JPH06334175A - Tunnel transistor and manufacture thereof - Google Patents

Tunnel transistor and manufacture thereof

Info

Publication number
JPH06334175A
JPH06334175A JP11981193A JP11981193A JPH06334175A JP H06334175 A JPH06334175 A JP H06334175A JP 11981193 A JP11981193 A JP 11981193A JP 11981193 A JP11981193 A JP 11981193A JP H06334175 A JPH06334175 A JP H06334175A
Authority
JP
Japan
Prior art keywords
semiconductor
insulating layer
impurities
conductivity type
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11981193A
Other languages
Japanese (ja)
Other versions
JPH088360B2 (en
Inventor
Toshio Baba
寿夫 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11981193A priority Critical patent/JPH088360B2/en
Publication of JPH06334175A publication Critical patent/JPH06334175A/en
Publication of JPH088360B2 publication Critical patent/JPH088360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a tunnel transistor which is suitable for realizing fineness, low-voltage operation, high-current density and differential negative resistance characteristics. CONSTITUTION:This tunnel transistor has the laminated structure of a first semiconductor 2 (source) of one conductivity type, a second semiconductor 3 which is not degenerated, a third semiconductor 4 (drain) having a reverse conductivity type to that of the first semiconductor 2. In addition, a fourth semiconductor 5 composed of a semiconductor having a narrower forbidden bandwidth than that of the foregoing semiconductors and an insulating layer 6 composed of a material having a wider forbidden bandwidth than that thereof and a gate electrode 7 are provided in the exposed surface of the foregoing semiconductors, and a source electrode 8 and a drain electrode 9 are respectively provided in the first semiconductor 2 and the third semiconductor 4 with the formation of ohmic junction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トンネル現象を利用し
た高集積化,高速動作,多機能化が可能なトランジスタ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transistor capable of high integration, high speed operation, and multi-function by utilizing a tunnel phenomenon.

【0002】[0002]

【従来の技術】半導体表面におけるp+ −n+ 接合での
トンネル現象を利用し、多機能性を有するトンネルトラ
ンジスタが提案されている。このデバイスについては、
例えば、本出願人による特願平3−196321号明細
書「半導体装置」に記載されている。このトンネルトラ
ンジスタは、少ない素子数で機能回路を構成でき、高集
積化を可能にするものである。
2. Description of the Related Art A tunnel transistor having multiple functions has been proposed by utilizing a tunnel phenomenon at a p + -n + junction on a semiconductor surface. For this device,
For example, it is described in the specification of Japanese Patent Application No. 3-196321, "Semiconductor Device" by the present applicant. This tunnel transistor can form a functional circuit with a small number of elements and enables high integration.

【0003】図2は、従来のトンネルトランジスタの模
式断面図である。1は基板、10は基板1上に形成され
た絶縁領域、11は半導体チャネル層、12は一導電型
を有し縮退した半導体からなるソース領域、13はソー
ス領域12と反対の導電型を有し縮退した半導体からな
るドレイン領域、6は半導体チャネル層11よりも禁止
帯幅が広い材料からなる絶縁層、7は絶縁層上のゲート
電極、8はソース領域12とオーミック接合を形成する
ソース電極、9はドレイン領域13とオーミック接合を
形成するドレイン電極である。
FIG. 2 is a schematic sectional view of a conventional tunnel transistor. 1 is a substrate, 10 is an insulating region formed on the substrate 1, 11 is a semiconductor channel layer, 12 is a source region made of a degenerate semiconductor having one conductivity type, and 13 is a conductivity type opposite to the source region 12. A drain region made of a degenerated semiconductor, 6 an insulating layer made of a material having a wider band gap than the semiconductor channel layer 11, 7 a gate electrode on the insulating layer, 8 a source electrode forming an ohmic junction with the source region 12. , 9 are drain electrodes forming an ohmic junction with the drain region 13.

【0004】この従来のトンネルトランジスタの動作に
ついて、基板1にGaAs基板、絶縁領域10にi−A
0.5 Ga0.5 As、半導体チャネル層11に薄いi−
GaAs、ソース領域12にn+ −GaAs、ドレイン
領域13にp+ −GaAs、絶縁層6にi−Al0.5
0.5 As、ゲート電極7にAl、ソース電極8および
ドレイン電極9にAuを用いた例により説明する。ソー
ス電極8をアース電位とし、ゲート電極7には電圧を印
加せず、ドレイン電極9に正の電圧を印加すると、ソー
ス領域12(n+ −GaAs)とドレイン領域13(p
+ −GaAs)との間は、非常に薄い半導体チャネル層
11(i−GaAs)を介して順方向バイアスになる。
このバイアス方向は、逆方向バイアスに比べ、ドレイン
電流が流れ易いが、キャリアの拡散電流が顕著とならな
い電圧以下(GaAsで0.7V以下)にしておけば、
ほとんど電流は流れない。さて、ゲート電極7に大きな
正の電圧を印加すると、半導体チャネル層11(i−G
aAs)には高濃度の電子が誘起される。その結果、こ
の半導体チャネル層11は、電子濃度が非常に大きい縮
退した状態となり、等価的なn+ −GaAsとなる。こ
のため、ソース領域12(n+ −GaAs)と半導体チ
ャネル層11(i−GaAs)は完全な導通状態とな
る。一方、半導体チャネル層11(i−GaAs)とド
レイン領域13(p+ −GaAs)との間は、江崎ダイ
オード(トンネルダイオード)と同様の接合(トンネル
接合)が形成される。したがって、順方向バイアスが印
加されたドレイン・ソース間には、トンネル効果による
大きなトンネル電流が流れるようになり、電流−電圧特
性には微分負性抵抗が現れる。トンネル電流の大きさ
は、半導体チャネル層11に誘起される電子の濃度に依
存するため、この微分負性抵抗特性は、ゲート電極に印
加する電圧より制御されることになる。
Regarding the operation of this conventional tunnel transistor, the substrate 1 is a GaAs substrate, and the insulating region 10 is an i-A.
l 0.5 Ga 0.5 As, thin i-type semiconductor channel layer 11
GaAs, the source region 12 n + -GaAs, p + -GaAs to the drain region 13, the insulating layer 6 i-Al 0.5 G
An example will be described in which a 0.5 As, Al for the gate electrode 7, and Au for the source electrode 8 and the drain electrode 9 are used. When the source electrode 8 is set to the ground potential, no voltage is applied to the gate electrode 7, and a positive voltage is applied to the drain electrode 9, the source region 12 (n + -GaAs) and the drain region 13 (p
+ -GaAs), a forward bias is applied via a very thin semiconductor channel layer 11 (i-GaAs).
Compared to the reverse bias, this bias direction allows a drain current to flow more easily, but if the carrier diffusion current is not significant (0.7 V or less for GaAs),
Almost no current flows. When a large positive voltage is applied to the gate electrode 7, the semiconductor channel layer 11 (i-G)
A high concentration of electrons is induced in aAs). As a result, the semiconductor channel layer 11 is in a degenerated state in which the electron concentration is very large, and becomes an equivalent n + -GaAs. For this reason, the source region 12 (n + -GaAs) and the semiconductor channel layer 11 (i-GaAs) are brought into complete conduction. On the other hand, a junction (tunnel junction) similar to an Esaki diode (tunnel diode) is formed between the semiconductor channel layer 11 (i-GaAs) and the drain region 13 (p + -GaAs). Therefore, a large tunnel current flows due to the tunnel effect between the drain and source to which the forward bias is applied, and differential negative resistance appears in the current-voltage characteristic. Since the magnitude of the tunnel current depends on the concentration of electrons induced in the semiconductor channel layer 11, this differential negative resistance characteristic is controlled by the voltage applied to the gate electrode.

【0005】[0005]

【発明が解決しようとする課題】このデバイスで最も重
要となるのは、半導体チャネル層とドレイン領域間のト
ンネル接合の形成であるが、これらは異なった半導体か
らなるため、イオン注入や選択再成長のような、いくつ
かのプロセスを経て形成する必要がある。このため、プ
ロセスに伴う発生・再結合センターがトンネル接合近傍
に誘起され易く、このセンターを介した大きな再結合電
流により微分負性抵抗特性が劣化するという問題があっ
た。機能素子として高い信頼性を得るためには、この発
生・再結合センターの抑制が必要であった。
The most important factor in this device is the formation of the tunnel junction between the semiconductor channel layer and the drain region, but since these are made of different semiconductors, ion implantation and selective regrowth are performed. It has to be formed through several processes such as. For this reason, there is a problem that the generation / recombination center associated with the process is easily induced in the vicinity of the tunnel junction, and the differential negative resistance characteristic is deteriorated by a large recombination current through the center. In order to obtain high reliability as a functional element, it is necessary to suppress this generation / recombination center.

【0006】本発明の目的は、発生・再結合センターを
抑制することのできるトンネルトランジスタを提供する
ことにある。
An object of the present invention is to provide a tunnel transistor capable of suppressing generation / recombination centers.

【0007】[0007]

【課題を解決するための手段】本発明のトンネルトラン
ジスタは、基板上に形成され一導電型を有し高濃度の不
純物を含有する第1の半導体と、第1の半導体上に形成
され低濃度の不純物を含有する第2の半導体と、第2の
半導体上に形成され第1の半導体と反対の導電型を有し
高濃度の不純物を含有する第3の半導体と、第1から第
3の半導体の積層構造の露出した表面に接して形成され
第1から第3の半導体よりも禁止帯幅が狭い材料からな
る第4の半導体と、第4の半導体に接して形成され第4
の半導体よりも禁止帯幅が広い材料からなる絶縁層と、
絶縁層上に設けられたゲート電極と、第1の半導体上に
設けられたソース電極と、第3の半導体上に設けられた
ドレイン電極とを有することを特徴としている。
A tunnel transistor according to the present invention comprises a first semiconductor formed on a substrate and having one conductivity type and containing a high concentration of impurities, and a low concentration semiconductor formed on the first semiconductor. A second semiconductor containing an impurity of, a third semiconductor formed on the second semiconductor and having a conductivity type opposite to that of the first semiconductor, and containing a high concentration of impurities; A fourth semiconductor formed in contact with the exposed surface of the semiconductor laminated structure and having a narrower bandgap than the first to third semiconductors, and a fourth semiconductor formed in contact with the fourth semiconductor.
An insulating layer made of a material having a wider band gap than the semiconductor of
It is characterized in that it has a gate electrode provided over the insulating layer, a source electrode provided over the first semiconductor, and a drain electrode provided over the third semiconductor.

【0008】[0008]

【作用】本発明のトンネルトランジスタにおいては、ト
ンネル接合が第4の半導体内に形成されるため、この接
合特性はプロセスの影響を受けにくく、発生・再結合セ
ンターの発生が抑制される。
In the tunnel transistor of the present invention, since the tunnel junction is formed in the fourth semiconductor, this junction characteristic is hardly affected by the process, and the generation / recombination center is suppressed.

【0009】[0009]

【実施例】次に、本発明の実施例について、図面を参照
して詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1は、本発明の第1の実施例を示す模式
断面図である。図1において、図2と同じ符号の部分は
図2と同等物で同一機能を果たすものであり、2は一導
電型を有し高濃度の不純物を含有した第1の半導体、3
は低不純物濃度の第2の半導体、4は第1の半導体2と
反対の導電型を有し、高濃度の不純物を含有した第3の
半導体、5は第1から第3の半導体よりも禁止帯幅の狭
い第4の半導体である。
FIG. 1 is a schematic sectional view showing a first embodiment of the present invention. 1, parts having the same reference numerals as those in FIG. 2 are the same as those in FIG. 2 and perform the same functions, and 2 is a first semiconductor having one conductivity type and containing a high concentration of impurities, 3
Is a second semiconductor having a low impurity concentration, 4 has a conductivity type opposite to that of the first semiconductor 2, and a third semiconductor containing a high concentration of impurities, 5 is more prohibited than the first to third semiconductors. It is a fourth semiconductor having a narrow band width.

【0011】次に、第1の実施例の動作について、基板
1にGaAs基板、第1の半導体2にn+ −GaAs、
第2の半導体3にi−GaAs、第3の半導体4にp+
−GaAs、第4の半導体5に薄いi−In0.1 Ga
0.9 As、絶縁層6にi−Al0.5 Ga0.5 As、ゲー
ト電極7にAl、ソース電極8およびドレイン電極9に
Auを用いて説明する。
Next, regarding the operation of the first embodiment, the substrate 1 is a GaAs substrate, the first semiconductor 2 is n + -GaAs,
The second semiconductor 3 is i-GaAs, and the third semiconductor 4 is p +
-GaAs, thin i-In 0.1 Ga on the fourth semiconductor 5
The description will be made using 0.9 As, i-Al 0.5 Ga 0.5 As for the insulating layer 6, Al for the gate electrode 7, and Au for the source electrode 8 and the drain electrode 9.

【0012】第1の半導体2と第4の半導体5は変調ド
ープ構造を形成しているため、第1に半導体2中の電子
の一部は第4の半導体5に移動する。このため、第4の
半導体5の第1の半導体2に接している部分は、高濃度
の電子が蓄積する縮退した半導体となっている。同様
に、第3の半導体4と第4の半導体5間も変調ドープ構
造となっており、第3の半導体4に接している第4の半
導体5は、高濃度の正孔が蓄積する縮退半導体となって
いる。このため、ゲート電極7に正の電圧を印加して絶
縁層下の第4の半導体5に高濃度の電子を誘起すると、
この領域と第1の半導体2に接する第4の半導体5とは
完全な導通状態となり、第3の半導体4に接する第4の
半導体5との間にはトンネル接合が形成される。したが
って、従来のトンネルトランジスタと同様に微分負性抵
抗特性を有するトランジスタ動作が実現できる。なお、
第1の半導体2および第3の半導体4は必ずしも縮退し
ている必要はないが、第4の半導体5との間の寄生抵抗
を減らすためには縮退していることが望ましい。 実施
例のトンネルトランジスタでは、上に述べたようにトン
ネル接合が単一の半導体層内に形成されるため、トンネ
ル接合近傍での異種半導体接合形成プロセスに伴うよう
な発生・再結合センターの発生が抑制される。このた
め、再結合電流が抑制され、従来構造よりも顕著な微分
負性抵抗特性が得られる。
Since the first semiconductor 4 and the fourth semiconductor 5 form a modulation doping structure, first, some of the electrons in the semiconductor 2 move to the fourth semiconductor 5. Therefore, the portion of the fourth semiconductor 5 that is in contact with the first semiconductor 2 is a degenerate semiconductor in which high-concentration electrons are accumulated. Similarly, the third semiconductor 4 and the fourth semiconductor 5 also have a modulation-doped structure, and the fourth semiconductor 5 in contact with the third semiconductor 4 is a degenerate semiconductor in which high-concentration holes are accumulated. Has become. Therefore, when a positive voltage is applied to the gate electrode 7 to induce high-concentration electrons in the fourth semiconductor 5 below the insulating layer,
This region and the fourth semiconductor 5 in contact with the first semiconductor 2 are brought into complete conduction, and a tunnel junction is formed between the fourth semiconductor 5 in contact with the third semiconductor 4. Therefore, it is possible to realize a transistor operation having a differential negative resistance characteristic like the conventional tunnel transistor. In addition,
The first semiconductor 2 and the third semiconductor 4 do not necessarily have to be degenerated, but are preferably degenerated in order to reduce the parasitic resistance between the first semiconductor 2 and the third semiconductor 4. In the tunnel transistor of the embodiment, since the tunnel junction is formed in a single semiconductor layer as described above, the generation / recombination center which is associated with the heterogeneous semiconductor junction formation process near the tunnel junction is generated. Suppressed. For this reason, the recombination current is suppressed, and a more prominent differential negative resistance characteristic than the conventional structure is obtained.

【0013】次に、第1の実施例の製造方法について、
動作の説明で用いた材料と同一の材料を用いて説明す
る。
Next, regarding the manufacturing method of the first embodiment,
The same material as that used in the description of the operation will be used for description.

【0014】まず、GaAs基板上に500nmのn+
−GaAs(n=1×1019cm-3),200nmのi
−GaAs,150nmのp+ −GaAs(p=5×1
19cm-3)をMBE(Molecular Beam
Epitaxy)法により形成する。次に、リソグラ
フィとエッチングによりドレイン領域をメサ形状に残
し、n+ −GaAsの一部を露出させる。その後、再び
基板をMBE装置に導入し、形成した構造表面に20n
mのi−In0.1 Ga0.9 Asと50nmのi−Al
0.5 Ga0.5 Asを再成長させる。MBE装置から取り
出した後、Alを蒸着し、Alおよびi−In0.1 Ga
0.9 As/i−Al0.5 Ga0.5 Asをゲート電極形状
にエッチングする。リフトオフによりAuをn+ −Ga
As上およびp+ −GaAs上に形成し、ソース電極と
ドレイン電極とする。
First, n + of 500 nm is formed on a GaAs substrate.
-GaAs (n = 1 × 10 19 cm −3 ), i of 200 nm
−GaAs, 150 nm p + −GaAs (p = 5 × 1
0 19 cm -3 ) to MBE (Molecular Beam)
It is formed by the epitaxy method. Next, the drain region is left in a mesa shape by lithography and etching to expose a part of n + -GaAs. After that, the substrate is again introduced into the MBE apparatus, and 20n is formed on the surface of the formed structure.
m i-In 0.1 Ga 0.9 As and 50 nm i-Al
Re-grow 0.5 Ga 0.5 As. After taking out from the MBE device, Al is vapor-deposited, and Al and i-In 0.1 Ga are deposited.
0.9 As / i-Al 0.5 Ga 0.5 As is etched into a gate electrode shape. Lift off Au to n + -Ga
It is formed on As and p + -GaAs to serve as a source electrode and a drain electrode.

【0015】この構造のデバイスにより、微分負性抵抗
特性のピーク・バレー比として5以上が得られ、従来構
造より改善されていることがわかった。なお、ソースと
ドレインを入れ替え、ゲートに負の電圧を印加してゲー
ト下に高濃度の正孔を誘起した場合にも、トンネルトラ
ンジスタとしての同様な特性が得られた。
It was found that the device having this structure has a peak-valley ratio of 5 or more in the differential negative resistance characteristic, which is an improvement over the conventional structure. Similar characteristics as a tunnel transistor were obtained when the source and drain were exchanged and a negative voltage was applied to the gate to induce high-concentration holes under the gate.

【0016】また、第4の半導体にn+ −In0.1 Ga
0.9 As(n=2×1018cm-3)を用いた場合には、
ゲート電圧を印加しない場合にもトンネル接合が形成さ
れ、ディプレッション型の動作をすることができた。
Further, n + -In 0.1 Ga is added to the fourth semiconductor.
When 0.9 As (n = 2 × 10 18 cm −3 ) is used,
Even when the gate voltage was not applied, the tunnel junction was formed, and the depletion type operation could be performed.

【0017】次に、本発明の第2の実施例について、第
1の実施例と同様に図1を用いて説明する。ただし、絶
縁層6は不純物を含有した半導体である。以下、絶縁層
6にn−Al0.3 Ga0.7 Asを用い、その他は第1の
実施例と同じ材料を用いて説明する。
Next, a second embodiment of the present invention will be described with reference to FIG. 1 similarly to the first embodiment. However, the insulating layer 6 is a semiconductor containing impurities. Hereinafter, description will be made by using n-Al 0.3 Ga 0.7 As for the insulating layer 6 and using the same material as that of the first embodiment except the above.

【0018】第2の半導体3に接する第4の半導体5
と、絶縁層6との間は、i−In0.1Ga0.9 As/n
−Al0.3 Ga0.7 As変調ドープ構造となっている。
したがって、n−Al0.3 Ga0.7 Asの電子がi−I
0.1 Ga0.9 Asへと移動し、第2の半導体3に接す
る第4の半導体5にも高濃度の電子が蓄積し、この領域
も縮退した半導体となっている。一方、第3の半導体4
に接している第4の半導体5の領域では、n−Al0.3
Ga0.7 As絶縁層6のために正孔濃度が減少するが第
3の半導体4の正孔濃度を絶縁層6の電子濃度よりもか
なり高くしておくことにより、その影響を少なくするこ
とができる。このため、正のゲート電圧を印加しないで
も第4の半導体5の内部にはトンネル接合が形成されて
おり、この素子は、第1の実施例で第4の半導体5にn
+ −In0.1 Ga0.9 As(n=2×1018cm-3)を
用いた場合と同様に、大きなトンネル電流密度を有し、
ディプレッション型の動作をすることができる。これに
加え、トンネル障壁内に不純物がほとんど存在しないた
め、不純物準位を通したトンネル電流などのリーク電流
の発生がなく、第1の実施例よりも大きなピーク・バレ
ー比が得られる。このように第2の実施例においては、
第1の実施例よりもさらに負性抵抗特性の改善が期待で
きる。
The fourth semiconductor 5 in contact with the second semiconductor 3
Between the insulating layer 6 and the insulating layer 6 is i-In 0.1 Ga 0.9 As / n
-Al 0.3 Ga 0.7 As modulation-doped structure.
Therefore, the electrons of n-Al 0.3 Ga 0.7 As are i-I.
The electrons move to n 0.1 Ga 0.9 As, high-concentration electrons are accumulated in the fourth semiconductor 5 in contact with the second semiconductor 3, and this region also becomes a degenerate semiconductor. On the other hand, the third semiconductor 4
A is in contact with the region of the fourth semiconductor 5, n-Al 0.3
The hole concentration decreases due to the Ga 0.7 As insulating layer 6, but the influence can be reduced by setting the hole concentration of the third semiconductor 4 to be considerably higher than the electron concentration of the insulating layer 6. . For this reason, a tunnel junction is formed inside the fourth semiconductor 5 even if a positive gate voltage is not applied, and this element is not connected to the fourth semiconductor 5 in the first embodiment.
As with the case of using + −In 0.1 Ga 0.9 As (n = 2 × 10 18 cm −3 ), it has a large tunnel current density,
Depression type operation is possible. In addition to this, since almost no impurities exist in the tunnel barrier, a leak current such as a tunnel current does not occur through the impurity level, and a larger peak-valley ratio than that of the first embodiment can be obtained. Thus, in the second embodiment,
Further improvement of the negative resistance characteristic can be expected as compared with the first embodiment.

【0019】第4の半導体5に20nmのi−In0.1
Ga0.9 As、絶縁層6として50nmのn−Al0.3
Ga0.7 As(n=2×1018cm-3)を用い、その他
は第1の実施例と同様な材料,製造方法を用いてトンネ
ルトランジスタを作製した結果、大きなトンネル電流が
得られると共に、ピーク・バレー比が10以上と微分負
性抵抗特性の大きな改善が得られた。また、絶縁層6に
p−Al0.3 Ga0.7Asを用いた場合にもゲート電圧
の極性を逆にして、同様な特性が得られた。
20 nm of i-In 0.1 is added to the fourth semiconductor 5.
Ga 0.9 As, 50 nm n-Al 0.3 as insulating layer 6
Ga 0.7 As (n = 2 × 10 18 cm −3 ) was used, and the other materials and manufacturing methods similar to those of the first embodiment were used to fabricate the tunnel transistor. -A large improvement in differential negative resistance was obtained with a valley ratio of 10 or more. Also, when p-Al 0.3 Ga 0.7 As was used for the insulating layer 6, the same characteristics were obtained by reversing the polarity of the gate voltage.

【0020】ここでは絶縁層全体に不純物をドープした
構造を示したが、ゲート耐圧を高めるためにプレーナー
ドープなど絶縁層の一部だけにドープしてもよい。
Although the structure in which the entire insulating layer is doped with impurities is shown here, only a part of the insulating layer may be doped, such as planar doping, in order to increase the gate breakdown voltage.

【0021】以上の本発明の実施例においては,第1の
半導体から第3の半導体として同種類の半導体とした場
合しか示さなかったが、異種半導体を用いても良いこと
は明かである。また、半導体材料として、GaAs、I
nGaAsしか示さなかったが、Ge,Si,SiG
e,SiGeC,GaP,InP,GaSb,InA
s,InSb,InAsP,InAlAs,AlGaS
b,HgCdTe,CdTeなど他の多くの半導体の組
み合わせでも本発明に適用できることは明かである。さ
らに、絶縁膜としてAlGaAsしか示さなかったが、
その他の禁止帯幅の広い半導体や、SiO2 ,Si3
4 ,SiON,Al2 3 ,TiO2 ,PbZrTIO
3 ,CaFなどの絶縁体でも良いことは明かである。
In the above embodiments of the present invention, only the case where the first semiconductor and the third semiconductor are the same kind of semiconductor has been shown, but it is obvious that different kinds of semiconductors may be used. Further, as semiconductor materials, GaAs, I
Only nGaAs was shown, but Ge, Si, SiG
e, SiGeC, GaP, InP, GaSb, InA
s, InSb, InAsP, InAlAs, AlGaS
It is clear that many other semiconductor combinations such as b, HgCdTe, CdTe can also be applied to the present invention. Furthermore, although only AlGaAs was shown as an insulating film,
Other wide bandgap semiconductors, SiO 2 , Si 3 N
4 , SiON, Al 2 O 3 , TiO 2 , PbZrTIO
3 , it is clear that insulators such as CaF may be used.

【0022】[0022]

【発明の効果】以上説明したように、本発明のトンネル
トランジスタは、トンネル接合が単一の半導体層内に形
成されるため、発生・再結合センターが少なく、顕著な
微分負性抵抗特性を有し、本発明により、高速,低消費
電力,室温動作,超高密度のトンネルデバイス集積回路
の形成が可能になる。
As described above, in the tunnel transistor of the present invention, since the tunnel junction is formed in a single semiconductor layer, the generation / recombination center is small and the differential negative resistance characteristic is remarkable. However, according to the present invention, it is possible to form a tunnel device integrated circuit of high speed, low power consumption, room temperature operation, and ultra high density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1および第2の実施例を示す模式断
面図である。
FIG. 1 is a schematic cross-sectional view showing first and second embodiments of the present invention.

【図2】従来のトンネルトランジスタの模式断面図であ
る。
FIG. 2 is a schematic cross-sectional view of a conventional tunnel transistor.

【符号の説明】[Explanation of symbols]

1 基板 2 第1の半導体 3 第2の半導体 4 第3の半導体 5 第4の半導体 6 絶縁層 7 ゲート電極 8 ソース電極 9 ドレイン電極 10 絶縁領域 11 チャネル層 12 ソース領域 13 ドレイン領域 1 substrate 2 1st semiconductor 3 2nd semiconductor 4 3rd semiconductor 5 4th semiconductor 6 insulating layer 7 gate electrode 8 source electrode 9 drain electrode 10 insulating region 11 channel layer 12 source region 13 drain region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成され一導電型を有し高濃度の
不純物を含有する第1の半導体と、 第1の半導体上に形成され低濃度の不純物を含有する第
2の半導体と、 第2の半導体上に形成され第1の半導体と反対の導電型
を有し高濃度の不純物を含有する第3の半導体と、 第1から第3の半導体の積層構造の露出した表面に接し
て形成され第1から第3の半導体よりも禁止帯幅が狭い
材料からなる第4の半導体と、 第4の半導体に接して形成され第4の半導体よりも禁止
帯幅が広い材料からなる絶縁層と、 絶縁層上に設けられたゲート電極と、 第1の半導体上に設けられたソース電極と、 第3の半導体上に設けられたドレイン電極とを有するこ
とを特徴とするトンネルトランジスタ。
1. A first semiconductor formed on a substrate, having one conductivity type and containing a high concentration of impurities, and a second semiconductor formed on the first semiconductor, containing a low concentration of impurities. In contact with a third semiconductor formed on the second semiconductor, having a conductivity type opposite to that of the first semiconductor, and containing a high concentration of impurities, and an exposed surface of the laminated structure of the first to third semiconductors. A fourth semiconductor formed and made of a material having a narrower bandgap than the first to third semiconductors, and an insulating layer formed in contact with the fourth semiconductor and made of a material having a wider bandgap than the fourth semiconductor And a gate electrode provided on the insulating layer, a source electrode provided on the first semiconductor, and a drain electrode provided on the third semiconductor.
【請求項2】少なくとも前記絶縁層の一部にイオン化不
純物を含有し、第2の半導体に接する第4の半導体内部
にキャリアを誘起させることを特徴とする請求項1記載
のトンネルトランジスタ。
2. The tunnel transistor according to claim 1, wherein at least a part of the insulating layer contains an ionized impurity, and carriers are induced inside the fourth semiconductor in contact with the second semiconductor.
【請求項3】一導電型を有し高濃度の不純物を含有する
第1の半導体と、低濃度の不純物を含有する第2の半導
体と、第1の半導体と反対の導電型を有し高濃度の不純
物を含有する第3の半導体からなる積層構造をMBE法
により基板上に形成し、 次に、リソグラフィとエッチングによりドレイン領域と
なる部分をメサ形状に残して第1の半導体の一部を露出
させ、 再び、MBE法により第1から第3の半導体よりも禁止
帯幅が狭い材料からなる第4の半導体、および第4の半
導体よりも禁止帯幅が広い材料からなる絶縁層を積層形
成し、 その後に、Alを蒸着し、 Al、絶縁層および第4の半導体からなる積層構造をゲ
ート電極形状にエッチングし、 リフトオフ法によりAuを第1の半導体上および第3の
半導体上に形成してそれぞれソース電極およびドレイン
電極とすることを特徴とするトンネルトランジスタの製
造方法。
3. A first semiconductor having one conductivity type and containing a high concentration of impurities, a second semiconductor containing a low concentration of impurities, and a high conductivity type having a conductivity type opposite to that of the first semiconductor. A laminated structure made of a third semiconductor containing a high concentration of impurities is formed on the substrate by the MBE method, and then a part of the first semiconductor is partially left by leaving a drain region in a mesa shape by lithography and etching. Exposing and again stacking a fourth semiconductor made of a material having a narrower band gap than the first to third semiconductors and an insulating layer made of a material having a wider band gap than the fourth semiconductor by the MBE method. Then, Al is vapor-deposited, the laminated structure including Al, the insulating layer, and the fourth semiconductor is etched into a gate electrode shape, and Au is formed on the first semiconductor and the third semiconductor by a lift-off method. Each Method of manufacturing a tunnel transistor, characterized in that the over scan electrode and the drain electrode.
JP11981193A 1993-05-21 1993-05-21 Tunnel transistor and manufacturing method thereof Expired - Fee Related JPH088360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11981193A JPH088360B2 (en) 1993-05-21 1993-05-21 Tunnel transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11981193A JPH088360B2 (en) 1993-05-21 1993-05-21 Tunnel transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06334175A true JPH06334175A (en) 1994-12-02
JPH088360B2 JPH088360B2 (en) 1996-01-29

Family

ID=14770825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11981193A Expired - Fee Related JPH088360B2 (en) 1993-05-21 1993-05-21 Tunnel transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH088360B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140810A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Controllable conduction device
US5936265A (en) * 1996-03-25 1999-08-10 Kabushiki Kaisha Toshiba Semiconductor device including a tunnel effect element
KR101247747B1 (en) * 2011-08-26 2013-03-26 경북대학교 산학협력단 A fabrication of nitride semiconductor
US9224850B2 (en) 2013-04-01 2015-12-29 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
KR20210032240A (en) * 2019-09-16 2021-03-24 성균관대학교산학협력단 Method for manufacturing negative differential resistance device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936265A (en) * 1996-03-25 1999-08-10 Kabushiki Kaisha Toshiba Semiconductor device including a tunnel effect element
JPH1140810A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Controllable conduction device
KR101247747B1 (en) * 2011-08-26 2013-03-26 경북대학교 산학협력단 A fabrication of nitride semiconductor
US9224850B2 (en) 2013-04-01 2015-12-29 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
KR20210032240A (en) * 2019-09-16 2021-03-24 성균관대학교산학협력단 Method for manufacturing negative differential resistance device

Also Published As

Publication number Publication date
JPH088360B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
JP2773487B2 (en) Tunnel transistor
US4958201A (en) Resonant tunneling minority carrier transistor
JPH0541520A (en) Semiconductor device
JPH02231777A (en) Resonance tunnel optoelectronic device
US5729030A (en) Semiconductor device
JP3177951B2 (en) Field effect transistor and method of manufacturing the same
US5448086A (en) Field effect transistor
JPH06334175A (en) Tunnel transistor and manufacture thereof
JPH07142706A (en) Heterojunction semiconductor device and its manufacture
JP2701583B2 (en) Tunnel transistor and manufacturing method thereof
JP3446664B2 (en) Tunnel transistor and manufacturing method thereof
JP2630252B2 (en) Tunnel transistor and manufacturing method thereof
JP2800675B2 (en) Tunnel transistor
JP2658934B2 (en) Tunnel transistor
JP2778447B2 (en) Tunnel transistor and manufacturing method thereof
JPH05175494A (en) Tunnel transistor
JP2643890B2 (en) Tunnel transistor
JP2792295B2 (en) Tunnel transistor
JP2757758B2 (en) Tunnel transistor and manufacturing method thereof
JPH06177367A (en) Tunnel transistor
JP2000174256A (en) Tunnel transistor and its manufacture
JP2861590B2 (en) Tunnel transistor
JP2530806B2 (en) Complementary logic structure
JP2817726B2 (en) Tunnel transistor and manufacturing method thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees