2000016873A (en) Sintering with discharge plasma
JP3481815B2 (en) Method of manufacturing electrode plate for electric upsetter
SU1525952A1 (en) Zirconium dioxide electric heater
JP3252288B2 (en) Dies for plasma sintering
EP2467223A1 (en) A process for producing a metal-matrix composite of significant cte between the hard base-metal and the soft matrix
JP2002146407A (en) Method of sintering by electric heating
JP3298129B2 (en) Manufacturing method of electrode material
SU1525951A1 (en) Method of producing lanthanum chromite electric heater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees