JPH06283540A - Hetero-junction bipolar transistor - Google Patents

Hetero-junction bipolar transistor

Info

Publication number
JPH06283540A
JPH06283540A JP6636893A JP6636893A JPH06283540A JP H06283540 A JPH06283540 A JP H06283540A JP 6636893 A JP6636893 A JP 6636893A JP 6636893 A JP6636893 A JP 6636893A JP H06283540 A JPH06283540 A JP H06283540A
Authority
JP
Japan
Prior art keywords
base
region
conductivity type
energy level
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6636893A
Other languages
Japanese (ja)
Other versions
JPH0789557B2 (en
Inventor
Shiyouyuu Kin
昌佑 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6636893A priority Critical patent/JPH0789557B2/en
Publication of JPH06283540A publication Critical patent/JPH06283540A/en
Publication of JPH0789557B2 publication Critical patent/JPH0789557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable a high current gain to be made by a method wherein the first conductivity type imprities forming a shallow energy level on the outer base surface are to be led in high concentration so as to suppress the surface recoupling by deeper energy level on the outer base surface. CONSTITUTION:A base 4 to be the first conductivity type semiconductor region is composed of a true base region 11 in an active region and an outer base region 12 to be the region for lead-out a base electrode 9. Within the hetero-junction bipolar transistor comprising III-V group compound semiconductor material, the first conductivity type impurities forming the shallow energy level are led in the outer base surface 12 in high concentration. For example, II group Zn or Mg ions forming the shallow energy level are implanted in the outer base surface 13 only using a base electrode 9 and an emitter electrode 8 as masks in high dosage and low energy level e.g. 1X10<15>cm<-2>, 10kev to be annealed at 650 deg.C later.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電流利得特性の優れたへ
テロ接合バイポーラトランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heterojunction bipolar transistor having excellent current gain characteristics.

【0002】[0002]

【従来の技術】へテロ接合バイポーラトランジスタはベ
ース領域とエミッタ領域のバンドギャップの違いによる
高エミッタ注入効率、ベース領域の高不純物濃度による
低ベース抵抗、エミッタ領域の低不純物濃度による低エ
ミッタ接合容量といった優れた素子特性を持っているた
めに、ミリ波及びマイクロ波素子として注目され、近年
盛んに開発が進められている。図2に従来の代表的なへ
テロ接合バイポーラトランジスタの構造を示す。1は半
絶縁性基板であり、この上に高濃度の第2導電形GaA
sサブコレクタ層2、低濃度の第2導電形GaAsコレ
クタ層3、高濃度の第1導電形ベース層4、真性キャリ
ア濃度に近いGaAsスペーサ層5、第2導電形AlG
aAsエミッタ層6、高濃度の第2導電形GaAsエミ
ッタキャップ層7を順次積層してある。ベース層4は活
性領域の真性ベース領域11とベース電極を取り出すた
めの領域である外部ベース領域12と構成されている。
8はエミッタ電極、9はベース電極、10はコレクタ電
極である。このような構造のへテロ接合バイポーラトラ
ンジスタではエミッタからベースに注入された第2伝導
形での多数キャリアは大部分は真性ベース領域中を拡散
によって流れてコレクタ空乏層に行くが、一部のキャリ
アは外部ベース領域に注入され、その領域での多数キャ
リアと再結合する。特にその再結合は外部ベースの表面
で高い率で生じていることが報告されている。(ヒラオ
カ(Y.S.Hiraoka)他、IEEE Tran
s.Electron Devices,vol.3
5,July,1988,pp857−862)。この
外部ベース領域での再結合によってベース電流が増加
し、電流利得が低下するという問題点を有していた。
2. Description of the Related Art A heterojunction bipolar transistor has a high emitter injection efficiency due to a difference in bandgap between a base region and an emitter region, a low base resistance due to a high impurity concentration in the base region, and a low emitter junction capacitance due to a low impurity concentration in the emitter region. Due to its excellent device characteristics, it has been attracting attention as a millimeter-wave and microwave device and has been actively developed in recent years. FIG. 2 shows the structure of a typical conventional heterojunction bipolar transistor. 1 is a semi-insulating substrate, on which a high concentration second conductivity type GaA
s sub-collector layer 2, low concentration second conductivity type GaAs collector layer 3, high concentration first conductivity type base layer 4, GaAs spacer layer 5 close to the intrinsic carrier concentration, second conductivity type AlG
An aAs emitter layer 6 and a high concentration second conductivity type GaAs emitter cap layer 7 are sequentially laminated. The base layer 4 is composed of an intrinsic base region 11 of an active region and an external base region 12 which is a region for taking out a base electrode.
Reference numeral 8 is an emitter electrode, 9 is a base electrode, and 10 is a collector electrode. In the heterojunction bipolar transistor having such a structure, the majority carriers of the second conductivity type injected from the emitter to the base mostly flow by diffusion in the intrinsic base region to the collector depletion layer, but some carriers Are injected into the extrinsic base region and recombine with majority carriers in that region. In particular, it has been reported that the recombination occurs at a high rate on the surface of the extrinsic base. (YS Shiraoka, et al., IEEE Tran
s. Electron Devices, vol. Three
5, July, 1988, pp857-862). The recombination in the extrinsic base region causes a problem that the base current increases and the current gain decreases.

【0003】[0003]

【発明が解決しようとする課題】上述した外部ベース表
面での再結合機構をより詳細に検討するために2次元シ
ミュレーションを行った結果次の点が明らかになった。
図3は図2の構造のnpnへテロ接合バイポーラトラン
ジスタを2次元シミュレーションで解析し、左の半分の
構造において伝導帯のエネルギー分布を3次元的に示し
たものである。へテロ接合バイポーラトランジスタにお
ける外部ベース領域12はエッチング等の製造工程によ
りその表面に深い表面準位ができやすい。外部ベース1
2の表面に深い不純物準位が分布している場合、表面フ
ェルミ準位が深い準位の位置にピンされ、その部分に電
位の井戸14ができる。外部バイアスの印加によってト
ランジスタが導通状態になるとエミッタから真性ベース
に注入される第2導電形での多数キャリアの一部が井戸
の電位勾配で発声する局部電界によって井戸に注入さ
れ、そこに蓄積される。そのキャリアが井戸に注入され
ると、そこにある深い不純物準位が再結合中心として働
き、第1導電形での多数キャリアとの表面再結合が発生
する。そこで必要となる第1導電形での多数キャリアは
ベース電極から供給され、結果的にベース電流が増加し
て電流利得が減少することがわかった。
As a result of performing a two-dimensional simulation in order to study the above-mentioned recombination mechanism on the surface of the external base in more detail, the following points were revealed.
FIG. 3 shows the npn heterojunction bipolar transistor having the structure of FIG. 2 analyzed by two-dimensional simulation, and three-dimensionally shows the energy distribution of the conduction band in the left half structure. The external base region 12 in the heterojunction bipolar transistor is likely to have a deep surface level on its surface by a manufacturing process such as etching. External base 1
When the deep impurity level is distributed on the surface of No. 2, the surface Fermi level is pinned to the position of the deep level, and a potential well 14 is formed in that portion. When the transistor is turned on by the application of an external bias, a part of the majority carriers of the second conductivity type, which is injected from the emitter to the intrinsic base, is injected into the well by the local electric field generated by the potential gradient of the well and is accumulated therein. It When the carriers are injected into the well, the deep impurity level there acts as a recombination center, causing surface recombination with majority carriers of the first conductivity type. It was found that the required majority carriers of the first conductivity type were supplied from the base electrode, and as a result, the base current increased and the current gain decreased.

【0004】本発明の目的は、上述したような従来の問
題点を解決し、電流利得の高いヘテロ接合バイポーラト
ランジスタを提供するものである。
An object of the present invention is to solve the above-mentioned conventional problems and provide a heterojunction bipolar transistor having a high current gain.

【0005】[0005]

【課題を解決するための手段】本発明のトランジスタは
第1の導電形を有する第1の半導体領域であるベース
が、活性領域の真性ベース領域とベース電極を取り出す
ための領域である外部ベース領域で構成されたIII−
V族化合物半導体材料よりなるへテロ接合バイポーラト
ランジスタにおいて、外部ベースの表面に浅いエネルギ
ー準位を形成する第1導電形の不純物を高濃度に導入す
ることを特徴としている。
In the transistor of the present invention, the base, which is the first semiconductor region having the first conductivity type, is the external base region, which is the region for taking out the intrinsic base region of the active region and the base electrode. III- composed of
A heterojunction bipolar transistor made of a Group V compound semiconductor material is characterized in that impurities of the first conductivity type that form a shallow energy level on the surface of the external base are introduced at a high concentration.

【0006】[0006]

【作用】深い表面準位が分布している外部ベース表面に
浅いエネルギー準位を形成する第1導電形の不純物を高
い濃度で導入し活性化させると、導通状態に再結合中心
になる深い表面準位の一部が導入された浅い不純物準位
によって補償され、電位井戸に注入される第2導電形で
の多数キャリアによる深い表面準位の占有率が低下す
る。深い表面準位のキャリア占有率が低くなるとその準
位による再結合の確率が低くなる。結果的に表面再結合
を抑制させることができ、それによって供給されるベー
ス電流成分が減少され、高電流利得特性を得ることがで
きる。
[Function] When an impurity of the first conductivity type that forms a shallow energy level is introduced at a high concentration and activated on the surface of the external base where the deep surface level is distributed, the deep surface becomes a recombination center in the conductive state. A part of the levels is compensated by the introduced shallow impurity levels, and the occupation ratio of the deep surface levels by the majority carriers in the second conductivity type injected into the potential well is reduced. When the carrier occupancy of the deep surface level becomes low, the probability of recombination due to the level becomes low. As a result, surface recombination can be suppressed, the base current component supplied thereby can be reduced, and high current gain characteristics can be obtained.

【0007】[0007]

【実施例】以下に本発明の実施例を説明する。AlGa
As/GaAs形のへテロ接合バイポーラトランジスタ
構造を図1に示す。各層の不純物濃度と厚さはn+ −G
aAs層サブコレクタ2が400nmでSiを3×10
1 8 cm- 3 ドープ、n−GaAsコレクタ層3が50
0nmでSiを5×101 6 cm- 3 ドープ、p+−G
aAsベース層4が80nmでBeを2×101 9 cm
- 3 ドープ、i−GaAsスペーサ層5がアンドープで
ある。n−Alx Ga1 - x Asエミッタ層6は、基板
側から、i−GaAs層5との境界部分20nmにおい
てxが0から0.25まで連続的に変化するグレーディ
ング層、100nmのAl0 . 2 5 Ga0 . 7 5 As
層、エミッタキャップ層7との境界部分30nmにおい
てxが0.25から0まで連続的に変化するグレーディ
ング層で構成し、Siを3×101 7 cm- 3 ドープし
てある。そして、n+ −GaAsエミッタキャップ層7
が200nmでSiを6×101 8 cm- 3 ドープして
ある。本実施例の構造においては、ベース電極とエミッ
タ電極をマスクにして外部ベース表面13のみに浅いエ
ネルギー準位を形成するII族イオンのZnあるいはM
gイオンを高ドーズ量、低エネルギー例えば1×10
1 5 cm- 2 ,10keVで注入した後、650℃でア
ニールした。II族不純物は外部ベース表面13での浅
い準位を形成するが、II族不純物表面密度はそこに分
布している深い表面準位の表面密度(通常2×101 3
cm- 2 程度)と同等になっていればよい。
EXAMPLES Examples of the present invention will be described below. AlGa
An As / GaAs type heterojunction bipolar transistor structure is shown in FIG. The impurity concentration and thickness of each layer are n + -G
aAs layer sub-collector 2 is 400 nm and Si 3 × 10
18 cm −3 doped, n-GaAs collector layer 3 is 50
Si doped at 5 nm × 10 16 cm −3 at 0 nm, p + −G
aAs base layer 4 is 80 nm and Be is 2 × 10 19 cm
-3 doped, i-GaAs spacer layer 5 is undoped. The n-Al x Ga 1 -x As emitter layer 6 is a grading layer in which x continuously changes from 0 to 0.25 at a boundary portion 20 nm with the i-GaAs layer 5 from the substrate side, 100 nm Al 0 .. 2 5 Ga 0. 7 5 As
The layer is composed of a grading layer in which x continuously changes from 0.25 to 0 at a boundary portion of 30 nm with the emitter cap layer 7 and is doped with Si at 3 × 10 17 cm −3 . Then, the n + -GaAs emitter cap layer 7
Is 200 nm and is 6 × 10 18 cm −3 doped with Si. In the structure of this embodiment, the group II ions Zn or M that form a shallow energy level only on the outer base surface 13 using the base electrode and the emitter electrode as a mask.
g ion with high dose and low energy, for example, 1 × 10
After implantation at 15 cm -2 and 10 keV, annealing was performed at 650 ° C. The group II impurities form shallow levels on the outer base surface 13, while the group II impurity surface densities are deep surface levels distributed therein (usually 2 × 10 13
cm -2 )).

【0008】この実施例によるへテロバイポーラトラン
ジスタの直流電流利得特性を図4に示す。実線は本実施
例の結果であり、破線は高濃度外部ベース表面13を持
たず他の部分は本実施例と同じ構造にした場合の結果で
ある。図4から明らかなように、外部ベース表面に高濃
度の浅い準位を形成する不純物を導入することにより直
流電流利得に相当の改善が得られた。
FIG. 4 shows the DC current gain characteristic of the hetero bipolar transistor according to this embodiment. The solid line is the result of this embodiment, and the broken line is the result when the high concentration external base surface 13 is not provided and the other portions have the same structure as this embodiment. As is clear from FIG. 4, a considerable improvement in the DC current gain was obtained by introducing a high-concentration impurity forming a shallow level on the surface of the external base.

【0009】本実施例では、高濃度の外部ベース表面1
3を形成するためにイオン注入を施したが、Znの拡散
源AsZn2 等を用いて550℃程度での拡散を施して
もよい。
In this embodiment, the highly concentrated external base surface 1
Although ion implantation was performed to form No. 3 , diffusion may be performed at about 550 ° C. using a Zn diffusion source AsZn 2 or the like.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、外
部ベース表面における深い表面準位による表面再結合を
抑制することができ、より高い電流利得を得ることがで
きる。
As described above, according to the present invention, the surface recombination due to the deep surface level on the surface of the external base can be suppressed and a higher current gain can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のへテロ接合バイポーラトランジスタ構
造を示す断面図である。
FIG. 1 is a cross-sectional view showing a heterojunction bipolar transistor structure of the present invention.

【図2】従来のへテロ接合バイポーラトランジスタ構造
を示す断面図である。
FIG. 2 is a cross-sectional view showing a conventional heterojunction bipolar transistor structure.

【図3】図2のへテロ接合バイポーラトランジスタの右
の半分の構造を2次元数値シミュレーションで解析し、
エミッタとベースの領域での伝導帯のエネルギー分布を
3次元的に表した図である。
3 is a two-dimensional numerical simulation analysis of the right half structure of the heterojunction bipolar transistor of FIG.
It is the figure which expressed three-dimensionally the energy distribution of the conduction band in the area | region of an emitter and a base.

【図4】本発明の実施例と、従来構造の例における直流
電流利得のコレクタ電流密度に対する依存性を表す図で
ある。
FIG. 4 is a diagram showing the dependence of the DC current gain on the collector current density in an example of the present invention and an example of a conventional structure.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaAs基板 2 n+ −GaAsサブコレクタ層 3 n−GaAsコレクタ層 4 p+ GaAsベース層 5 i−GaAsスペーサ層 6 n−AlGaAsエミッタ層 7 n+ GaAsエミッタキャップ層 8 エミッタ電極 9 ベース電極 10 コレクタ電極 11 真性ベース領域 12 外部ベース領域 13 高不純物濃度の外部ベース表面 14 電位井戸1 semi-insulating GaAs substrate 2 n + -GaAs subcollector layer 3 n-GaAs collector layer 4 p + GaAs base layer 5 i-GaAs spacer layer 6 n-AlGaAs emitter layer 7 n + GaAs emitter cap layer 8 emitter electrode 9 base Electrode 10 Collector electrode 11 Intrinsic base region 12 External base region 13 External base surface with high impurity concentration 14 Potential well

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電形を有する第1の半導体領域
であるベースが、活性領域の真性ベース領域とベース電
極を取り出すための領域である外部ベース領域で構成さ
れたIII−V族化合物半導体材料よりなるへテロ接合
バイポーラトランジスタにおいて、外部ベースの表面に
浅いエネルギー準位を形成する第1導電形の不純物を高
濃度に導入することを特徴とするへテロ接合バイポーラ
トランジスタ。
1. A III-V group compound in which a base which is a first semiconductor region having a first conductivity type is composed of an intrinsic base region of an active region and an external base region which is a region for taking out a base electrode. A heterojunction bipolar transistor made of a semiconductor material, characterized in that impurities of the first conductivity type that form a shallow energy level on the surface of the external base are introduced at a high concentration.
JP6636893A 1993-03-25 1993-03-25 Heterojunction bipolar transistor Expired - Lifetime JPH0789557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6636893A JPH0789557B2 (en) 1993-03-25 1993-03-25 Heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6636893A JPH0789557B2 (en) 1993-03-25 1993-03-25 Heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JPH06283540A true JPH06283540A (en) 1994-10-07
JPH0789557B2 JPH0789557B2 (en) 1995-09-27

Family

ID=13313835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6636893A Expired - Lifetime JPH0789557B2 (en) 1993-03-25 1993-03-25 Heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0789557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031722A (en) * 2000-10-23 2002-05-03 김우진 Structure and method for heterojunction bipola transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031722A (en) * 2000-10-23 2002-05-03 김우진 Structure and method for heterojunction bipola transistor

Also Published As

Publication number Publication date
JPH0789557B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JP2771423B2 (en) Bipolar transistor
US5003366A (en) Hetero-junction bipolar transistor
JPH0458703B2 (en)
US6147371A (en) Bipolar transistor and manufacturing method for same
JP2576828B2 (en) High gain MIS transistor
JP2734875B2 (en) Heterojunction bipolar transistor and method of manufacturing the same
JPH06283540A (en) Hetero-junction bipolar transistor
KR100752538B1 (en) Bipolar transistor
JP2626220B2 (en) Field effect transistor and method of manufacturing the same
JP2002359249A (en) Compound semiconductor device and manufacturing method therefor
JPS63200567A (en) Hetero junction bipolar transistor and manufacture thereof
JPH03145139A (en) Field-effect transistor and manufacture thereof
JP2506074B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPH06267992A (en) Semiconductor device and its manufacture
JPH06334175A (en) Tunnel transistor and manufacture thereof
JPS6348859A (en) Heterojunction bipolar transistor
Asbeck Development of HBT structure to minimize parasitic elements
JP2566558B2 (en) Semiconductor device
JPS6381977A (en) Hetero junction bipolar transistor
JP2800218B2 (en) Bipolar transistor
Ishibashi et al. Focused‐ion‐beam defined and overgrown collector‐up AlGaAs/GaAs heterojunction bipolar transistors
JP2814984B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPH07263460A (en) Hbt type compound semiconductor device and its manufacture
JPH01194469A (en) Compound semiconductor device
JPH11121462A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960319