JPH0628502B2 - Linear motor - Google Patents

Linear motor

Info

Publication number
JPH0628502B2
JPH0628502B2 JP59211341A JP21134184A JPH0628502B2 JP H0628502 B2 JPH0628502 B2 JP H0628502B2 JP 59211341 A JP59211341 A JP 59211341A JP 21134184 A JP21134184 A JP 21134184A JP H0628502 B2 JPH0628502 B2 JP H0628502B2
Authority
JP
Japan
Prior art keywords
mover
stator
teeth
motor
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59211341A
Other languages
Japanese (ja)
Other versions
JPS6192158A (en
Inventor
誠二 山下
宏至 金沢
邦夫 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59211341A priority Critical patent/JPH0628502B2/en
Publication of JPS6192158A publication Critical patent/JPS6192158A/en
Publication of JPH0628502B2 publication Critical patent/JPH0628502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はリニアモータに係り、特にモータ効率を向上さ
せるとともに、簡単な構成にするに好適なリニアモータ
の構造に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor, and more particularly to a linear motor structure suitable for improving motor efficiency and having a simple structure.

〔発明の背景〕[Background of the Invention]

リニアモータは各種の搬送用およびXYテーブルなどに
広く使用されている。そして、基本的には磁石とコイル
間の電磁力により推力を出す第10図に示すようなAC
ブラシレスモータタイプ(実開昭57−130597 号公報参
照)と、可動子、固定子の相互に細かい溝を持つリニア
ステツプモータタイプ、又、リニアインダクシヨンモー
タタイプとがある。第10図のようなACブラシレスモ
ータの場合モータ効率が良い反面、磁石側を可動子とす
る場合、機械部材に取りつけると可動子に鉄粉その他が
吸着するような欠点がある。又、第11図に示すような
リニアステツプモータでは、その動作原理から、高速時
には駆動周波数を高くする必要があり、効率が低下する
欠点がある。さらに又、全く、別な原理で動くリニアイ
ンダクシヨンモータの場合には、励磁電流を供給する必
要から効率が低下する欠点がある。
Linear motors are widely used for various types of transportation and XY tables. Then, basically, the AC as shown in FIG. 10 that produces thrust by the electromagnetic force between the magnet and the coil.
There are a brushless motor type (refer to Japanese Utility Model Laid-Open No. 57-130597), a linear step motor type having fine grooves on the mover and the stator, and a linear induction motor type. In the case of the AC brushless motor as shown in FIG. 10, the motor efficiency is good, but when the magnet side is used as a mover, when it is attached to a mechanical member, there is a drawback that iron powder or the like is adsorbed to the mover. Further, in the linear stepping motor as shown in FIG. 11, due to its operating principle, it is necessary to increase the driving frequency at the time of high speed, and there is a drawback that the efficiency is lowered. Furthermore, in the case of a linear induction motor that operates on a completely different principle, there is a drawback that the efficiency decreases because it is necessary to supply an exciting current.

〔発明の目的〕[Object of the Invention]

本発明の目的は上述した欠点を取り除くことにある。す
なわち、出来るだけ簡単な構造で高速時に効率が良くト
ルク変動の少ないリニアモータを実現することにある。
The object of the invention is to eliminate the drawbacks mentioned above. In other words, it is to realize a linear motor that has a structure that is as simple as possible and that has good efficiency at high speeds and has little torque fluctuation.

〔発明の概要〕[Outline of Invention]

本発明の特徴は、一つの歯に対し毎極毎相コイルを巻装
してなる複数の歯を固定子鉄心に備えた固定子と、該固
定子の歯と僅少なギャップを持って対峙し複数の歯を可
動子鉄心に配する可動子とを有するリニアモータにおい
て、 固定子と可動子を2列備え、該2列の固定子は移動方向
に同位相とし、該2列の固定子間に永久磁石を挾み、さ
らに、移動方向における両可動子の歯のピッチは固定子
の歯のピッチより大きくするとともに、両可動子の移動
方向における歯のピッチは互いに1/2ピッチずらせ、
前記両可動子の歯は共通の可動子鉄心に設けるようにし
たことにある。
A feature of the present invention is that a stator having a plurality of teeth formed by winding each pole and each phase coil on one tooth is provided in a stator core, and the teeth of the stator face each other with a small gap. A linear motor having a mover having a plurality of teeth arranged on a mover iron core, the stator and the mover having two rows, the two rows of stators having the same phase in a moving direction, In addition, the permanent magnet is sandwiched in between, and the pitch of the teeth of both movers in the moving direction is made larger than the pitch of the teeth of the stator, and the pitch of the teeth in the moving direction of both movers is shifted by 1/2 pitch from each other.
The teeth of both the movers are provided on a common mover iron core.

〔発明の実施例〕Example of Invention

以下図面に従つて、本発明を説明する。第1図、第2図
は本発明の原理的な構造を示す図である。可動子1はP
のピツチを持つ磁性体で構成され、ピツチPのおよ
そP/2のピツチは、可動子と固定子の間に磁気抵抗
を少なくし、残りのP1/2のピツチは磁気抵抗の高い部
材、もしくはギヤツプを広くするよう構成される。固定
子2には1つの歯3に1つのコイル4が巻装される。そ
して、1つの歯3とコイル4とで毎相毎極コイルが形成
される。歯3のピツチP、すなわち、隣合うコイル間
の位相は(1)式に従うよう配置される。
The present invention will be described below with reference to the drawings. 1 and 2 are views showing the principle structure of the present invention. Mover 1 is P
Is made of a magnetic material having a first pitch, approximately P 1/2 of the pitch P 1 pitch is to reduce the magnetic resistance between the armature and the stator, the remaining P 1/2 pitch in the magnetoresistive It is configured to widen tall members or gears. One coil 3 is wound around one tooth 3 on the stator 2. Then, the one tooth 3 and the coil 4 form a coil for each phase and pole. The pitch P 2 of the tooth 3, that is, the phase between adjacent coils is arranged so as to follow the equation (1).

(1)式において、mはモータの相数である。例えば、3
相の場合には にすることが出来る。固定子の鉄心14の側面には、第
2図に示すよう磁石5が設けられる。磁石5の時束11
は破線のように流れる。すなわち、磁石5から出た時束
は、固定子鉄心14に入り、歯3に至り、主ギヤツプ7
を介して可動子1に至り、可動子1の戻り磁性材部9
a,9b戻りギヤツプ8a,8bを介して、ヨーク10
a,10b,6a,6bを通つて磁石5に戻る。磁石5
の役割は、可動子と固定子歯の間に磁化力を与えること
にある。従つて、本発明は、第2図の構造でなく他の磁
石回路構造でも実現できる。
In the equation (1), m is the number of phases of the motor. For example, 3
In case of phase Can be Magnets 5 are provided on the side surfaces of the iron core 14 of the stator, as shown in FIG. Time bundle 11 of magnet 5
Flows like a broken line. That is, when the magnetic flux comes out of the magnet 5, it enters the stator core 14, reaches the teeth 3, and the main gear 7
To the mover 1 through the return magnetic material part 9 of the mover 1.
a, 9b through the return gears 8a, 8b, the yoke 10
It returns to the magnet 5 through a, 10b, 6a, 6b. Magnet 5
Is to give a magnetizing force between the mover and the stator teeth. Therefore, the present invention can be realized with other magnet circuit structures than the structure of FIG.

磁石5により、固定子歯3と、可動子1の間には一定の
磁化力を与えているから、固定子歯と可動子との主ギヤ
ツプの磁束は、可動子が移動するに従い変化する。すな
わち、第3図に示す位置のときと、第4図に示す位置の
ときとでは、主ギヤツプの磁気抵抗が変化する。第3図
は、可動子歯1Aと歯部3とが一致した場合であり、こ
の場合が1つのコイル4に流れる磁束は最も大きくな
る。第5図は、可動子と固定子とを一定の相対速度で移
動させた場合であつて、コイルに入る磁束は曲線11の
ように変化する。第5図のC点が第3図の位置に対応
し、D点が第4図に対応する。1つのコイルに入る磁束
は曲線11のように変化するから、コイル4には、曲線
12のような内部誘起電圧が発生することになる。
Since a constant magnetizing force is applied between the stator tooth 3 and the mover 1 by the magnet 5, the magnetic flux of the main gear gap between the stator tooth and the mover changes as the mover moves. That is, the magnetic resistance of the main gear changes between the position shown in FIG. 3 and the position shown in FIG. FIG. 3 shows the case where the mover tooth 1A and the tooth portion 3 coincide with each other, and in this case, the magnetic flux flowing through one coil 4 is the largest. FIG. 5 shows a case where the mover and the stator are moved at a constant relative speed, and the magnetic flux entering the coil changes as shown by a curve 11. Point C in FIG. 5 corresponds to the position in FIG. 3, and point D corresponds to FIG. Since the magnetic flux entering one coil changes like the curve 11, an internal induced voltage like the curve 12 is generated in the coil 4.

誘起電圧が発生することは、ACリニアモータを構成す
ることを示す。例えば、第5図のように誘起電圧12の
位相とコイル電流13の位相とを一致させれば、電源か
らモータに電力を送り込むことになり、移動方向に推力
を発生させることとなる。逆に第5図の電流と逆位相の
電流を流すと電力はモータから電源に送られ減速方向の
推力を発生させる。磁束の変化する大きさと、誘起電圧
の位相とは、機械的な位置関係で定まるために、可動子
の相対位置を検出して、流す電流の方向を決めれば、推
力は第3図の左右いずれの方向にも設定できる。又、電
流の大きさを制御すると、推力をも制御できることにな
る。
The generation of the induced voltage indicates that the AC linear motor is configured. For example, if the phase of the induced voltage 12 and the phase of the coil current 13 are made to coincide with each other as shown in FIG. 5, electric power is sent from the power supply to the motor, and thrust is generated in the moving direction. On the contrary, when a current having a phase opposite to that of the current shown in FIG. 5 is supplied, electric power is sent from the motor to the power source to generate thrust in the deceleration direction. Since the magnitude of the change in magnetic flux and the phase of the induced voltage are determined by the mechanical positional relationship, if the relative position of the mover is detected and the direction of the flowing current is determined, the thrust will be either left or right in FIG. You can also set the direction. Further, controlling the magnitude of the current also makes it possible to control the thrust force.

上の説明は、1つのコイルについて説明したが(1)式に
従うよう固定子歯のピツチを定めれば、任意の相数のA
Cリニアモータが実現できる。例えば、3相とし3相の
インバータ、もしくは、3相のアンプを使つて、可動子
の相対位置を検出しながら各相に電流を流せば、どのよ
うな位置においても推力を発生させることが可能であ
る。
In the above explanation, one coil was explained, but if the pitch of the stator tooth is determined so as to follow the equation (1), A of an arbitrary number of phases
C linear motor can be realized. For example, thrust can be generated at any position by using a 3-phase inverter or 3-phase amplifier or applying a current to each phase while detecting the relative position of the mover. Is.

誘起電圧が発生することの効果は、モータが高い効率に
設計されることである。これは、リニアインダクシヨン
モータに存する励磁電流がなくなるため、モータに流す
電流が小さくとも充分推力を出すことができるためであ
る。又、可動子と固定子との相対位置が検出できれば、
その推力の方向をも自由に変えることが出来る。さら
に、ACリニアモータを構成しているために、流す電流
に比例した推力が発生し、その制御が容易になる特徴も
有する。
The effect of generating the induced voltage is that the motor is designed with high efficiency. This is because the exciting current existing in the linear induction motor is eliminated, and therefore a sufficient thrust can be obtained even if the current flowing through the motor is small. Also, if the relative position of the mover and the stator can be detected,
The direction of the thrust can be changed freely. Further, since the AC linear motor is configured, a thrust force proportional to the current flowing is generated, and its control is facilitated.

本発明においては、固定子の1つの歯に対し、毎極毎相
コイルを構成している。このことは、固定子の歯ピツチ
を充分大きく取れること意味する。このために、リ
ニアモータの速度を上げても、リニアステツプモータに
比べて格段に周波数は低く、従つて、特に高速時の制御
が容易であるとともに、効率が高くできる利点がある。
In the present invention, each pole and each phase coil are formed for one tooth of the stator. This means that the tooth pitch P 2 of the stator can be made sufficiently large. For this reason, even if the speed of the linear motor is increased, the frequency is significantly lower than that of the linear step motor, and accordingly, there is an advantage that the control can be easily performed especially at a high speed and the efficiency can be increased.

又、可動子は、前述までの説明のように、主ギヤツプの
磁気抵抗を変化すれば良いので、単純な磁性体、例え
ば、硅素鋼板等で実現出来、可動子部分の構成を単純化
出来る効果がある。
In addition, the mover can change the magnetic resistance of the main gear as described above, so that it can be realized with a simple magnetic material such as a silicon steel plate, and the structure of the mover can be simplified. There is.

特に、第2図の構成においては、可動子と固定子との主
ギヤツプは一列の簡単な構成でACリニアモータを実現
できる効果がある。このことは、歯ピツチが広く、一列
であるために、リニアステツプモータのように、歯ピツ
チが狭く精度が必要なものと較べ格段に製作性が向上す
るものである。つまり、ステツプモータにおいては、各
歯のピツチの歯幅の精度を上げる必要があるのに対し、
本発明の構成はそれ程の高精度は要求されない。又ギヤ
ツプの精度を同様であることから、安価なリニアACモ
ータを提供できるものである。
In particular, in the configuration shown in FIG. 2, there is an effect that the AC linear motor can be realized with a simple configuration in which the main gears of the mover and the stator are in a single row. This means that since the tooth pitch is wide and it is in a single row, the manufacturability is significantly improved as compared with a linear stepper motor which has a narrow tooth pitch and requires precision. In other words, in the step motor, it is necessary to improve the accuracy of the tooth width of the pitch of each tooth,
The structure of the present invention does not require such high accuracy. Further, since the gears have the same precision, an inexpensive linear AC motor can be provided.

第2図の実施例では、1つのコイルに対し、主ギヤツプ
を1つで構成している。主ギヤツプが一列の場合は特に
可動子が単純で製作が容易に出来る特長があるが、反
面、第5図11のように磁束が片方向にのみにしか流れ
ない。これを改善したのが第6図〜第8図に示す構造で
ある。
In the embodiment of FIG. 2, one main gear is configured for one coil. When the main gears are in a single row, the mover is particularly simple and easy to manufacture. However, as shown in FIG. 5, the magnetic flux flows only in one direction. This is improved by the structure shown in FIGS. 6 to 8.

第6図は可動子1の見取り図であつて、磁性体で構成す
る可動子には、主ギヤツプを2列設けるようにする。可
動子の歯1Bと1Cの間は移動方向に磁極ピツチP
1/2ピツチずつずらせて配置する。固定子は、第7図
に示すように、固定子鉄心14B,14Cの2列に製作
し、固定子鉄心14B,14Cの間に磁石5を入れる。
そして、両固定子鉄心全体に固定子コイル4を巻装す
る。従つて、コイル4には、固定子鉄心の歯3B,3C
を通る磁束が鎖交するようになる。従つて、可動子鉄心
の歯1Bと固定子鉄心の歯3Bとが対向する時は、第9
図(a)のような磁束流れる。磁束15は磁石より出て、
固定子鉄心14B,3Bを通つて可動子1Bに至る。可
動子1Bに入つた磁束は軸方向に入つて隣設する歯に入
る。隣りの歯から、隣りの固定子鉄心歯に至り、固定子
鉄心14Cを経て磁石に戻る。可動子と固定子が第7図
(a)と相対的1/2Pずれると、第7図(b)のように磁
束は流れる。可動子を一定速度で移動させると、第9図
のように磁束は変化する。すなわち、曲線15は、固定
子鉄心歯3Bを通る磁束であつて、固定子鉄心歯3Cに
は曲線16のような磁束が流れる。1つのコイルに鎖交
する磁束は、曲線15と曲線16の合成値である曲線1
7のように変化する。つまり、1つのコイルには、(N
極,S極の)両磁束が鎖交することを意味し、同一の磁
石面積で2倍の磁束が変化する。すなわち、リニアAC
モータの誘起電圧が約2倍の曲線18のように発生する
ことになり、その分効率が向上する。さらに、同位相の
2列の固定子に対して可動子のみ磁極ピッチを1/2ず
らせていることによりトルクの変動を減少させることが
できる。
FIG. 6 is a sketch of the mover 1, in which the mover made of a magnetic material is provided with two rows of main gears. Between the teeth 1B and 1C of the mover, ½ pitches of the magnetic pole pitch P 1 are displaced in the moving direction. As shown in FIG. 7, the stator is manufactured in two rows of stator cores 14B and 14C, and the magnet 5 is inserted between the stator cores 14B and 14C.
Then, the stator coil 4 is wound around the entire stator cores. Therefore, the coils 4 have teeth 3B and 3C of the stator core.
The magnetic flux passing through becomes linked. Therefore, when the teeth 1B of the mover core and the teeth 3B of the stator core face each other,
The magnetic flux flows as shown in Figure (a). The magnetic flux 15 comes out of the magnet,
The mover 1B is reached through the stator cores 14B and 3B. The magnetic flux that has entered the mover 1B enters in the axial direction and enters the adjacent teeth. From the adjacent tooth to the adjacent stator core tooth, the stator core 14C returns to the magnet through the stator core 14C. Figure 7 shows the mover and stator
If it shifts relative to (a) by 1 / 2P 1 , the magnetic flux will flow as shown in FIG. 7 (b). When the mover is moved at a constant speed, the magnetic flux changes as shown in FIG. That is, the curve 15 is the magnetic flux passing through the stator core teeth 3B, and the magnetic flux like the curve 16 flows through the stator core teeth 3C. The magnetic flux linked to one coil is the combined value of the curves 15 and 16
It changes like 7. That is, one coil has (N
This means that both magnetic fluxes (of the pole and the S pole) are linked, and the magnetic flux doubles in the same magnet area. That is, the linear AC
The induced voltage of the motor is generated as shown by the curve 18 which is about double, and the efficiency is improved accordingly. Further, the fluctuation of the torque can be reduced by shifting the magnetic pole pitch of the movable element by 1/2 with respect to the two rows of stators of the same phase.

さらに、第8図は可動子、固定子の歯を3列に構成した
ものであつて、大出力用ACリニアモータに用いるのに
都合良い構造を示す。第8図は、第7図の磁気回路を2
つ重ねてあり、第7図の約2倍の出力を出すことが可能
となる。
Further, FIG. 8 shows a structure in which the teeth of the mover and the stator are arranged in three rows, which is convenient for use in a large-output AC linear motor. FIG. 8 shows the magnetic circuit of FIG.
It is possible to output about twice the output of FIG.

第7図、第8図のように可動子、固定子の歯を複数列設
けると、1つのコイルには(N極およびS極)両磁束が
鎖交し、同一の磁石体積で第2図の構造に比べ2倍の磁
束の変化を起させることが出来る。このため、誘起電圧
が大きく、出力の大きなACリニアモータを実現できる
効果がある。又、第8図は第7図の場合に比べて戻りギ
ヤツプをなくすことが出来るため、磁石の磁化力を有効
に使用できるものである。
When a plurality of rows of the teeth of the mover and the stator are provided as shown in FIGS. 7 and 8, both magnetic fluxes (N pole and S pole) are linked to one coil, and the same magnet volume is used in FIG. It is possible to cause twice the change in magnetic flux as compared with the structure of. Therefore, there is an effect that an AC linear motor having a large induced voltage and a large output can be realized. Further, in FIG. 8, the return gear can be eliminated as compared with the case of FIG. 7, so that the magnetizing force of the magnet can be effectively used.

前述のように本発明は、コイルのある側に磁石を配置
し、主ギヤツプに磁石の磁化力を与え、コイルのない側
に磁気抵抗の大きな部分と、小さな部分とを設け、相対
的に固定子と可動子が移動する時にコイルの磁束が変化
させ得るよう構成することが特徴である。さらに言及す
るならば、1つのコイルは、毎極毎相コイルに相当する
よう構成しており、このことにより、コイルに流す周波
数が低くとも充分高い速度のリニアACモータが実現で
きるものである。そして、1つのコイルが巻かれる鉄心
の磁極は1つのみで構成する。このことにより、モータ
を構成するピツチは充分大きく、ステツプの精度、歯幅
の精度を必要としないものである。
As described above, according to the present invention, the magnet is arranged on the side where the coil is present, the magnetizing force of the magnet is applied to the main gear, and the portion where the magnetic resistance is large and the portion where the magnetic resistance is small are provided on the side where the coil is not present, and are relatively fixed. The feature is that the magnetic flux of the coil can be changed when the child and the mover move. Further referring to this, one coil is configured so as to correspond to each pole and each phase coil, which makes it possible to realize a linear AC motor having a sufficiently high speed even if the frequency of the current flowing through the coil is low. And, the magnetic pole of the iron core around which one coil is wound is configured by only one. As a result, the pitch of the motor is sufficiently large, and step accuracy and tooth width accuracy are not required.

又、第11図の従来のステツプモータの場合にはコイル
の巻かれるピツチは、対向する歯の1.5倍のピツチに
なるのに対し、本発明の構成においては、磁気抵抗の高
低を成す歯ピツチよりも少なくコイルピツチを構成でき
る。このことは、巻線の実装密度が高められることを意
味し、高出力のACリニアモータを実現することができ
る。さらに又、本発明では任意の相数のモータを実現で
きる点も第11図の構成とは異なる。
Further, in the case of the conventional step motor shown in FIG. 11, the pitch around which the coil is wound is 1.5 times as large as the pitch of the teeth facing each other, whereas the structure of the present invention provides high and low magnetic resistance. Less coil teeth than tooth teeth can be constructed. This means that the packaging density of the windings is increased, and a high-output AC linear motor can be realized. Furthermore, the present invention is also different from the configuration of FIG. 11 in that a motor having an arbitrary number of phases can be realized.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、固定子と可動子を
2列備え、該2列の固定子は移動方向に同位相とし、該
2列の固定子間に永久磁石を挾み、さらに、移動方向に
おける両可動子の歯のピッチは固定子の歯のピッチより
大きくするとともに、両可動子の移動方向における歯の
ピッチは互いに1/2ピッチずらせることにより、同一
磁石面積で2倍の磁束が変化するため、モータのコイル
には誘起電圧が2倍発生し、その分効率が向上する。ま
た、同位相の2列の固定子に対して可動子のみ磁極ピッ
チを1/2ずらせていることによりトルクの変動を減少
させることができる。さらに、コイルに対向する可動子
側を単純な磁性体で構成できることから、製作の非常に
容易なリニアモータを提供することができるものであ
る。
As described above, according to the present invention, two rows of stators and movers are provided, the two rows of stators have the same phase in the moving direction, and a permanent magnet is sandwiched between the two rows of stators. , The pitch of the teeth of both movers in the moving direction is made larger than the pitch of the teeth of the stator, and the pitch of the teeth in the moving direction of both movers is shifted by ½ pitch from each other, so that the same magnet area is doubled. Since the magnetic flux changes, the induced voltage is generated twice in the motor coil, and the efficiency is improved accordingly. Further, since the magnetic pole pitch of only the mover is shifted by 1/2 with respect to the two rows of stators having the same phase, the fluctuation of the torque can be reduced. Furthermore, since the mover side facing the coil can be made of a simple magnetic material, it is possible to provide a linear motor that is very easy to manufacture.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の原理を示すリニアACモータの縦断面
図、第2図は第1図のA−A′部分の横断面図、第3
図,第4図は本発明原理の動作を説明するためのリニア
ACモータの一部縦断面図、第5図は、本発明の磁束、
誘起電圧、電流の曲線図、第6図は本発明の実施例を示
す可動子の見取図、第7図は本発明の2列の磁路を持つ
リニアACモータの横断面図、第8図は3列の磁路を持
つリニアACモータの横断面図、第9図は第7図および
第8図の磁束の変化、誘起電圧の曲線図、第10図は従
来のACリニアモータの縦断面図、第11図は同じく従
来のリニアステツプモータの縦断面図である。 1……可動子、1A〜1F……可動子の歯、2……固定
子、3,3B,3C……固定子鉄心の歯、4……コイ
ル、5,5A,〜5C……磁石、6a,6b……戻り磁
路用固定子ヨーク、7……主ギヤツプ、8a,8b……
戻り磁路ギヤツプ、9a,9b……戻り磁路用可動子ヨ
ーク、10a,10b……戻り磁路用回転子ヨーク、1
1……磁束、12……誘起電圧、13……モータ電流、
14……固定子鉄心、14B〜14F……固定子鉄心、
15……磁束、16……磁束、17……磁束16,磁束
17の合成磁束、18……磁路を複数列設けた場合の誘
起電圧。
FIG. 1 is a longitudinal sectional view of a linear AC motor showing the principle of the present invention, FIG. 2 is a lateral sectional view of a portion AA ′ in FIG. 1, and FIG.
4 and 5 are partial longitudinal sectional views of a linear AC motor for explaining the operation of the principle of the present invention, and FIG. 5 is a magnetic flux of the present invention,
Induced voltage and current curve diagrams, FIG. 6 is a sketch of a mover showing an embodiment of the present invention, FIG. 7 is a cross sectional view of a linear AC motor having two rows of magnetic paths of the present invention, and FIG. FIG. 9 is a cross-sectional view of a linear AC motor having three rows of magnetic paths. FIG. 9 is a curve diagram of changes in magnetic flux and induced voltage in FIGS. 7 and 8, and FIG. 10 is a vertical cross-sectional view of a conventional AC linear motor. FIG. 11 is a vertical sectional view of a conventional linear stepping motor. DESCRIPTION OF SYMBOLS 1 ... Mover, 1A to 1F ... Mover teeth, 2 ... Stator, 3,3B, 3C ... Stator core teeth, 4 ... Coil, 5, 5A, ... 5C ... Magnet, 6a, 6b ... Stator yoke for return magnetic path, 7 ... Main gear cup, 8a, 8b.
Return magnetic path gears, 9a, 9b ... Return magnetic path mover yoke, 10a, 10b ... Return magnetic path rotor yoke, 1
1 ... magnetic flux, 12 ... induced voltage, 13 ... motor current,
14 ... Stator core, 14B-14F ... Stator core,
15 ... Magnetic flux, 16 ... Magnetic flux, 17 ... Combined magnetic flux of magnetic flux 16 and magnetic flux 17, 18 ... Induced voltage when a plurality of rows of magnetic paths are provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一つの歯に対し毎極毎相コイルを巻装して
なる複数の歯を固定子鉄心に備えた固定子と、該固定子
の歯と僅少なギャップを持って対峙し複数の歯を可動子
鉄心に配する可動子とを有するリニアモータにおいて、 前記固定子と可動子を2列備え、該2列の固定子は移動
方向に同位相とし、該2列の固定子間に永久磁石を挾
み、さらに、移動方向における前記両可動子の歯のピッ
チは前記固定子の歯のピッチより大きくするとともに、
前記両可動子の移動方向における歯のピッチは互いに1
/2ピッチずらせ、前記両可動子の歯は共通の可動子鉄
心に設けたことを特徴とするリニアモータ。
1. A stator having a plurality of teeth formed by winding each pole and each phase coil on one tooth in a stator iron core, and a plurality of teeth facing the teeth of the stator with a small gap. A linear motor having a mover for arranging the teeth of a stator on a mover core, the stator and the mover are provided in two rows, and the two rows of stators have the same phase in the moving direction, and between the two rows of stators. In addition to sandwiching a permanent magnet, the tooth pitch of both the movers in the moving direction is made larger than the tooth pitch of the stator,
The tooth pitches in the moving direction of both movers are 1
The linear motor is characterized in that the teeth of both of the movers are provided on a common mover iron core by shifting by 1/2 pitch.
JP59211341A 1984-10-11 1984-10-11 Linear motor Expired - Lifetime JPH0628502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211341A JPH0628502B2 (en) 1984-10-11 1984-10-11 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211341A JPH0628502B2 (en) 1984-10-11 1984-10-11 Linear motor

Publications (2)

Publication Number Publication Date
JPS6192158A JPS6192158A (en) 1986-05-10
JPH0628502B2 true JPH0628502B2 (en) 1994-04-13

Family

ID=16604356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211341A Expired - Lifetime JPH0628502B2 (en) 1984-10-11 1984-10-11 Linear motor

Country Status (1)

Country Link
JP (1) JPH0628502B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164460A (en) * 1985-01-14 1986-07-25 Hitachi Ltd Linear motor
JPH0732583B2 (en) * 1985-10-28 1995-04-10 ソニー株式会社 Linear motor
WO1999004481A1 (en) * 1997-07-18 1999-01-28 Nikon Corporation Exciting unit, linear or planar motor using the unit, stage device using the motor, and aligner using the device
CN106849605B (en) * 2017-01-18 2019-08-30 威灵(芜湖)电机制造有限公司 Linear motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118588U (en) * 1980-02-13 1981-09-10
JPS5743557A (en) * 1980-08-27 1982-03-11 Canon Inc Linear motor

Also Published As

Publication number Publication date
JPS6192158A (en) 1986-05-10

Similar Documents

Publication Publication Date Title
JP3395155B2 (en) Linear motor and manufacturing method thereof
US6798089B1 (en) Forcer and associated three phase linear motor system
JPS61161952A (en) 3-phase linear inductor type motor
JP3945142B2 (en) Linear motor and control method thereof
US3891874A (en) Compensated reciprocating electrodynamic machine
EP0319096B1 (en) Linear motor with angularly indexed magnetic poles
US6960858B2 (en) Motor using permanent magnet
JP5452299B2 (en) Linear motor and its armature structure
CN114072988A (en) Permanent magnet-free switched reluctance machine
JP4061834B2 (en) Linear motor
US5015902A (en) Multiphase synchronous permanent magnet electric machine
JP2013506394A (en) Linear motor
JPS591059B2 (en) linear pulse motor
WO1985005741A1 (en) Stepping motor
US6570274B2 (en) Electric motor
JPH0628502B2 (en) Linear motor
JPS59153457A (en) Hybrid linear stepping motor
JP2003134791A (en) Permanent magnet synchronous linear motor
JPH0140596B2 (en)
JPS6111542B2 (en)
JP2526819B2 (en) Linear motor
JP2531408B2 (en) Stepping motor
WO2006123668A1 (en) Pulse motor
JPS59122359A (en) Dc linear motor with dc generator
JPS61277362A (en) Three-phase linear inductor type synchronous motor