JPH06285455A - Treatment of waste liquid - Google Patents

Treatment of waste liquid

Info

Publication number
JPH06285455A
JPH06285455A JP8213493A JP8213493A JPH06285455A JP H06285455 A JPH06285455 A JP H06285455A JP 8213493 A JP8213493 A JP 8213493A JP 8213493 A JP8213493 A JP 8213493A JP H06285455 A JPH06285455 A JP H06285455A
Authority
JP
Japan
Prior art keywords
waste liquid
distillation
components
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8213493A
Other languages
Japanese (ja)
Inventor
Shinichi Nakamura
信一 中村
Kenji Nakamura
中村  憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T R P KK
Original Assignee
T R P KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T R P KK filed Critical T R P KK
Priority to JP8213493A priority Critical patent/JPH06285455A/en
Publication of JPH06285455A publication Critical patent/JPH06285455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To obtain a method for treating a waste liq. with good treating efficiency as a whole by providing a method with a distillation process for separating water and components with approximately the same b.p. as that of water or lower than that in a waste liq. and an oxidizable substance-decreasing process electrolyzing the separated components by energizing a direct current. CONSTITUTION:In the method for treating a waste liq., at first, the waste liq. is fed in a distillation tank 1, where the superheating temp. is set at 104 deg.C and water and components with approximately the same b.p. as that of water or lower than that among the components in the waste liq. are separated by means of distillation. Evaporated components are cooled and fed into an adjusting tank 2. Then, while they are fed into an electrolytic tank 3 by using a pump P, they are electrolyzed by energizing a direct current. In this process, oxidizable substances such as org. substances in the waste liq. are oxidatively decomposed by anodic oxidative reaction and odorous components in the waste liq. are almost decomposed in this process. Namely, the oxidizable substances are decomposed into carbon dioxide, nitrogen and water here in a short time by a strong oxidative action at the anode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、廃棄液の処理方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste liquid treatment method.

【0002】[0002]

【従来の技術】酸・アルカリ表面処理施設、紡績・繊維
製品、水産食料品や畜産食料品の製造、電気メッキ、写
真、印刷等の各種産業分野で使用された水はその利用の
過程で種々の物質により汚染される。これらは最終的に
河川や海洋などに放流されるが、河川などの環境保全の
観点から廃棄液の水質基準が制定されており、この水質
基準に適合させるべく放流する前に廃棄液の化学的酸素
要求量(COD値)を低減する必要がある。
2. Description of the Related Art Water used in various industrial fields such as acid / alkali surface treatment facilities, spinning / textile products, production of marine food products and livestock food products, electroplating, photography, printing, etc. Polluted by These are finally discharged into rivers and oceans, but the water quality standards for waste liquids have been established from the viewpoint of environmental protection of rivers, etc. It is necessary to reduce the oxygen demand (COD value).

【0003】そこで、発明者は化学的酸素要求量の低減
能力に優れる廃棄液の処理方法を平成5年3月1日に提
案した(特願平5−39732号)。この方法は、電解
質溶液である又は電解質溶液とした廃棄液に直流電流を
流すことにより、これによって生成する発生期活性酸素
が、廃棄液中の被酸化物質と反応しこれを酸化分解させ
る廃棄液処理工程を有するものである。この方法による
と、発生期活性酸素は酸化能力が極めて強いので廃棄液
の化学的酸素要求量の低減能力に優れるという利点があ
る。
Therefore, the inventor proposed on March 1, 1993, a method for treating a waste liquid having an excellent ability to reduce the demand for chemical oxygen (Japanese Patent Application No. 5-39732). This method is a waste liquid which is an electrolyte solution or is made into an electrolyte solution by passing a direct current, and the nascent active oxygen generated thereby reacts with the oxidizable substance in the waste liquid to oxidize and decompose it. It has a processing step. According to this method, since nascent active oxygen has an extremely strong oxidizing ability, it has an advantage of being excellent in reducing the chemical oxygen demand of the waste liquid.

【0004】ところで水が汚染される態様には種々のも
のがある。つまり廃棄液中の被酸化物質の濃度が極めて
高い場合や、廃棄液中に固形分が含まれる場合などもあ
る。したがって実際に上記の処理方法で廃棄液の化学的
酸素要求量を低減する際、処理時間に異常に長時間を要
したり、固形分が目詰まりを引き起こしたりし、処理効
率が悪い場合があった。
There are various ways in which water is contaminated. In other words, the concentration of the oxidizable substance in the waste liquid may be extremely high, or the waste liquid may contain solids. Therefore, when actually reducing the chemical oxygen demand of the waste liquid by the above treatment method, the treatment time may take an abnormally long time or the solid content may cause clogging, resulting in poor treatment efficiency. It was

【0005】[0005]

【発明が解決しようとする課題】そこで、この発明では
全体として処理効率の良い廃棄液の処理方法を提起する
ことを課題とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to propose a method for treating waste liquid, which has a high treatment efficiency as a whole.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
この発明では次のような技術的手段を講じている。この
発明の廃棄液の処理方法は、廃棄液中の成分のうち、水
分及び水分の沸点とほぼ同じかこれ以下の沸点を有する
成分を蒸留により分離する蒸留工程と、蒸留により分離
された成分に直流電流を流して電解する被酸化物質低減
工程とを具備することを特徴とする。
In order to solve the above problems, the present invention takes the following technical means. The method for treating waste liquid according to the present invention comprises, of the components in the waste liquid, a distillation step of separating water and a component having a boiling point which is substantially the same as or lower than the boiling point of water, and a component separated by distillation. And a step of reducing an oxidizable substance in which a direct current is applied to electrolyze.

【0007】前記蒸留により分離された成分が電解質溶
液でない場合、これを電解質溶液とする工程を具備する
こととする。
When the component separated by the distillation is not an electrolyte solution, a step of using this as an electrolyte solution is provided.

【0008】[0008]

【作用】上記の手段を採用した結果、この発明は以下の
ような作用を有する。蒸留工程に於いて、廃棄液中の成
分のうち水分及び水分の沸点とほぼ同じかこれ以下の沸
点を有する成分を蒸留により分離し、被酸化物質低減工
程に供給する。換言すると廃棄液中の成分から、水分の
沸点を超える成分や固形分を除去して被酸化物質低減工
程に供給することができる。
As a result of adopting the above means, the present invention has the following effects. In the distillation step, among the components in the waste liquid, water and components having a boiling point which is substantially the same as or lower than the boiling point of water are separated by distillation and supplied to the oxidizable substance reducing step. In other words, it is possible to remove components and solids having a boiling point higher than that of water from the components in the waste liquid and supply the components to the oxidant-reducing step.

【0009】ここで水分の沸点を超える成分は通常高濃
度の被酸化物質を含有し、また、固形分は電解する際の
障害物となり易い。一方、被酸化物質低減工程に於いて
蒸留により分離された成分に直流電流を流して電解する
と、これにより生成する発生期活性酸素が分離された成
分中の被酸化物質を酸化分解する。
Here, the component having a boiling point higher than that of water usually contains a high concentration of a substance to be oxidized, and the solid content is likely to become an obstacle during electrolysis. On the other hand, when a direct current is applied to the component separated by distillation in the step of reducing the oxidizable substance and electrolysis is performed, the nascent active oxygen generated thereby oxidatively decomposes the oxidizable substance in the separated component.

【0010】[0010]

【実施例】以下、この発明の構成を実施例として示した
図面を参照して説明する。図1及び図2に示すように、
この実施例では次のような機構を有する廃棄液の処理装
置を形成した。蒸留槽1と、前記蒸留槽1で分離された
成分が送られる調整槽2と、前記調整槽2に塩化ナトリ
ウム水溶液を供給する塩化ナトリウム水溶液供給槽4
と、供給される廃棄液を電解する電解通路30を有する
電解槽3と、前記電解通路30を通過後の処理済廃棄液
を霧状にして大気中に放出する放出機構5とである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below with reference to the accompanying drawings. As shown in FIGS. 1 and 2,
In this example, a waste liquid treating apparatus having the following mechanism was formed. Distillation tank 1, adjustment tank 2 to which the components separated in said distillation tank 1 are sent, and sodium chloride aqueous solution supply tank 4 for supplying sodium chloride aqueous solution to said adjustment tank 2.
An electrolytic bath 3 having an electrolysis passage 30 for electrolyzing the supplied waste liquid, and a discharge mechanism 5 for atomizing the treated waste liquid after passing through the electrolysis passage 30 to the atmosphere.

【0011】蒸留槽1では、廃棄液の加熱のために公知
のバンド・ヒーター(図示せず)を使用した。この蒸留
槽1で、廃棄液中の成分のうち水分及び水分の沸点とほ
ぼ同じかこれ以下の沸点を有する成分を蒸留により分離
する。10は公知の構造を有する冷却部である。続く調
整槽2は蒸留により分離された成分が電解質溶液でない
場合これを電解質溶液とするため、また、分離された成
分が電解質溶液である場合これを更に電気伝導率の高い
電解質溶液とするための槽である。後の被酸化物質低減
工程で廃棄液中の被酸化物質の濃度をより効率良く低減
するため、塩化ナトリウム水溶液供給槽4から供給され
る塩化ナトリウム水溶液をここで混合する。また、次述
の電解通路30通過後の廃棄液を再度フィード・バック
経路Rを通じて調整槽2に戻すことによって被酸化物質
低減工程で処理すべき廃棄液の被酸化物質の濃度を希釈
する。
In the distillation tank 1, a known band heater (not shown) is used for heating the waste liquid. In this distillation tank 1, among the components in the waste liquid, water and components having a boiling point which is substantially the same as or lower than the boiling point of the water are separated by distillation. Reference numeral 10 is a cooling unit having a known structure. In the subsequent adjusting tank 2, when the component separated by distillation is not an electrolyte solution, it is used as an electrolyte solution, and when the separated component is an electrolyte solution, it is used as an electrolyte solution having a higher electric conductivity. It is a tank. In order to more efficiently reduce the concentration of the oxidizable substance in the waste liquid in the subsequent oxidizable substance reducing step, the sodium chloride aqueous solution supplied from the sodium chloride aqueous solution supply tank 4 is mixed here. The concentration of the oxidizable substance of the waste liquid to be treated in the oxidizable substance reducing step is diluted by returning the waste liquid after passing through the electrolytic passage 30 described below to the adjusting tank 2 through the feed back route R again.

【0012】電解槽3には次のような電解通路30が形
成されている。尚、31は整流機である。図2に示すよ
うに、電解通路30は陽極電極32の両側に陰極電極3
3を配設し、これら相互の間に形成されている。この電
解通路30を連設(図示せず)している。陽極電極32
と陰極電極33との間の間隔は約2mmに設定しており、
連設した電解通路30の全長は約500mmに設定してい
る。両電極の間には短絡防止のためにパッキン34が介
装されており、このパッキン34は外組み部分を残して
内部をくり抜いた枠形状としている。くり抜いた内部の
部分が電解通路30を形成する。両陰極電極33の外側
にはパッキン34及び塩化ビニール板35を介してステ
ンレス板36を外装している。
The following electrolytic passage 30 is formed in the electrolytic cell 3. Incidentally, 31 is a rectifier. As shown in FIG. 2, the electrolytic passage 30 has a cathode electrode 3 on both sides of an anode electrode 32.
3 are provided and formed between these. The electrolytic passages 30 are continuously provided (not shown). Anode electrode 32
The distance between the cathode and the cathode electrode 33 is set to about 2 mm,
The total length of the electrolytic passages 30 connected to each other is set to about 500 mm. A packing 34 is interposed between both electrodes to prevent a short circuit, and the packing 34 has a frame shape in which the inside is hollowed out leaving an externally assembled portion. The hollowed-out internal portion forms the electrolytic passage 30. A stainless steel plate 36 is provided outside the both cathode electrodes 33 via a packing 34 and a vinyl chloride plate 35.

【0013】廃棄液は一方のステンレス板36の下方に
貫通する孔Hから流入して、塩化ビニール板35、陰極
電極33のそれぞれを貫通する孔Hを通り、陽極電極3
2と接触し、陰極電極33と陽極電極32との間の電解
通路30(パッキン34の内部の部分)を通り、陽極電
極32の上方を貫通する孔Hを通り、陽極電極32の逆
面に至る。この逆面側の陰極電極33と陽極電極32と
の間の電解通路30(パッキン34の内部の部分)を通
り、前記と同様の陰極電極33、塩化ビニール板35、
ステンレス板36のそれぞれの下方を貫通する孔(図示
せず)を通り排出される。このようにして陽極電極32
と陰極電極33との間に廃棄液の通路が形成されてい
る。
The waste liquid flows in through a hole H penetrating below one stainless steel plate 36, passes through a hole H penetrating each of the vinyl chloride plate 35 and the cathode electrode 33, and passes through the anode electrode 3.
2 through the electrolytic passage 30 (inside the packing 34) between the cathode electrode 33 and the anode electrode 32, through the hole H penetrating above the anode electrode 32, and on the opposite surface of the anode electrode 32. Reach The same cathode electrode 33, vinyl chloride plate 35, as described above, is passed through the electrolytic passage 30 (inside the packing 34) between the cathode electrode 33 and the anode electrode 32 on the opposite surface side.
Each of the stainless steel plates 36 is discharged through a hole (not shown) passing through the lower part thereof. In this way, the anode electrode 32
A waste liquid passage is formed between the cathode electrode 33 and the cathode electrode 33.

【0014】電解槽3と放出機構5との間に、電解通路
30で廃棄液中に生成した次亜塩素酸を分解する触媒槽
6を設けた。電解通路30の通過後の廃棄液中には次亜
塩素酸が残存しており、次亜塩素酸は触媒槽内の次述の
過酸化ニッケル触媒と反応すると塩化ナトリウムとな
る。触媒として、過酸化ニッケル触媒を用いることが出
来る。例えば、三二酸化ニッケル水和物(Ni2 3
2 O)単独又はこれを四三酸化ニッケル水和物(Ni
3 4 .H2 O)及び/又は二酸化ニッケル水和物(N
iO2 .H2 O)の混合物を有効成分とするものを使用
できる。
A catalyst tank 6 for decomposing hypochlorous acid formed in the waste liquid in the electrolytic passage 30 is provided between the electrolytic tank 3 and the discharge mechanism 5. Hypochlorous acid remains in the waste liquid after passing through the electrolytic passage 30, and the hypochlorous acid becomes sodium chloride when it reacts with the nickel peroxide catalyst described below in the catalyst tank. A nickel peroxide catalyst can be used as the catalyst. For example, nickel trioxide hydrate (Ni 2 O 3 .
H 2 O) alone or with nickel trioxide hydrate (Ni
3 O 4 . H 2 O) and / or nickel dioxide hydrate (N
i0 2 . A mixture of H 2 O) as an active ingredient can be used.

【0015】放出機構5にはコンプレッサー50を具備
せしめ、電解通路30を通過後の処理済廃棄液を霧状に
して大気中に放出する。次に、各工程をおって説明す
る。 蒸留工程 廃棄液を蒸留槽1に供給し、ここでバンド・ヒーターで
加熱して蒸留する。この実施例では加熱温度を104℃
に設定し、廃棄液中の成分のうち、水分及び水分の沸点
とほぼ同じかこれ以下の沸点を有する成分を蒸留により
分離した。蒸発した成分は公知の方法で冷却して調整槽
2に供給する。この段階で水分の沸点を超える沸点を有
する成分や固形分は除去されているので、被酸化物質の
濃度はある程度低減しているとともに、電解通路30で
目詰まりを起こす要因を有する固形分は除去される。 調整工程 調整槽2では、塩化ナトリウム水溶液供給槽4から塩化
ナトリウム水溶液を注入し、蒸留により分離した成分と
混合させる。 被酸化物質低減工程 調整槽2からポンプPを用いて電解通路30に廃棄液を
送り込みながら、これに直流電流を流して電解する。こ
の工程に於いて陽極酸化反応により廃棄液中の有機物等
の被酸化物質は酸化分解する。廃棄液中の臭いの成分も
この工程で殆ど分解してしまう。電解通路30を通過後
の廃棄液は二系統に分離し、一方はフィード・バック経
路Rを通じて電解通路30の前の調整槽2に戻す。他方
は次工程へと進める。
The discharging mechanism 5 is equipped with a compressor 50, and the treated waste liquid after passing through the electrolytic passage 30 is atomized and discharged into the atmosphere. Next, each step will be described. Distillation step The waste liquid is supplied to the distillation tank 1, where it is heated by a band heater and distilled. In this embodiment, the heating temperature is 104 ° C.
Then, among the components in the waste liquid, water and components having a boiling point which is substantially the same as or lower than the boiling point of water are separated by distillation. The evaporated component is cooled by a known method and supplied to the adjusting tank 2. At this stage, components and solids having a boiling point higher than that of water are removed, so that the concentration of the oxidizable substance is reduced to some extent and solids having a factor causing clogging in the electrolytic passage 30 are removed. To be done. Adjustment Step In the adjustment tank 2, the sodium chloride aqueous solution is injected from the sodium chloride aqueous solution supply tank 4 and mixed with the components separated by distillation. Oxidized Substance Reduction Step While the waste liquid is sent from the adjusting tank 2 to the electrolysis passage 30 by using the pump P, a direct current is passed through the waste liquid to electrolyze. In this process, the anodizing reaction oxidizes and decomposes the oxidizable substances such as organic substances in the waste liquid. Most of the odorous components in the waste liquid are also decomposed in this process. The waste liquid after passing through the electrolysis passage 30 is separated into two systems, and one of them is returned to the adjustment tank 2 in front of the electrolysis passage 30 through the feed back route R. The other proceeds to the next step.

【0016】ここで、被酸化物質は陽極電極32に於け
る強力な酸化作用により短時間で二酸化炭素、窒素、水
に分解される。このような酸化反応の機構についてはベ
ンゼン類からフェノール、キノン類を工業的に合成する
ための公知の電解酸化のプロセスからも説明することが
できる。しかし、この実施例では電解質溶液中に於いて
短時間でかなり分子量の大きい複雑な有機物が二酸化炭
素、水、窒素ガスにまで分解されており、このような酸
化反応の機構としては最近研究されている電解質中の発
生期活性酸素、スーパーオキシドイオン、ペルオキシド
イオン、ヒドロペルオキシラジカル、ヒドロペルオキシ
ドイオンなどの活性酸素種の働きによるものと考えられ
る。
Here, the substance to be oxidized is decomposed into carbon dioxide, nitrogen and water in a short time by the strong oxidizing action of the anode 32. The mechanism of such an oxidation reaction can also be explained from the known electrolytic oxidation process for industrially synthesizing phenol and quinones from benzenes. However, in this example, a complex organic matter having a considerably large molecular weight was decomposed into carbon dioxide, water, and nitrogen gas in an electrolyte solution in a short time, and the mechanism of such an oxidation reaction has recently been studied. It is considered to be due to the action of active oxygen species such as nascent active oxygen, superoxide ion, peroxide ion, hydroperoxy radical, and hydroperoxide ion in the existing electrolyte.

【0017】すなわち、電解質溶液に電流を流すと液相
である廃棄液中に一種の低温酸素プラズマ類似状態が生
成し、これには前記のような活性酸素種や遊離電子が含
まれ、これらが有機物質に対して種々の酸化反応を起こ
し低分子化合物を経由して二酸化炭素と水などにまで酸
化分解し、究極的には無機物質だけが溶液中に残存する
ものと推測される。つまりこの工程に於ける酸化反応
は、電極酸化反応に於ける酸素活性種の強力な酸化分解
作用によるものと考えられる。 放出工程 電解通路30を通過し触媒槽6で次亜塩素酸を分解した
後の処理済廃棄液は被酸化物質が殆ど二酸化炭素や水や
窒素ガスにまで分解しており、これを霧状にして大気中
に放出する。次に、更に詳細に実施例を説明する。
That is, when an electric current is applied to the electrolyte solution, a kind of low-temperature oxygen plasma-like state is generated in the waste liquid which is a liquid phase, which contains the active oxygen species and free electrons as described above. It is presumed that various oxidative reactions with organic substances cause oxidative decomposition into carbon dioxide and water via low molecular weight compounds, and ultimately only inorganic substances remain in the solution. That is, it is considered that the oxidation reaction in this step is due to the strong oxidative decomposition action of the oxygen active species in the electrode oxidation reaction. Release process The treated waste liquid after passing through the electrolytic passage 30 and decomposing hypochlorous acid in the catalyst tank 6 decomposes almost all the oxidizable substances into carbon dioxide, water and nitrogen gas, and atomizes this. Released into the atmosphere. Next, examples will be described in more detail.

【0018】蒸留槽1に於いて約104℃で蒸留して分
離した廃棄液中の成分を調整槽2へと供給する。この時
に使用したバンド・ヒーターの電力は15kWであっ
た。一方、塩化ナトリウム水溶液供給槽4から25%塩
化ナトリウム水溶液を8cc/分で調整槽2に供給し、
これらが混合したものをポンプPで360cc/分の流
量で電解通路30に送り込みながらこれに直流電流10
Aを流す。この際の電圧は5Vであった。
The components in the waste liquid separated by distillation at about 104 ° C. in the distillation tank 1 are supplied to the adjustment tank 2. The power of the band heater used at this time was 15 kW. On the other hand, 25% sodium chloride aqueous solution is supplied from the sodium chloride aqueous solution supply tank 4 to the adjusting tank 2 at 8 cc / min,
While feeding a mixture of these into the electrolysis passage 30 with a pump P at a flow rate of 360 cc / min, a direct current 10
Flow A. The voltage at this time was 5V.

【0019】そして、電解通路30を通過させた後の被
酸化物質が低減した処理水を240cc/分の流量で電
解通路30の前側の調整槽2にフィード・バック経路R
により戻し、電解通路30へと送るべき廃棄液中の被酸
化物質の濃度を希釈した。フィード・バックする量は蒸
留した廃棄液のCOD値に対応して0から30倍還流ま
での間で適宜選択する。
Then, the treated water in which the oxidizable substance is reduced after passing through the electrolytic passage 30 is fed back to the adjusting tank 2 on the front side of the electrolytic passage 30 at a flow rate of 240 cc / min.
And the concentration of the oxidizable substance in the waste liquid to be sent to the electrolytic passage 30 was diluted. The amount to be fed back is appropriately selected from 0 to 30 times reflux according to the COD value of the distilled waste liquid.

【0020】そして残りの120cc/分の流量の処理
水を触媒槽6で次亜塩素酸を分解した後、圧縮空気で5
〜30μm程度の霧状にして大気中に放出した。ここで
分解後の処理水を蒸留槽1の加熱された外装を当てるこ
とによりこれを大気中に蒸発させてもよい。また、大気
中に放出や蒸発をさせずに河川などに放流7してもよ
い。
Then, the remaining treated water having a flow rate of 120 cc / min is decomposed in the catalyst tank 6 to remove hypochlorous acid and then treated with compressed air.
It was atomized into about 30 μm and discharged into the atmosphere. Here, the treated water after decomposition may be evaporated into the atmosphere by applying the heated exterior of the distillation tank 1. Alternatively, the water may be discharged 7 into a river without being released or evaporated into the atmosphere.

【0021】また、蒸留槽1に残留した水分の沸点を超
える成分や固形分は、被酸化物質低減処理の終了後に蒸
留槽1を600℃程度まで昇温して灰化した。少量の灰
分が残り、これを下方の弁から取出し廃棄した。なお、
1つの調整槽に対して蒸発槽を2つ設けて(図示せ
ず)、一側が蒸留を終了したら、他側で蒸留を開始し同
時に一側の蒸留後の残留物を取出して焼却するように
し、これを交互に反復すると、いずれかが蒸留を行って
いる時は他方は残留物の取出しを行うことができるの
で、処理効率が更に向上する。また、蒸留槽を公知の濡
れ壁式又は段式の構造(図示せず)とし、蒸留槽の下方
に在る比重が重い、水分の沸点を超える成分を蒸留と並
行しつつ取出し、この取出した成分を焼却するようにし
てもよい。このようにしても処理効率をより向上させる
ことができる。
Further, the components and the solid content of the water remaining in the distillation tank 1 which exceeds the boiling point of the water were ashed by raising the temperature of the distillation tank 1 to about 600 ° C. after the completion of the oxidizing substance reduction treatment. A small amount of ash remained, which was removed from the lower valve and discarded. In addition,
Provide two evaporation tanks (not shown) for one adjustment tank, and when one side finishes distillation, start distillation on the other side and at the same time take out the residue after distillation on one side and incinerate it. By repeating this alternately, when one is performing distillation, the other can take out the residue, so that the treatment efficiency is further improved. Further, the distillation tank has a well-known wet wall type or stepped structure (not shown), and the components below the distillation tank having a large specific gravity and exceeding the boiling point of water are taken out in parallel with the distillation and taken out. The components may be incinerated. Even in this case, the processing efficiency can be further improved.

【0022】上記のようにして各種廃棄液について、蒸
留前、蒸留後、及び電解通路30通過後の廃棄液の含有
する化学的酸素要求量(COD値)、残留した灰分等を
測定した。なお、下記の廃棄液の処理については既述の
フィード・バックは行わなかった。これらの廃棄液の特
徴であるが、フィルム現像廃液はゼラチン等によりCO
D値が高く、また硫酸ナトリウムや無機塩を多く含有す
る。フォトレジスト中間体合成廃液はナフタレンやベン
ゼン系の誘導体を含み、塩化ナトリウムと硫酸ナトリウ
ムとを約20%含有する。無電解メッキ廃液はニッケル
やオルトリン酸(H 3 PO4 )等を含み、無機物を約7
%、有機酸を約6%含有する。写真廃液はメチルアミノ
フェノール・ハイドロキノン等を含み、無機塩を約9%
含有する。印刷廃液(刷版)や印刷廃液(PS版)は写
真廃液と同様である。結果を表1に記載する。
As described above, various waste liquids are steamed.
Inclusion of waste liquid before distillation, after distillation, and after passing through the electrolytic passage 30
Chemical oxygen demand (COD value), residual ash content, etc.
It was measured. Regarding the treatment of the following waste liquid,
No feed back was done. The characteristics of these waste liquids
By the way, the film development waste liquid is CO
High D value, and contains a lot of sodium sulfate and inorganic salts
It Waste liquid of photoresist intermediate synthesis is naphthalene or benzene.
Contains zen-based derivatives, sodium chloride and sodium sulfate
And about 20%. Electroless plating waste liquid is nickel
Or orthophosphoric acid (H 3POFour) Etc., including about 7
%, About 6% of organic acid. Photo waste liquid is methylamino
Containing phenol / hydroquinone, etc., inorganic salt approx. 9%
contains. Printing waste liquid (press plate) and printing waste liquid (PS plate) are copied
It is the same as the true waste liquid. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】蒸留後の廃棄液中のCOD値は蒸留前と比
較すると非常に軽減しているのが分かる。これにより後
の被酸化物質低減工程に於けるCOD値の軽減処理をよ
り効率よく行うことができる。上記実施例の方法による
と、蒸留により分離された成分中の被酸化物質は被酸化
物質低減工程で円滑に酸化分解され、且つ水分の沸点を
超える成分や固形分は被酸化物質低減処理の終了後に蒸
留槽を更に昇温して灰化したら足りるので、全体として
処理効率が良いという利点がある。
It can be seen that the COD value in the waste liquid after distillation is greatly reduced as compared with that before distillation. This makes it possible to more efficiently perform the COD value reduction process in the subsequent oxidized substance reduction step. According to the method of the above example, the oxidizable substance in the component separated by distillation is smoothly oxidatively decomposed in the oxidizable substance reducing step, and the component or solid content exceeding the boiling point of water is the end of the oxidizable substance reducing treatment. Since it is sufficient to further raise the temperature of the distillation tank to ash it later, there is an advantage that the processing efficiency is good as a whole.

【0025】[0025]

【発明の効果】この発明は上述のような構成を有するも
のであり、次の効果を奏する。蒸留により分離された成
分中の被酸化物質は被酸化物質低減工程で円滑に酸化分
解され且つ水分の沸点を超える沸点を有する成分や固形
分は別途焼却等の処理を施したら足りるので、全体とし
て処理効率の良い廃棄液の処理方法を提供することが出
来る。
The present invention has the above-mentioned structure and has the following effects. The oxidizable substances in the components separated by distillation are smoothly oxidatively decomposed in the oxidizable substance reducing step, and components and solids having a boiling point higher than the boiling point of water may be treated by incineration or the like separately. It is possible to provide a method for treating waste liquid with good treatment efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の廃棄液の処理方法の実施例を説明す
るシステム・フロー図。
FIG. 1 is a system flow chart explaining an embodiment of a method for treating waste liquid according to the present invention.

【図2】図1の電解通路の構造を説明する分解斜視図。FIG. 2 is an exploded perspective view illustrating the structure of the electrolytic passage of FIG.

【符号の説明】[Explanation of symbols]

1 蒸留槽 3 電解槽 1 Distillation tank 3 Electrolysis tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 廃棄液中の成分のうち、水分及び水分の
沸点とほぼ同じかこれ以下の沸点を有する成分を蒸留に
より分離する蒸留工程と、 蒸留により分離された成分に直流電流を流して電解する
被酸化物質低減工程とを具備することを特徴とする廃棄
液の処理方法。
1. A distillation step of separating, by distillation, water and a component having a boiling point which is substantially equal to or lower than the boiling point of water among the components in the waste liquid, and applying a direct current to the components separated by distillation. A method for treating waste liquid, which comprises a step of reducing an oxidizable substance to be electrolyzed.
【請求項2】 前記蒸留により分離された成分が電解質
溶液でない場合、これを電解質溶液とする工程を具備す
ることを特徴とする請求項1記載の廃棄液の処理方法。
2. The method for treating a waste liquid according to claim 1, further comprising a step of using the component separated by the distillation as an electrolyte solution when the component is not an electrolyte solution.
JP8213493A 1993-04-08 1993-04-08 Treatment of waste liquid Pending JPH06285455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8213493A JPH06285455A (en) 1993-04-08 1993-04-08 Treatment of waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8213493A JPH06285455A (en) 1993-04-08 1993-04-08 Treatment of waste liquid

Publications (1)

Publication Number Publication Date
JPH06285455A true JPH06285455A (en) 1994-10-11

Family

ID=13765949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8213493A Pending JPH06285455A (en) 1993-04-08 1993-04-08 Treatment of waste liquid

Country Status (1)

Country Link
JP (1) JPH06285455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880232A (en) * 2013-03-25 2014-06-25 北京纬纶华业环保科技股份有限公司 Treatment system and method for organic salt-containing wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880232A (en) * 2013-03-25 2014-06-25 北京纬纶华业环保科技股份有限公司 Treatment system and method for organic salt-containing wastewater

Similar Documents

Publication Publication Date Title
Chou et al. Treatment of high strength hexamine-containing wastewater by electro-Fenton method
JP3913923B2 (en) Water treatment method and water treatment apparatus
US3719570A (en) Electrolytic process
Han et al. Mechanism and kinetics of electrochemical degradation of isothiazolin-ones using Ti/SnO2–Sb/PbO2 anode
Idris et al. Degradation of phenol in wastewater using anolyte produced from electrochemical generation of brine solution
US3856640A (en) Production of hydrogen peroxide
Pillai et al. Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell
EP0472705B1 (en) Method and apparatus for treatment of liquid photographic processing wastes
JP3783972B2 (en) Cyanide water treatment method
JP4865651B2 (en) Wastewater treatment method and apparatus
KR100311951B1 (en) Apparatus and method for treating a cyanide waste water using a electrolysis
US20020130048A1 (en) Process for the production of hydrogen peroxide solution
JP2003145161A (en) Water treatment apparatus and water treatment method
JP2001327934A (en) Cleaning device and cleaning method
JPH06285455A (en) Treatment of waste liquid
US5225054A (en) Method for the recovery of cyanide from solutions
JP3400627B2 (en) Method for removing COD from water containing COD
KR100564062B1 (en) The apparatus for hybrid mediated oxidation of destroying organic wastes
WO2003091166A1 (en) Method of disposing of waste water containing organic compound and apparatus
JPH09234471A (en) Treatment of waste liquid containing organic nitrogen compound
JP3615814B2 (en) Method and apparatus for removing nitrate and / or nitrite nitrogen
JPH08141582A (en) Method and apparatus for treating industrial waste water
JPH09239371A (en) Treatment of ethanolamine-containing waste dilute hydrochloric acid
JPH051078B2 (en)
JP2000263049A (en) Method and apparatus for cleaning barn effluent