JPH0628659Y2 - Photoelasticity measuring device - Google Patents
Photoelasticity measuring deviceInfo
- Publication number
- JPH0628659Y2 JPH0628659Y2 JP16412288U JP16412288U JPH0628659Y2 JP H0628659 Y2 JPH0628659 Y2 JP H0628659Y2 JP 16412288 U JP16412288 U JP 16412288U JP 16412288 U JP16412288 U JP 16412288U JP H0628659 Y2 JPH0628659 Y2 JP H0628659Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- inspected
- transparent
- stress
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は光弾性現象を利用して透明被検査体内に存在す
る応力を測定する装置において、簡単な操作によって反
射光を利用した測定にも透過光を利用した測定にも随意
に切換え使用できるようにしたものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial field of application) The present invention is an apparatus for measuring stress existing in a transparent object to be inspected by utilizing a photoelastic phenomenon. The measurement can be switched between the used measurement and the transmitted light measurement.
(従来の技術) ガラス製品やプラスチックス製品などの透明体に内部歪
みが存在したり、あるいは外力が印加されると応力が発
生する。そして、このような透明被検査体に応力の有無
やその所在あるいはその大きさを測定するために一般に
光弾性の原理を応用した測定装置が用いられている。(Prior Art) When a transparent body such as a glass product or a plastic product has internal strain or an external force is applied, stress is generated. A measuring device to which the principle of photoelasticity is applied is generally used in order to measure the presence or absence of stress, its location, or its magnitude in such a transparent inspection object.
たとえば、透明被検査体内に応力が存在する場合、この
透明被検査体に偏光を透過させると光弾性効果によって
偏光特性が変化し、これを偏光板を介して観察すると干
渉縞模様が見え、この観察結果から透明被検査体内の応
力の有無、その所在あるいはその大きさを知ることがで
きる。このような測定装置は全体が透明である被検査体
の測定には都合が良いが、たとえば電子管のバルブのよ
うに、被検査体が透明外囲器で内部に非透光性部材を有
する場合には使用できない欠点がある。For example, when stress is present in the transparent inspection object, when polarized light is transmitted through the transparent inspection object, the polarization characteristics change due to the photoelastic effect, and when observed through a polarizing plate, an interference fringe pattern is seen. From the observation result, it is possible to know the presence or absence of stress in the transparent inspection object, its location or its size. Although such a measuring device is convenient for measuring an object to be inspected that is entirely transparent, when the object to be inspected is a transparent envelope and has a non-translucent member inside, such as a valve of an electron tube. Has the drawback that it cannot be used.
これに対し、透明被検査体に偏光を投射し、その反射光
を偏光板を介して観察して透明被検査体内に存在する応
力の有無、その所在あるいはその大きさを知る測定装置
が知られている。この装置では透明被検査体の表面から
反射した光は仮りに検査体内に応力が存在してもその光
弾性効果を受けないので、反射した偏光が偏光板に吸収
されて見えない。これに対し、被検査体の内面から反射
した光は被検査体内を往復するとき光弾性効果を受ける
ので、応力が存在すると偏光特性が変化し、偏光板を介
して観察すると干渉縞模様が見え、この観察結果から被
検査体内の応力の有無、その所在あるいはその大きさを
知ることができる。しかも、この測定において、上述の
とおり被検査体の表面から反射した光は測定のじゃまに
ならない利点がある。On the other hand, there is known a measuring device which projects polarized light on a transparent inspection object and observes the reflected light through a polarizing plate to know the presence or absence of stress existing in the transparent inspection object and its location or its size. ing. In this device, the light reflected from the surface of the transparent object to be inspected does not undergo the photoelastic effect even if stress is present in the object to be inspected, so that the reflected polarized light is absorbed by the polarizing plate and cannot be seen. On the other hand, the light reflected from the inner surface of the object to be inspected undergoes a photoelastic effect when it reciprocates in the object to be inspected, so the polarization characteristics change when stress is present, and the interference fringe pattern is visible when observed through a polarizing plate. From this observation result, it is possible to know the presence or absence of stress in the body to be inspected, its location or its magnitude. Moreover, in this measurement, as described above, there is an advantage that the light reflected from the surface of the inspection object does not interfere with the measurement.
(考案が解決しようとする課題) このように、従来は測定光を透過させて被検査体内の応
力を測定する装置と測定光を反射させて被検査体内の応
力を測定する装置との両方を用意し、被検査体の構造な
どによって両者を使い分ける必要があった。これは極め
て不経済なことである。(Problems to be solved by the invention) As described above, conventionally, both a device that transmits the measurement light to measure the stress in the test object and a device that reflects the measurement light to measure the stress in the test object are used. It was necessary to prepare and use both depending on the structure of the object to be inspected. This is extremely uneconomical.
そこで、本考案の課題は1個の装置でありながら僅かな
操作によって透過光を利用して光弾性効果を観察する測
定にも、反射光を利用した測定にも兼用できる光弾性測
定装置を提供することである。Therefore, an object of the present invention is to provide a photoelasticity measuring device which can be used for both a measurement for observing a photoelastic effect by using transmitted light and a measurement for reflected light by a slight operation even though it is a single device. It is to be.
(課題を解決するための手段〕 本考案は透明被検査体の表側および裏側に偏光系測定光
を投射する光源をそれぞれ配設して所望の光源を選択的
に作動させるようにして、透明被検査体から反射または
透過して来た測定光の光弾性効果による変化を観察して
被検査体内に存在する応力を測定する光弾性測定装置を
提供するものである。(Means for Solving the Problem) The present invention provides a transparent light source for projecting a polarization system measurement light on the front side and the back side of a transparent object to be selectively operated so that a desired light source can be selectively operated. Provided is a photoelasticity measuring device for observing a change due to a photoelastic effect of measurement light reflected or transmitted from an inspection body to measure a stress existing in the inspection body.
(作用) 偏光系測定光を投射する光源を透明被検査体の表側と裏
側とにそれぞれ配設して所望の光源を選択的に作動させ
れば単に光源を切換えるだけで所望の2種類の測定を随
時行なうことができ、しかも使用しない光源がじゃまに
ならないので、設備が簡単になり、極めて便利で、特に
両種の測定をランダムに実施する場合に有利である。(Operation) If the light sources for projecting the polarization measurement light are respectively arranged on the front side and the back side of the transparent object to be inspected and the desired light sources are selectively operated, the two light sources can be measured by simply switching the light sources. Can be performed at any time, and since the light source that is not used is not a hindrance, the equipment is simple and extremely convenient, and it is particularly advantageous when performing measurements of both types at random.
(実施例) 以下、本考案の詳細を図示の各実施例によって説明す
る。第1図は直線偏光を用いて光弾性効果を干渉縞とし
て測定する装置を示す。図中、(1)は外部光を遮断し、
かつ内面を光吸収性にした外箱、(2)はこの外箱(1)の中
央部に設けられた透明支持台、(3)はこの支持台(2)に支
持されてほぼ水平に位置するたとえばガラス、プラスチ
ックスなどからなる板状の被検査体、(4)はこの被検査
体(3)の斜上方すなわち表側に設けられ斜方向からこの
被検査体(3)に測定光を投射する第1の光源、(5)は上記
被検査体(3)の斜下方すなわち裏側に設けられ斜方向か
らこの被検査体(3)に測定光を投射する第2の光源、(6)
はこれら両光源(4),(5)に給電する電源、(7)はこの電
源(6)と両光源(4),(5)との間に介挿され、両光源(4),
(5)の任意の一方を選択的に作動させる切換え装置たと
えば切換えスイッチ、(8)は被検査体(3)の表側において
対向し、両光源(4),(5)から被検査体(3)を介して入射
した測定光を観察する観察装置である。(Embodiment) Hereinafter, the details of the present invention will be described with reference to the illustrated embodiments. FIG. 1 shows an apparatus for measuring the photoelastic effect as interference fringes using linearly polarized light. In the figure, (1) blocks external light,
And the outer box whose inner surface is made light-absorbing, (2) is a transparent support table provided in the center of this outer box (1), and (3) is supported by this support table (2) and is positioned almost horizontally. For example, a plate-shaped inspected object made of glass, plastics, or the like, (4) is provided obliquely above the inspected object (3), that is, on the front side, and the measurement light is projected from the oblique direction onto the inspected object (3) A first light source, (5) is a second light source which is provided obliquely below the inspected body (3), that is, on the back side, and projects measurement light from this oblique direction onto this inspected body (3), (6)
Is a power source for supplying power to both light sources (4) and (5), and (7) is interposed between the power source (6) and both light sources (4) and (5), and both light sources (4),
A switching device for selectively activating any one of (5), for example, a changeover switch, (8) faces each other on the front side of the inspection object (3), and is connected to the inspection object (3) from both light sources (4) and (5). ) Is an observation device for observing the measurement light incident through
上記両光源(4),(5)はいずれも白熱電球(41),(51)と第
1の直線偏光板(42),(52)を組合せたもので、白熱電球
(41),(51)から発した普通光を第1の直線偏光板(42),
(52)を透過させて直線偏光に変換して被検査体(3)に投
射するものである。Both of the light sources (4) and (5) are incandescent light bulbs (41) and (51) combined with the first linear polarization plates (42) and (52).
Ordinary light emitted from (41) and (51) is applied to the first linear polarization plate (42),
It transmits the light (52), converts it into linearly polarized light, and projects it on the inspection object (3).
上記観察装置(8)は第2の直線偏光板(81)を遮光フード
(82)で覆ったもので、透明被検査体(3)を反射または透
過して来た測定光を観察して被検外体(3)内における光
弾性効果による変化を測定する装置である。The observation device (8) has a second linear polarizing plate (81) as a light-shielding hood.
It is a device that is covered with (82) and measures the change due to the photoelastic effect in the outside body to be inspected (3) by observing the measurement light reflected or transmitted through the transparent inspected body (3). .
つぎに、本実施例測定装置の作用を説明する。まず、支
持台(2)に被検査体(3)を載置し、電源(6)を投入し、切
換え装置(7)を操作して第1の光源(4)を作動させ、第2
の光源(5)は停止したままとする。すると、第1の光源
(4)から直線偏光である測定光が透明被検査体(3)に投射
されて反射し、観察装置(8)に入射する。このとき、入
射光の一部は透明被検査体(3)の表面から反射して観察
装置(8)に入射する。しかし、この反射光は透明被検査
体(3)内を全く透過しないので、透明被検査体(3)内に応
力が存在しても存在しなくとも光弾性効果を受けない。
このため、両直線偏光板(42),(81)を回転させて両偏光
軸を直交させると第2の直線偏光板(81)内の光がなくな
る。これに対し、透明被検査体(3)の内面から反射して
観察装置(8)に入射した光は透明被検査体(3)内を往復透
過する。そして、透明被検査体(3)内に応力が存在した
場合、透過した直線偏光は光弾性効果によって、互いに
直交した2方向にそれぞれ振動する成分直線偏光の間に
光路差が生じる。その結果、応力が存在する透明被検査
体(3)内に直線偏光を入射させたときは、次の現像を生
じる。Next, the operation of the measuring apparatus of this embodiment will be described. First, the device under test (3) is placed on the support base (2), the power source (6) is turned on, the switching device (7) is operated to operate the first light source (4), and the second light source (4) is activated.
The light source (5) is kept stopped. Then the first light source
The measurement light, which is linearly polarized light, is projected from the (4) onto the transparent inspection object (3), is reflected, and enters the observation device (8). At this time, part of the incident light is reflected from the surface of the transparent inspection object (3) and enters the observation device (8). However, since the reflected light does not pass through the transparent inspection object (3) at all, the stress does not exist in the transparent inspection object (3) even if it does not exist.
Therefore, when the two linear polarization plates (42) and (81) are rotated so that the two polarization axes are orthogonal to each other, the light in the second linear polarization plate (81) disappears. On the other hand, the light reflected from the inner surface of the transparent inspection object (3) and incident on the observation device (8) reciprocally passes through the transparent inspection object (3). When stress is present in the transparent inspection object (3), the transmitted linearly polarized light has an optical path difference between the component linearly polarized light vibrating in two directions orthogonal to each other due to the photoelastic effect. As a result, when linearly polarized light is made incident on the transparent inspection object (3) in which stress is present, the next development occurs.
(1)直線偏光がだ円偏光や円偏光に変わる。(1) Linearly polarized light changes to elliptical or circularly polarized light.
(2)直交する状況では光路差が光源波長の0倍、±1
倍、±2倍…の部分が暗く見える。(2) In the situation of being orthogonal, the optical path difference is 0 times the light source wavelength, ± 1
Double, ± 2 times ... part looks dark.
(3)応力の働く部分が入射直線偏光振動軸と平行な部分
も暗く見える。(3) The part where the stress acts is parallel to the incident linearly polarized light vibration axis also appears dark.
(4)偏光の振動軸の方向は変化しない。(4) The direction of the vibration axis of polarized light does not change.
この明暗分布の存在のため、第2の直線偏光板(81)に干
渉縞模様が見える。しかも上述のとおり、透明被検査体
(3)の表面で反射した光はこの観察のじゃまにならな
い。Due to the existence of this light-dark distribution, an interference fringe pattern is visible on the second linear polarizing plate (81). Moreover, as described above, the transparent inspection object
The light reflected on the surface of (3) does not interfere with this observation.
つぎに、本実施例において、切換え装置(7)を切換え
て、第1の光源(4)を停止し第2の光源(5)を作動させ
る。すると、直線偏光である測定光が透明被検査体(3)
を透過し観察装置(8)に入射する。(ただし、図では被
検査体(3)を中空とし、測定光の透過に支障がないもの
とした。)そして、被検査体(3)内に応力が存在する
と、上述と同様、光弾性効果によって直線偏光が互いに
直交する2方向の成分直線偏光間に光路差を生じ、この
結果、観察装置(8)の第2の直線偏光板(81)に干渉縞模
様が見える。Next, in this embodiment, the switching device (7) is switched to stop the first light source (4) and activate the second light source (5). Then, the measurement light, which is linearly polarized light, is transmitted to the transparent inspection object (3).
Through the observation device (8). (However, in the figure, the object to be inspected (3) is made hollow so that there is no hindrance to the transmission of the measurement light.) If stress is present in the object to be inspected (3), the photoelastic effect is the same as described above. Therefore, an optical path difference is generated between the component linearly polarized lights in two directions in which the linearly polarized lights are orthogonal to each other, and as a result, an interference fringe pattern is visible on the second linearly polarizing plate (81) of the observation device (8).
しかして、このような反射光あるいは透過光による光弾
性測定において、観察された干渉縞模様の濃淡比が被検
査体(3)内に存在する応力の大小に関係するので、干渉
縞模様から、被検査体(3)内における応力の大きさおよ
びその所在部位も知ることができる。Then, in the photoelasticity measurement by such reflected light or transmitted light, since the density ratio of the observed interference fringe pattern is related to the magnitude of the stress existing in the inspection object (3), from the interference fringe pattern, It is also possible to know the magnitude of the stress in the inspected body (3) and its location.
また、本実施例測定装置において、光源(4),(5)を被検
査体(3)の表側と裏側との両方に配設して所望のものを
選択的に作動するようにしたので、1個の装置で反射光
による観察も透過光による観察も自在に行なうことがで
きる。Further, in the measuring apparatus of the present embodiment, since the light sources (4) and (5) are arranged on both the front side and the back side of the object to be inspected (3) to selectively operate the desired one, Observation with reflected light and observation with transmitted light can be freely performed with one device.
つぎに、光弾性測定装置の他の実施例を第2図に示す。
このものは光弾性効果による偏光特性の変化を色の変化
として観察できるようにしたもので、第1,第2の光源
(4),(5)の各直線偏光板(42),(52)と透明被検査体(3)
との間にそれぞれ鋭敏色板と称される四分の一波長板(4
3),(53)を介挿し、さらに、被検査体(3)と観察装置(8)
の第2の直線偏光板(81)との間に第2の四分の一波長板
(83)を介挿したものである。このものは、光源(4),(5)
の直線偏光板(42),(52)によって変成された直線偏光が
四分の一波長板(43),(53)によって円偏光に変成し、こ
の円偏光が透明被検査体(3)内の光弾性効果によって振
動軸の直交する両方向成分に光路差を生じ、第2の四分
の一波長板(83)および第2の直線偏光板(81)を通して見
ると各色について光路差を生じ光源波長の0倍,±1
倍,±2倍…の部分が暗くなり、応力が存在する部位に
応力の大きさに応じてブルーまたは橙黄色の色模様を観
察できる。この色模様の部位および濃淡から被検査体
(3)内に応力の有無、その大小およびその所在部位を測
定できる。そうして、この他の実施例においても、切換
え装置を操作することによって1個の装置でありなが
ら、反射光による観察も透過光による観察も自在に行な
うことができる。なお、上述の各四分の一波長板(43),
(53),(83)を着脱自在に構成し、必要に応じて装着して
使用してもよい。Next, another embodiment of the photoelasticity measuring device is shown in FIG.
This is a device that allows observation of changes in polarization characteristics due to the photoelastic effect as changes in color.
Each of the linear polarizing plates (42) and (52) of (4) and (5) and the transparent inspection object (3)
And a quarter-wave plate (4
3) and (53) are inserted, and the device under test (3) and observation device (8)
Second quarter-wave plate between the second linear polarizing plate (81)
It is an insertion of (83). This is a light source (4), (5)
The linearly polarized light transformed by the linear polarizing plates (42), (52) of the above is transformed into circularly polarized light by the quarter-wave plates (43), (53), and the circularly polarized light is transmitted inside the transparent inspection object (3). Due to the photoelastic effect of, the optical path difference is generated in both directions components of the vibration axis, and when viewed through the second quarter wavelength plate (83) and the second linear polarizing plate (81), the optical path difference is generated for each color. 0 times the wavelength, ± 1
Double, ± 2 times ... become darker, and a blue or orange-yellow color pattern can be observed in the area where the stress exists depending on the magnitude of the stress. The part to be inspected and the shade of this color pattern
(3) Presence / absence of stress, its magnitude, and its location can be measured. Thus, also in this other embodiment, by operating the switching device, it is possible to perform observation by reflected light and observation by transmitted light at the same time with one device. In addition, each quarter wave plate (43),
The (53) and (83) may be configured to be detachable, and may be attached and used as needed.
なお、前述の各実施例において、測定に使用する直線偏
光は白熱電球の光を直線偏光板を透過させることによっ
て得られたが、本考案においては他の手段、たとえば直
線偏光を発生するガスレーザーを用いる法、シンクロト
ロン放射で発生する直線偏光を用いる法などでもよい。
ただし、円偏光はいったん直線偏光を発生させてからこ
れを四分の一波長板を透過させるかあるいはフレネルプ
リズムを透過されて円偏光化してもよい。In addition, in each of the above-described embodiments, the linearly polarized light used for the measurement was obtained by transmitting the light of the incandescent lamp through the linearly polarizing plate, but in the present invention, other means, for example, a gas laser that generates linearly polarized light is used. And a method using linearly polarized light generated by synchrotron radiation may be used.
However, circularly polarized light may be converted into circularly polarized light by first generating linearly polarized light and then transmitting the linearly polarized light through a quarter-wave plate or by being transmitted through a Fresnel prism.
このように、本考案の光弾性測定装置は透明被検査体の
表側および裏側からそれぞれ偏光系測定光を投射する光
源を対設し、これら光源を随意に切換え作動させるの
で、1個の測定装置でありながら反射光を利用した測定
と透過光を利用した測定とに兼用でき、特に全体が透明
な被検査体と非透光性部材を内包した透明被検査体とを
ランダム順序で検査する場合に極めて有利である。As described above, the photoelasticity measuring device of the present invention has a pair of light sources for projecting the polarization measuring light from the front side and the back side of the transparent object to be inspected, and these light sources are arbitrarily switched to operate. However, it can be used for both the measurement using reflected light and the measurement using transmitted light, especially when inspecting an inspected object that is entirely transparent and a transparent inspected object that includes a non-translucent member in a random order. Is extremely advantageous to
第1図は本考案の光弾性測定装置の一実施例の説明図、
第2図は他の実施例の説明図である。 (3)……被検査体、(4),(5)……光源 (41),(51)……白熱電球、(42),(52)……直線偏光板 (43),(53),(83)……四分の一波長板 (7)……切換え装置、(8)……観察装置 (81)……直線偏光板FIG. 1 is an explanatory view of an embodiment of the photoelasticity measuring device of the present invention,
FIG. 2 is an explanatory diagram of another embodiment. (3) …… Inspected object, (4), (5) …… Light source (41), (51) …… Incandescent lamp, (42), (52) …… Linear polarizing plate (43), (53) , (83) ...... Quarter wave plate (7) ... Switching device, (8) ... Observation device (81) ... Linear polarizing plate
Claims (1)
配設され上記被検査体に偏光系測定光を投射する複数の
光源と、これら光源のうち表側または裏側のいずれか一
方の光源を選択的に作動させる切換え装置とを具備し、
上記被検査体から反射または透過して来た上記測定光の
光弾性効果による変化を観察して上記被検査体内に存在
する応力を測定することを特徴とする光弾性測定装置。1. A plurality of light sources arranged on the front side and the back side of a transparent object to be inspected and projecting polarization system measurement light onto the object to be inspected, and one of these light sources, the front side or the back side, is selected. Equipped with a switching device that operates
A photoelasticity measuring device characterized by observing a change due to a photoelastic effect of the measurement light reflected or transmitted from the object to be inspected to measure a stress existing in the object to be inspected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16412288U JPH0628659Y2 (en) | 1988-12-19 | 1988-12-19 | Photoelasticity measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16412288U JPH0628659Y2 (en) | 1988-12-19 | 1988-12-19 | Photoelasticity measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0283438U JPH0283438U (en) | 1990-06-28 |
JPH0628659Y2 true JPH0628659Y2 (en) | 1994-08-03 |
Family
ID=31449454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16412288U Expired - Lifetime JPH0628659Y2 (en) | 1988-12-19 | 1988-12-19 | Photoelasticity measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0628659Y2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4317558B2 (en) * | 2006-08-23 | 2009-08-19 | 株式会社堀場製作所 | Sample analysis method, sample analysis apparatus, and program |
KR20140132773A (en) * | 2012-04-23 | 2014-11-18 | 쌩-고벵 글래스 프랑스 | Method and arrangement for measuring blowing structures of a prestressed disc |
JP6443946B2 (en) * | 2014-06-03 | 2018-12-26 | 学校法人沖縄科学技術大学院大学学園 | System and method for acquiring force based on photoelasticity |
-
1988
- 1988-12-19 JP JP16412288U patent/JPH0628659Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0283438U (en) | 1990-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4859066A (en) | Linear and angular displacement measuring interferometer | |
JP2997047B2 (en) | Optical measuring device | |
JP2007024827A (en) | Phase shift interferometer | |
KR20000016177A (en) | Interferometer for measuring thickness variations of semiconductor wafers | |
CN200941068Y (en) | Coherent polarization matrix measuring system | |
JP2002071515A (en) | Measuring apparatus and measuring method | |
US3434787A (en) | Double axes interferometer | |
US4523849A (en) | Front lighted optical tooling method and apparatus | |
US4072422A (en) | Apparatus for interferometrically measuring the physical properties of test object | |
JPH0628659Y2 (en) | Photoelasticity measuring device | |
JPS6159224A (en) | Method and device for measuring state of polarization of quasi-monochromatic light for actual time | |
JPS5818604B2 (en) | How to measure thickness | |
KR920700394A (en) | Optoelectronic devices for remote measurement of physical size | |
JP2005062012A (en) | Vibration-proof type interferometer device | |
CN110763633A (en) | Wide-range imaging type birefringence distribution measuring device and method | |
SU932219A1 (en) | Two-beam interferometer | |
SU1716406A1 (en) | Portable x-ray goniometer for determining stresses in large objects | |
JPS58225304A (en) | Optical type mechanical quantity measuring apparatus | |
JPS63113503A (en) | Wollaston prism | |
JP2503037Y2 (en) | Cross section measuring instrument | |
JPH0517645Y2 (en) | ||
JPS55140102A (en) | Measuring device for flatness of inspected plane glass | |
JPH0244204A (en) | Optical fiber type interference film thickness meter | |
JP2521324Y2 (en) | Interferometer | |
JPH03225207A (en) | Pseudo transmission illuminator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |