JPS591059B2 - linear pulse motor - Google Patents

linear pulse motor

Info

Publication number
JPS591059B2
JPS591059B2 JP2058879A JP2058879A JPS591059B2 JP S591059 B2 JPS591059 B2 JP S591059B2 JP 2058879 A JP2058879 A JP 2058879A JP 2058879 A JP2058879 A JP 2058879A JP S591059 B2 JPS591059 B2 JP S591059B2
Authority
JP
Japan
Prior art keywords
movable part
pair
teeth
iron cores
running path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2058879A
Other languages
Japanese (ja)
Other versions
JPS55114177A (en
Inventor
一 桑原
謹爾 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP2058879A priority Critical patent/JPS591059B2/en
Publication of JPS55114177A publication Critical patent/JPS55114177A/en
Publication of JPS591059B2 publication Critical patent/JPS591059B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Description

【発明の詳細な説明】 本発明は可動部が直線的に移動するリニアパルスモータ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a linear pulse motor in which a movable part moves linearly.

第1図は従来公知のリニアパルスモータの構成説明図で
、Aは縦断面図、BはA図におけるB−B断面図、Cは
A図におけるC−C断面図である。
FIG. 1 is an explanatory diagram of the configuration of a conventionally known linear pulse motor, in which A is a longitudinal sectional view, B is a BB sectional view in FIG. A, and C is a CC sectional view in FIG.

図において、1は磁性材で構成された走行路(固定子)
、2はこの走行路1に僅かな空隙を介して対向する可動
部で、ここでは互に永久磁石20を介して連結する2個
のコ字形界磁鉄心21.22で構成されている。
In the figure, 1 is a running path (stator) made of magnetic material.
, 2 is a movable part that faces the running path 1 with a slight gap therebetween, and here it is composed of two U-shaped field cores 21 and 22 that are connected to each other via a permanent magnet 20.

この可動部2のコ字形界磁鉄心21.22において、そ
の端部(歯)間隔は、走行路1に設けた突起部(歯)1
1,12〜の間隔Pに対して、P/2だけずれており、
また各コ字形界磁鉄心21.22相互間は、P/4だけ
ずれるように互に連結されている。
In the U-shaped field cores 21 and 22 of the movable part 2, the distance between the ends (teeth) of the protrusions (teeth) 1 provided on the running path 1 is
It is shifted by P/2 with respect to the interval P between 1 and 12,
Further, the respective U-shaped field cores 21 and 22 are connected to each other so as to be offset by P/4.

各コ字形界磁鉄心21.22には界磁巻線31.32が
巻回されており、これに電流を選択的に与えることによ
つて永久磁石20からの磁束を制御する。
A field winding 31,32 is wound around each U-shaped field core 21,22, and the magnetic flux from the permanent magnet 20 is controlled by selectively applying current to the field winding 31,32.

この装置において、はじめに界磁巻線32に実線矢印に
示すように励磁電流を流すと、歯Oを通る磁束が減少し
、歯のを通る磁束が増大する。
In this device, when an excitation current is first applied to the field winding 32 as shown by the solid arrow, the magnetic flux passing through the tooth O decreases and the magnetic flux passing through the tooth increases.

このため、歯のと走行路1側の歯16と引き合い、可動
部2は図示する位置に保持される。
For this reason, the movable part 2 is held at the position shown in the figure by attracting the teeth 16 on the traveling path 1 side.

次に界磁巻線31に破線矢印に示すように励磁電流を流
すと、歯@を通る磁束が増大し、歯@と歯14とが引き
合い、可動部2は左側にP/4移動して停止する。
Next, when an exciting current is applied to the field winding 31 as shown by the broken line arrow, the magnetic flux passing through the tooth @ increases, the tooth @ and the tooth 14 are attracted to each other, and the movable part 2 moves to the left by P/4. Stop.

次に界磁巻線32に実線矢印とは逆方向に励磁電流を流
し、歯@と歯17と引き合せ、これによって可動部2を
更に左側にP/4移動させる。
Next, an exciting current is applied to the field winding 32 in the direction opposite to the solid arrow to draw the teeth 17 together, thereby moving the movable part 2 further to the left by P/4.

このようにして、励磁巻線31.32に交互に励磁電流
を流すとともにその流れ方向を変えることによって、可
動部2を走行路1に沿ってP/4をピンチとして移動さ
せることができる。
In this way, by alternately passing excitation current through the excitation windings 31 and 32 and changing the flow direction, the movable part 2 can be moved along the travel path 1 by pinching P/4.

ところでこのように構成した装置においては、可動部2
の移動量は最少1pであって、これ以上細かく移動させ
るためには走行路1側に設ける歯のピッチを小さくする
必要があるが、それには限界がある。
By the way, in the device configured in this way, the movable part 2
The minimum amount of movement is 1 p, and in order to move it more finely, it is necessary to reduce the pitch of the teeth provided on the traveling path 1 side, but there is a limit to this.

それ故に従来、移動量の分解能を高くするために界磁巻
線3L32に流す励磁電流を第2図に示すようにアナグ
ロ的に制御する手法がとられていた。
Therefore, conventionally, in order to improve the resolution of the amount of movement, a method has been adopted in which the excitation current flowing through the field winding 3L32 is controlled in an analog manner as shown in FIG.

しかしながら、この手法は大出力の直流増幅器とディジ
タル制御素子が必要で、装置が複雑になる欠点がある。
However, this method requires a high-output DC amplifier and a digital control element, and has the disadvantage of complicating the device.

ここにおいて、本発明は簡単な構成で高い分解能が得ら
れ、かつ小形で効率の良いリニアパルスモータを実現し
ようとするものである。
Here, the present invention aims to realize a small and highly efficient linear pulse motor that can obtain high resolution with a simple configuration.

第3図は本発明の一実施例を示す構成図で、Aは縦断面
図、BはA図のB−B断面図、CはA図のC−C断面図
、DはA図のD−D断面図である。
FIG. 3 is a configuration diagram showing one embodiment of the present invention, where A is a longitudinal sectional view, B is a BB sectional view in Figure A, C is a CC sectional view in Figure A, and D is a D in Figure A. -D sectional view.

本発明装置においては、可動部2は複数個の脚(この実
施例では■〜■の5個)をもった一対の鉄心2L22、
この一対の鉄心21.220間に介在されバイアス磁束
を供給する役目をもつ永久磁石20および一対の鉄心2
1.22の互に隣り合う脚■1 、■2(01〜@2.
01〜O2・・・)にまたがって巻回された複数個(こ
こでは31〜35の5個)の励磁巻線で構成されている
In the device of the present invention, the movable part 2 includes a pair of iron cores 2L22 having a plurality of legs (in this embodiment, five legs ① to ②);
A permanent magnet 20 which is interposed between the pair of iron cores 21 and 220 and has the role of supplying bias magnetic flux, and the pair of iron cores 2
1.22 mutually adjacent legs ■1, ■2 (01~@2.
It is composed of a plurality of excitation windings (5 in this case, 31 to 35) wound over the windings 01 to 02...).

また、各脚■〜■の走行路1に面した端部には、走行路
1に設けた歯のピッチPと同一ピッチの複数の歯(この
実施例ではa s b t cの3個の歯)が設けられ
ている。
Moreover, at the end facing the running path 1 of each leg ■ to ■, there are a plurality of teeth (in this example, three teeth of a teeth) are provided.

ここで、鉄心21,22の各脚■〜■はお互に(N+f
l)P(N:整数、m:脚数、m n:m>nなる整数で、この実施例では(訃」)P)ず
れて配置され、また、鉄心21と22とは互に■ 万Pだけ偏位している。
Here, each leg of iron cores 21 and 22 (N+f
l) P (N: integer, m: number of legs, m n: an integer such that m>n; in this embodiment, the cores 21 and 22 are arranged with a deviation from each other, and the iron cores 21 and 22 are It is deviated by P.

このように構成した装置において、永久磁石20が第3
図Bに示すように着磁されているものとすれば、可動部
2と走行路1との間には、同図の実線に示すように鉄心
21、走行路1、鉄心22の向きのバイアス磁束が存在
する。
In the device configured in this way, the permanent magnet 20 is
Assuming that they are magnetized as shown in Figure B, there is a bias between the movable part 2 and the running path 1 in the direction of the iron core 21, the running path 1, and the iron core 22, as shown by the solid line in the figure. Magnetic flux exists.

いま、脚■1 、■2に巻回されている励磁巻線31に
励磁電流を流すと、この励磁電流による磁束が破線に示
すように発生し、これがバイアス磁束に重量する。
Now, when an excitation current is passed through the excitation windings 31 wound around the legs (1) and (2), a magnetic flux is generated by this excitation current as shown by the broken line, and this adds weight to the bias magnetic flux.

したがって、鉄心21側の脚■1と走行路1との間の磁
束が増大し、鉄心22側の脚■2と走行路1との間の磁
束が減少する。
Therefore, the magnetic flux between the leg 1 on the iron core 21 side and the running path 1 increases, and the magnetic flux between the leg 2 on the iron core 22 side and the running path 1 decreases.

この結果、可動部2の脚■1 と走行路1とが互に引き
合い、その空隙のレラクタンスが最も小さくなる第3図
Aに示す位置で可動部2は保持される。
As a result, the leg 1 of the movable part 2 and the running path 1 attract each other, and the movable part 2 is held at the position shown in FIG. 3A, where the reluctance of the gap is the smallest.

なお、走行路1と可動部2との吸引力は、磁束密度の2
乗に比例して増大する。
Note that the attraction force between the traveling path 1 and the movable part 2 is equal to 2 of the magnetic flux density.
increases in proportion to the power of

次に脚@1 とへに巻回されている励磁巻線32に励磁
電流を流すと、今度は脚@1と走行路1との間の磁束が
増大し、両者の間で互に引き合うので可動部2は右側に
移動する。
Next, when an excitation current is passed through the excitation winding 32 wound around the leg @1, the magnetic flux between the leg @1 and the traveling path 1 increases, and the two attract each other. The movable part 2 moves to the right.

ここで可動部2の移動量は、脚■と脚@との間がlpず
れているので、JPだけ移動することとな5 る。
Here, the amount of movement of the movable part 2 is JP since there is a shift of 1p between the legs ■ and the legs @.

以下同様にして、励磁巻線33、34、35゜31・・
・と順次励磁電流を流せば、可動部2はlpを最小移動
量として右側に順次移動する。
Similarly, the excitation windings 33, 34, 35°31...
If the excitation current is applied in sequence, the movable part 2 will sequentially move to the right with lp as the minimum movement amount.

また、励磁巻線35,34,33の順で励磁電流を流せ
は可動部2は左側に移動する。
Furthermore, when the excitation current is applied to the excitation windings 35, 34, and 33 in this order, the movable portion 2 moves to the left.

一方、励磁巻線31〜35に流す励磁電流の流れ方向を
前記の場合と逆にすると、第3図Bにおいて脚■2と走
行路1との間の磁束が増大し、両者間で引き合うことと
なる。
On the other hand, if the flow direction of the excitation current flowing through the excitation windings 31 to 35 is reversed from the above case, the magnetic flux between the leg 2 and the running path 1 increases in FIG. 3B, and the two attract each other. becomes.

したがって、励磁巻線32,33.34・・・に前記の
場合と逆の方向に順次励磁電流を流せば、同様に可動部
2は1Pを最小移動量として右側に移動する。
Therefore, if an excitation current is sequentially passed through the excitation windings 32, 33, 34, . . . in the opposite direction to the above case, the movable part 2 similarly moves to the right with 1P as the minimum movement amount.

また、励磁巻線35,34,33,32・・・の順に前
記の場合とは逆方向の電流を流せば、可動部2はIPを
ピンチとして左側に移動する。
Moreover, if a current is applied in the opposite direction to the above case in the order of the excitation windings 35, 34, 33, 32, etc., the movable part 2 moves to the left with the IP as a pinch.

ここで、可動部2の一対の鉄心21と22とは、lpだ
け偏位して配置されているので、励磁巻線に流す励磁電
流の流れ方向を正方向とした場合と、負方向(逆方向)
とした場合とでは、可動部2の停止位置は互に重なるこ
とはなく、九Pだけずれることとなる。
Here, since the pair of iron cores 21 and 22 of the movable part 2 are arranged offset by lp, there are two cases in which the direction of excitation current flowing through the excitation winding is a positive direction, and a negative direction (in the opposite direction). direction)
In this case, the stop positions of the movable parts 2 do not overlap with each other and are shifted by 9P.

第4図は、可動部2の1ピンチの移動量を360゜で表
わしたベクトル図で、実線は励磁電流の流れ方向が正方
向の場合、破線は負方向の場合をそれぞれ示している。
FIG. 4 is a vector diagram showing the amount of movement of one pinch of the movable part 2 in 360 degrees, where the solid line indicates the case where the excitation current flows in the positive direction, and the broken line indicates the case where the direction of flow of the exciting current is in the negative direction.

このベクトル図から明らかなように、励磁電流を、励磁
巻線31に正方向→励磁巻線34に逆方向→励磁巻線3
2に正方向→励磁巻線35に逆方向→励磁巻線33に正
方向・・・のように順次切り換えて流すと、可動部2は
lpを最0 小移動量として右側へ順次移動する。
As is clear from this vector diagram, the excitation current is applied to the excitation winding 31 in the forward direction → to the excitation winding 34 in the reverse direction → to the excitation winding 3
When the flow is sequentially switched as follows: 2, forward direction → excitation winding 35 in the reverse direction → excitation winding 33 in the forward direction, etc., the movable part 2 sequentially moves to the right with lp as the minimum movement amount.

また、励磁電流を励磁巻線31に正方向→励磁巻線33
に逆方向→励磁巻線35に正方向→励磁巻線34に正方
向・・・の順で順次切り換えて流すと、可動部2は儒を
最小移動量にして左側へ順次移動する。
Also, the excitation current is applied to the excitation winding 31 in the positive direction → the excitation winding 33
When the flow is sequentially switched in the reverse direction, the forward direction to the excitation winding 35, the forward direction to the excitation winding 34, etc., the movable part 2 sequentially moves to the left with the minimum movement amount.

このように構成した装置によれば、可動部2の移動量の
最小量はIPとなりその分解能を向上さ0 せることかできる。
According to the apparatus configured in this way, the minimum amount of movement of the movable part 2 becomes IP, and the resolution can be improved.

また、永久磁石からの磁束を一部利用することによって
消費電力を小さくすることができる。
Furthermore, power consumption can be reduced by partially utilizing the magnetic flux from the permanent magnet.

なお、上記の説明において、励磁電流は一つの励磁巻線
にだけ順次切換えて流すようにしたものであるが、いく
つかの励磁巻線に同時に順次切換えて励磁電流を流すよ
うにすれば、トルクを増大させることができる。
Note that in the above explanation, the excitation current is sequentially switched to flow through only one excitation winding, but if the excitation current is simultaneously switched and applied to several excitation windings in sequence, the torque can be increased. can be increased.

第5図は励磁巻線31.32に正方向、励磁巻線33.
34に負方向の励磁電流を同時に流しだ場合のベクトル
図で、励磁巻線31にだけ励磁電流を流した場合のトル
クに比べて約3倍のトルクを得ることができることを示
している。
FIG. 5 shows the excitation windings 31, 32 in the positive direction, and the excitation windings 33.
This is a vector diagram when a negative excitation current is simultaneously applied to the excitation winding 34, and shows that it is possible to obtain approximately three times as much torque as when the excitation current is applied only to the excitation winding 31.

なお、第5図の実施例においては可動部2を構成する一
対の鉄心21,22を、それぞれに設け、ま た歯かHPずれるように配置したものであるが、第6図
Aに示すように可動部2を構成する一対の鉄心21.2
2は、これに設けられた歯が同相で並ぶように配置し、
その代り走行路1を第6図Bに示すように一対の鉄心1
1.12で構成し、これらの鉄心をそれぞれの鉄心11
.12に設けた歯がIPずれるように配置してもよい。
In the embodiment shown in FIG. 5, a pair of iron cores 21 and 22 constituting the movable part 2 are provided respectively and arranged so that the teeth are shifted by HP, but as shown in FIG. 6A, A pair of iron cores 21.2 constituting the movable part 2
2 is arranged so that the teeth provided on this are lined up in the same phase,
Instead, the running path 1 is connected to a pair of iron cores 1 as shown in FIG. 6B.
1.12, each of these iron cores 11
.. The teeth provided at 12 may be arranged so as to be offset by IP.

また、第3図の実施例では可動部2を構成する一対の鉄
心21.22の間に永久磁石20を介在させバイアス磁
界を与えるようにしたものであるが、第7図に示すよう
に鉄心21と鉄心22との間の磁路に巻線30を巻回さ
せ、これによってバイアス磁界を得るようにしてもよい
In the embodiment shown in FIG. 3, a permanent magnet 20 is interposed between the pair of iron cores 21 and 22 constituting the movable part 2 to apply a bias magnetic field, but as shown in FIG. A bias magnetic field may be obtained by winding the winding 30 in the magnetic path between the iron core 21 and the iron core 22.

また、一対の脚(例えば■1と@ )にまたがって巻回
される励磁巻線31.32・・・は、第8図に示すよう
に各脚■1 。
Also, the excitation windings 31, 32, . . . are wound across a pair of legs (for example, ■1 and @), as shown in FIG.

■2に別々に巻線311,312を巻回し、これらを直
列接続するか、あるいはこれらに別々に励磁電流を流す
ようにしてもよい。
(2) The windings 311 and 312 may be separately wound around 2 and connected in series, or the excitation current may be passed through them separately.

第9図および第10図は本発明装置の他の実施例を示す
構成図である。
FIGS. 9 and 10 are configuration diagrams showing other embodiments of the apparatus of the present invention.

第9図において、Aは可動部2の断面図、BはA図にお
けるB−B断面図である。
In FIG. 9, A is a sectional view of the movable part 2, and B is a BB sectional view in FIG.

この実施例装置では、可動部2を構成する一対の鉄心の
一方を更に二つの鉄心211,212とし、この二つの
鉄心211,212を永久磁石20を介して他方の鉄心
22を挾むようにし、可動部2の移動方向に対称形とな
るような構成としたものである。
In this embodiment device, one of the pair of iron cores constituting the movable part 2 is further made into two iron cores 211 and 212, and the other iron core 22 is sandwiched between these two iron cores 211 and 212 via a permanent magnet 20, The structure is such that it is symmetrical in the moving direction of the movable part 2.

また、各脚にそれぞれ励磁巻線311,312゜313
.3.21,322,323・・・を巻回し、励磁巻線
311,321・・・と312.322・・・とに同時
に励磁電流を流すようにしている。
In addition, each leg has excitation windings 311, 312 and 313, respectively.
.. 3.21, 322, 323, . . . are wound, and excitation current is caused to flow through the excitation windings 311, 321, . . . and 312, 322, .

この実施例によれば、可動部2の移動トルクが可動部2
の進行方向と同じ方向に働くので、効率を向上させるこ
とができる。
According to this embodiment, the moving torque of the movable part 2 is
Since it works in the same direction as the direction of travel, efficiency can be improved.

第10図において、Aは縦断面図、BはA図におけるB
−B断面図である。
In Figure 10, A is a vertical cross-sectional view, and B is B in Figure A.
-B sectional view.

この実施例装置では、走行路1をその上面と下面とに同
一ピッチであって、互にその配列かHPずれた歯を形成
するようにしたものである。
In the device of this embodiment, teeth are formed on the upper and lower surfaces of the running path 1 at the same pitch, but whose arrangement and HP are shifted from each other.

また、可動部2を一対の鉄心21.21’走行路1を手
下方向から挾むような構成としだも゛のである。
In addition, the movable part 2 is configured to sandwich the pair of iron cores 21, 21' running path 1 from below.

このような構成としたものは、可動部2と走行路1との
間に作用する移動方向に対して直角な方向の吸引力を打
ち消すことができるので、更に効率を向上させることが
できる。
With such a configuration, the suction force acting between the movable part 2 and the travel path 1 in a direction perpendicular to the direction of movement can be canceled out, so that efficiency can be further improved.

以上説明したように、本発明によれば、簡単な構成で高
い分解能の得られるリニアパルスモータが実現できる。
As explained above, according to the present invention, a linear pulse motor that can obtain high resolution with a simple configuration can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来公知のリニアパルスモータの構成図で、A
は縦断面図、BはA図におけるB−B断面図、CはA図
におけるC−C断面図、第2図は第1図装置における可
動部の移動量の分解能を高くするだめの励磁電流の波形
図、第3図は本発明の一実施例を示す構成図で、Aは縦
断面図、BはA図におけるB−B断面図、CはA図にお
けるC−C断面図、DはA図におけるD−D断面図、第
4図は第3図装置の動作を説明するだめのベクトル図、
第5図は第3図装置において、複数個の励磁巻線に同時
に励磁電流を流した場合の動作を説明するだめのベクト
ル図、第6図は走行路および可動部に設ける歯の他の配
列列を示す断面図、第7図はバイアス磁界を与える他の
例を示す構成断面図、第8図は励磁巻線の他の例を示す
構成断面図、第9図および第10図は本発明装置の他の
実施例を示す構成図で、第9図Aは可動部の断面図、第
9図BはA図におけるB−B断面図、第10図Aは走行
路および可動部の縦断面図、第10図BはA図における
B−B断面図である。 1・・・走行路、2・・・可動部、20・・・永久磁石
、21.22・・・一対の鉄心、31〜35・・・励磁
巻線、■1 、■2 、@t j@2〜■1 、■
2・・・界磁脚。
Figure 1 is a block diagram of a conventionally known linear pulse motor.
is a vertical sectional view, B is a BB sectional view in Figure A, C is a CC sectional view in Figure A, and Figure 2 shows the excitation current needed to increase the resolution of the amount of movement of the movable part in the device shown in Figure 1. FIG. 3 is a configuration diagram showing one embodiment of the present invention, where A is a vertical cross-sectional view, B is a BB cross-sectional view in figure A, C is a CC cross-sectional view in figure A, and D is a cross-sectional view along line C-C in figure A. DD sectional view in Figure A, Figure 4 is a vector diagram for explaining the operation of the device in Figure 3,
Fig. 5 is a vector diagram illustrating the operation when excitation current is simultaneously applied to a plurality of excitation windings in the apparatus shown in Fig. 3, and Fig. 6 shows other arrangements of teeth provided in the running path and movable part. 7 is a sectional view showing another example of applying a bias magnetic field, FIG. 8 is a sectional view showing another example of excitation winding, and FIGS. 9 and 10 are sectional views showing the structure of another example of applying a bias magnetic field. 9A is a sectional view of the movable part, FIG. 9B is a sectional view taken along line B-B in figure A, and FIG. 10A is a vertical cross-section of the running path and the movable part. Figure 10B is a sectional view taken along the line BB in Figure A. DESCRIPTION OF SYMBOLS 1... Running path, 2... Movable part, 20... Permanent magnet, 21.22... Pair of iron cores, 31-35... Excitation winding, ■1, ■2, @t j @2~■1 ,■
2... Field legs.

Claims (1)

【特許請求の範囲】 1 走行路と、この走行路に沿って移動する複数個の界
磁脚をもつ可動部とで構成されるリニアパルスモータに
おいて、前記可動部を互に同一ヒリチPの歯が形成され
かつその位相が↓Pだけずれて配置された一対の鉄心と
、これら一対の鉄心を通るバイアス磁束を供給する手段
で構成するとともに、一対の鉄心に設けられている複数
個の界磁脚相互間隔をこの鉄心に設けた歯のピッチPに
対して(N士旦)・P(ただしm:脚数、nはm〉nな
る関係にある整数)となるようにし、前記走行路に前記
可動部の鉄心に設けた歯と同一ピッチの歯を形成したリ
ニアパルスモータ。 2 可動部を構成する一対の鉄心の一方を可動部の移動
方向と直角方向に二分し、この二分した鉄心の間にそれ
ぞれバイアス磁束供給手段を介して一対の鉄心の他方を
配置するようにした特許請求の範囲第1項記載のリニア
パルスモータ。 3 走行路と、この走行路に沿って移動する複数個の界
磁脚をもつ可動部とで構成されるリニアパルスモータに
おいて、前記可動部を互に同一ピッチの歯が形成されか
つその位相が同一位相で配列された一対の鉄心と、これ
ら一対の鉄心を通るバイアス磁束を供給する手段で構成
するとともに、一対の鉄心に設けられている複数個の界
磁脚相互間隔をこの鉄心に設けた歯のピッチPに対して
(N士旦)P(ただしm:界磁脚数、nはm > nな
る関係にある整数)となるようにし、前記走行路に前記
可動部の鉄心に設けた歯と同一ピッチで、1 あって互にその位相か−UPだけずれて配列する二種の
歯を形成したリニアパルスモータ。 4 走行路を互に同一ピッチPの歯が形成されそ、1 の位相かHPずれて配置された一対の鉄心で構成した特
許請求の範囲第3項記載のリニアパルスモータ。 5 走行路の両面に同一ピッチPであって互にそ、1 の配列かHPずれた歯を形成するとともに、可動部を構
成する一対の鉄心が前記走行路を挾むようにした特許請
求の範囲第3項記載のリニアパルスモータ
[Scope of Claims] 1. In a linear pulse motor composed of a running path and a movable part having a plurality of field legs that move along the running path, the movable part is provided with teeth of the same pitch P. It consists of a pair of iron cores arranged with a phase difference of ↓P, and means for supplying a bias magnetic flux passing through these pair of iron cores, and a plurality of field magnets provided in the pair of iron cores. The distance between the legs is set to be (N shidan) P (where m is the number of legs, and n is an integer with the relationship m>n) with respect to the pitch P of the teeth provided on this iron core, and A linear pulse motor in which teeth are formed with the same pitch as the teeth provided on the iron core of the movable part. 2 One of the pair of iron cores constituting the movable part is divided into two in a direction perpendicular to the moving direction of the movable part, and the other of the pair of iron cores is placed between the two halves of the core through bias magnetic flux supply means. A linear pulse motor according to claim 1. 3. In a linear pulse motor consisting of a running path and a movable part having a plurality of field legs that move along the running path, the moving parts are formed with teeth having the same pitch and whose phases are different from each other. It consists of a pair of iron cores arranged in the same phase and a means for supplying bias magnetic flux through these pair of iron cores, and a plurality of field legs provided on the pair of iron cores are provided with mutual spacing between them. The tooth pitch P is set to (N) P (where m: the number of field legs, n is an integer with the relationship m > n), and is provided on the iron core of the movable part on the running path. A linear pulse motor in which two types of teeth are arranged at the same pitch as the teeth and shifted from each other by -UP. 4. The linear pulse motor according to claim 3, wherein the running path is constituted by a pair of iron cores each having teeth of the same pitch P and arranged with a phase difference of 1 HP. 5. Teeth are formed on both sides of the running path at the same pitch P and are shifted by 1 or HP from each other, and a pair of iron cores constituting a movable part sandwich the running path. Linear pulse motor described in Section 3
JP2058879A 1979-02-22 1979-02-22 linear pulse motor Expired JPS591059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058879A JPS591059B2 (en) 1979-02-22 1979-02-22 linear pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058879A JPS591059B2 (en) 1979-02-22 1979-02-22 linear pulse motor

Publications (2)

Publication Number Publication Date
JPS55114177A JPS55114177A (en) 1980-09-03
JPS591059B2 true JPS591059B2 (en) 1984-01-10

Family

ID=12031386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058879A Expired JPS591059B2 (en) 1979-02-22 1979-02-22 linear pulse motor

Country Status (1)

Country Link
JP (1) JPS591059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022412A1 (en) * 1995-01-19 1996-07-25 Nippon Mayer Co., Ltd. Patterning device for warp knitting machine and method therefor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725151A (en) * 1980-07-22 1982-02-09 Matsushita Electric Ind Co Ltd Linear motor
JPS57199467A (en) * 1981-06-03 1982-12-07 Shinko Electric Co Ltd Linear pulse motor
US4504750A (en) * 1982-04-21 1985-03-12 Matsushita Electric Industrial Co., Ltd. Linear motor
JPS58186367A (en) * 1982-04-23 1983-10-31 Matsushita Electric Ind Co Ltd Linear motor
JPS5911766A (en) * 1982-07-12 1984-01-21 Hitachi Ltd Linear pulse motor
JPS6096989U (en) * 1983-12-02 1985-07-02 オムロン株式会社 linear pulse motor
JPS61266062A (en) * 1985-05-20 1986-11-25 Toshiba Corp Linear pulse motor
JP2663576B2 (en) * 1988-11-08 1997-10-15 神鋼電機株式会社 Pulse motor
JPH0759144B2 (en) * 1988-11-29 1995-06-21 神鋼電機株式会社 Pulse motor
JP2002101636A (en) * 2000-09-20 2002-04-05 Yaskawa Electric Corp Linear motor
JP4604517B2 (en) * 2004-03-10 2011-01-05 横河電機株式会社 Planar motor
CN111884473B (en) * 2020-07-21 2021-12-17 华中科技大学 Like-pole electrically excited linear synchronous motor
CN112271902B (en) * 2020-10-22 2022-07-05 长航集团武汉电机有限公司 Same-pole hybrid excitation linear synchronous motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022412A1 (en) * 1995-01-19 1996-07-25 Nippon Mayer Co., Ltd. Patterning device for warp knitting machine and method therefor

Also Published As

Publication number Publication date
JPS55114177A (en) 1980-09-03

Similar Documents

Publication Publication Date Title
KR100443590B1 (en) Linear motor and production method therefor
US4370577A (en) Linear motor
JPS591059B2 (en) linear pulse motor
JP4061834B2 (en) Linear motor
JP4600712B2 (en) Linear motor
JPS5921273A (en) Linear motor
JP2009219199A (en) Linear motor
JPS62221852A (en) Electric motor
KR101798548B1 (en) Linear motor
JPS5855748B2 (en) linear pulse motor
JPS62193543A (en) Moving-coil type linear motor
JPS5854737B2 (en) linear pulse motor
JP2663533B2 (en) Pulse motor
JPS5925571A (en) Linear motor
JP3906443B2 (en) Linear motor
JPH0628502B2 (en) Linear motor
KR20130008725A (en) Motor
JPH0116384Y2 (en)
JPS62114463A (en) Linear motor
JPH02131350A (en) Pulse motor
JPH01103152A (en) Linear motor
JPS6059966A (en) Linear pulse motor
JPH0456545B2 (en)
JP2001251842A (en) Linear motor using basic factor
JPS60106356A (en) Linear vibration actuator