JPH062822A - Flame diminishing element - Google Patents

Flame diminishing element

Info

Publication number
JPH062822A
JPH062822A JP19003392A JP19003392A JPH062822A JP H062822 A JPH062822 A JP H062822A JP 19003392 A JP19003392 A JP 19003392A JP 19003392 A JP19003392 A JP 19003392A JP H062822 A JPH062822 A JP H062822A
Authority
JP
Japan
Prior art keywords
flame
ceramic
porous
quenching element
extinguishing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19003392A
Other languages
Japanese (ja)
Inventor
Hirotake Marume
博健 丸目
Yoshio Shimada
嘉雄 島田
Masayuki Sado
優之 佐渡
Toshimasa Mano
稔正 真野
Masanobu Masuya
眞暢 桝屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUAN SOGO GIJUTSU KENKYUSHO K
KOUAN SOGO GIJUTSU KENKYUSHO KK
Koatsu Gas Kogyo Co Ltd
Kanebo Ltd
Original Assignee
KOUAN SOGO GIJUTSU KENKYUSHO K
KOUAN SOGO GIJUTSU KENKYUSHO KK
Koatsu Gas Kogyo Co Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUAN SOGO GIJUTSU KENKYUSHO K, KOUAN SOGO GIJUTSU KENKYUSHO KK, Koatsu Gas Kogyo Co Ltd, Kanebo Ltd filed Critical KOUAN SOGO GIJUTSU KENKYUSHO K
Priority to JP19003392A priority Critical patent/JPH062822A/en
Publication of JPH062822A publication Critical patent/JPH062822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)

Abstract

PURPOSE:To provide a superior heat-resistance, a high flame diminishing performance and enable passage of combustible gas at high flow rate with a safe and single quenching element by a method wherein the quenching element is made of heat-resistant ceramic porous material having some contious voids. CONSTITUTION:As heat-resistance ceramic material to be used in a quenching element, CaO, MgO, SnO2, ZnO, SiO2, Al2O3, ZrO2 and TiO2 are utilized. Ceramic powder has a particle diameter of 20mum or less in order to facilitate sintering during its baking work, organic porous material is distributed and kneaded with water to form plastic soft clay. This clay is formed into a certain shape, dried to form a green body, the green body is preliminary heated and the porous forming material is ignited and oxidized, thereafter the material is baked at such a temperature as one capable of being baked and then a porous sintered material having some communicating holes with narrow distribution of porous diameter is attained. This sintered material is formed as the flame diminishing element 4. With such an arrangement, the quenching element of large-sized sintered material for high flow rate with a less pressure loss can be easily attained. The quenching element 4 is foxed and engaged with a hollow part 2 within each of an inlet port member 10 and an outlet port member 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可燃性ガスと支燃性ガ
スとを予め混合して燃焼させる火炎発生装置等に使用さ
れる乾式安全器の消炎素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extinguishing element of a dry cutout used in a flame generating device or the like in which a combustible gas and a supporting gas are mixed and burned in advance.

【0002】[0002]

【従来の技術】乾式安全器は、可燃性ガスと支燃性ガス
との混合ガスを燃焼させて高温火炎を得る燃焼装置・機
器の可燃性ガス管の配管経路中に接続されて、燃焼中に
燃焼装置の逆火により、可熱性ガス管内を火炎が逆流す
るのを遮断防止するためのものである。
2. Description of the Related Art A dry cutout is connected to a combustible gas pipe of a combustion apparatus or device that burns a mixed gas of a combustible gas and a combustion-supporting gas to obtain a high-temperature flame during combustion. In addition, it is intended to prevent the flame from flowing backward in the heatable gas pipe due to the backfire of the combustion device.

【0003】乾式安全器内には、例えば、図1に示すよ
うに、当該安全器1の入口側部材10の開口部と出口側
部材11の開口部との螺合により形成された中空部2内
に、多孔性円筒状の消炎素子4が、その一端の端面を入
口側部材10開口内側の内端面に当接し、当該消炎素子
4の他端面を出口側部材11の開口内側に固定された障
壁板6の板面に当接するように、固定係止されている。
そして、入口2から入った可燃性ガスは、当該消炎素子
の中空部から筒壁の連続気孔を透過して円筒外周に出
て、当該障壁板6の外周端と出口側部材11の内壁との
間隙通過して、出口7に出るようにされている。入口2
は、ガス供給源に配管され、出口7は燃焼装置に配管接
続されており、使用に際して、燃焼装置からの逆火によ
る燃焼火炎面が当該消炎素子4の円筒体外周に達して
も、火炎は筒壁の細孔を透過し得ずに消炎されるので、
可燃性ガス源、例えばガスボンベなど容器の爆発等重大
な災害を未然に防止することができるのである。
In the dry cutout, for example, as shown in FIG. 1, a hollow portion 2 formed by screwing the opening of the inlet side member 10 and the opening of the outlet side member 11 of the cutout 1 concerned. Inside the porous cylindrical flame-extinguishing element 4, one end face of the flame-extinguishing element 4 was brought into contact with the inner end face inside the opening of the inlet side member 10, and the other end face of the flame quenching element 4 was fixed inside the opening of the outlet side member 11. It is fixed and locked so as to abut the plate surface of the barrier plate 6.
Then, the combustible gas entering from the inlet 2 permeates through the continuous pores of the cylinder wall from the hollow portion of the flame-extinguishing element and exits to the outer periphery of the cylinder, and the outer peripheral end of the barrier plate 6 and the inner wall of the outlet-side member 11 are separated. It passes through the gap and exits to the exit 7. Entrance 2
Is connected to a gas supply source, and the outlet 7 is connected to a combustion device. When used, even if the combustion flame surface due to a backfire from the combustion device reaches the outer circumference of the cylindrical body of the quenching element 4, the flame is not generated. Since it cannot pass through the pores of the cylinder wall and is extinguished,
It is possible to prevent a serious disaster such as explosion of a container such as a flammable gas source such as a gas cylinder.

【0004】従来の消炎素子は、ステンレス鋼の粉末か
ら円筒状の多孔体に圧縮成形して、焼成により焼結体と
したものであった。セラミック多孔体の製造方法に関し
ては、本出願人は、既に、セラミック微粉末と植物性有
機物粉とを混練して押し出し成型した後予備焼成により
当該有機物を焼却除去し、次いで、高温焼成することに
より、連続気孔を有するセラミック多孔体を製造する方
法を提案している(特開平1−160880号)。
The conventional flame-extinguishing element has been obtained by compression-molding a stainless steel powder into a cylindrical porous body and firing it into a sintered body. Regarding the manufacturing method of the ceramic porous body, the present applicant has already kneaded the ceramic fine powder and the plant organic material powder and extruded them, then burned and removed the organic matter by pre-baking, and then fired at a high temperature. , A method for producing a ceramic porous body having continuous pores has been proposed (JP-A-1-160880).

【0005】[0005]

【発明が解決しようとする課題】消炎素子として要求さ
れる特性は、逆火による燃焼又は爆轟を確実に阻止する
ことができ、かつ、可燃性ガス通過の圧損が少ないこと
である。
The characteristics required of the flame-extinguishing element are that combustion or detonation due to flashback can be reliably prevented, and pressure loss through the passage of flammable gas is small.

【0006】逆火の種類には、燃焼反応の燃焼火炎面が
配管中を遡上するものと、超音速で爆轟波面が伝播する
ものとに大別されるが、可燃性ガスと支燃性ガスとの種
類の組合わせにより、またその逆火の種類により、消炎
素子で逆火を阻止し得る最大の多孔体の気孔径が概ね定
まる。
The types of flashback are roughly classified into those in which the combustion flame surface of the combustion reaction goes up in the pipe and those in which the detonation wave front propagates at supersonic speed. The maximum pore size of the porous body that can prevent backfire by the flame extinguishing element is generally determined by the combination of the type with the volatile gas and the type of backfire.

【0007】ガス通過の圧損を小さくしようとすれば、
気孔径を大きくするのが好都合であるが、上記のように
気孔径に限度があるとすれば、円筒体の消炎素子では、
気孔率を大きくするか、又はその長さ形状を大きくして
ガスの通過面積を大きくする他はない。
To reduce the pressure loss of gas passage,
It is convenient to increase the pore size, but if there is a limit to the pore size as described above, in the cylindrical flame extinguishing element,
There is no choice but to increase the porosity or increase the length shape to increase the gas passage area.

【0008】従来のステンレス鋼粉のプレス成型体を焼
結した消炎素子では、プレスにより打圧(押圧)する円
筒体両端部のみが緻密に固結するが中央部では押圧力が
低下して疎になり、焼結した多孔体の中央部の気孔径
は、端部の気孔径に比して大きくなる。一般に金属性焼
結体は気孔径の分布が広いので、消炎のために要求され
る最大気孔径を規制すると、平均気孔径は相対的に小さ
くなり、さらに得られる最大気孔率が40%程度であ
り、従って、可燃性ガス通気抵抗が大きくなると言う問
題があった。そこで多量のガスを使用する安全器では、
円筒状の単位消炎素子を複数個端面どうし直列に接続し
てあるいは並列して使用する必要があり、安全器の大型
化、重量化が避けられず、又複数の消炎素子の端面接合
を確実に行う必要があった。
In a conventional flame-extinguishing element obtained by sintering a press-molded body of stainless steel powder, only the both ends of the cylindrical body which is pressed (pressed) by the press is densely solidified, but the pressing force is reduced in the central part and the sparseness is reduced. Therefore, the pore diameter at the center of the sintered porous body is larger than the pore diameter at the ends. In general, a metal sintered body has a wide pore size distribution, so if the maximum pore size required for quenching is regulated, the average pore size becomes relatively small, and the maximum porosity obtained is about 40%. Therefore, there is a problem that the flammable gas ventilation resistance increases. Therefore, in a safety device that uses a large amount of gas,
It is necessary to connect a plurality of cylindrical unit extinguishing elements in series with each other in series or to use them in parallel, inevitably increasing the size and weight of the safety device, and ensuring the end surface joining of multiple extinguishing elements. Had to do.

【0009】本発明は、セラミック系多孔体を利用し
て、耐熱性が良好で消炎性能が高くて安全で、かつ、単
一の消炎素子で大流量の可燃性ガスの流通を可能にする
消炎素子を提供しようとするものである。
The present invention utilizes a ceramic-based porous material, has excellent heat resistance, has high flame-extinguishing performance, is safe, and enables a large flow rate of flammable gas to flow through a single flame-extinguishing element. It is intended to provide an element.

【0010】[0010]

【課題を解決するための手段】本発明の消炎素子は、連
続気孔を有する耐熱性セラミック系多孔体から成ること
を特徴とするものである。
The flame-extinguishing element of the present invention is characterized by comprising a heat-resistant ceramic porous body having continuous pores.

【0011】本発明の消炎素子に使用される耐熱性のセ
ラミック材料には、CaO、MgO、SnO2 、Zn
O、SiO2 、Al2 3 、ZrO2 又は、TiO2
単独に、これらを主要成分として含む化合物、又はこれ
らを主要成分として配合された酸化物が、利用される。
また、P2 5 が混合されてもよい。耐熱性と耐熱衝撃
性に優れていることから、アルミナ単独、ジルコニア単
独(部分安定化又は安定化ジルコニア)、アルミナとジ
ルコニアとの混合物、リン酸ジルコニウム、チタン酸ア
ルミニウムが良い。特にチタン酸アルミニウム(Al2
3 ・TiO2 )は、高温強度が大きく、最高使用温度
が1600℃以上と高く、且つ熱膨張係数が1×10-6
/℃以下と小さく耐熱衝撃性に優れ、また安価であるの
で、消炎素子に適している。又、アルミナとチタン酸ア
ルミニウムとの混合物が、好ましく利用される。
The heat-resistant ceramic material used in the flame-extinguishing element of the present invention includes CaO, MgO, SnO 2 and Zn.
A compound containing O, SiO 2 , Al 2 O 3 , ZrO 2 or TiO 2 alone as a main component, or an oxide compounded with these as a main component is used.
Further, P 2 O 5 may be mixed. Alumina alone, zirconia alone (partially stabilized or stabilized zirconia), a mixture of alumina and zirconia, zirconium phosphate, and aluminum titanate are preferable because they have excellent heat resistance and thermal shock resistance. Especially aluminum titanate (Al 2
O 3 · TiO 2 ) has a high strength at high temperature, a maximum operating temperature of 1600 ° C. or higher, and a thermal expansion coefficient of 1 × 10 −6.
It is suitable for flame-extinguishing elements because it is small at less than / ° C and has excellent thermal shock resistance and is inexpensive. Further, a mixture of alumina and aluminum titanate is preferably used.

【0012】また、他のセラミック材料として、アルカ
リ成分としてNa2 O、K2 O、Li2 O、CaO、M
gOのいずれか一種または二種以上を含み、酸性成分と
してAl2 3 、SiO2 、B2 3 又はP2 5 を一
種もしくは二種以上含む酸化物系ガラス又は結晶化ガラ
スも利用される。石英ガラスも、耐熱衝撃性に優れてい
ることから好ましく使用される。
Further, as other ceramic materials, Na 2 O, K 2 O, Li 2 O, CaO, M as alkaline components are used.
An oxide-based glass or a crystallized glass containing any one or more of gO and one or more of Al 2 O 3 , SiO 2 , B 2 O 3 or P 2 O 5 as an acidic component is also used. It Quartz glass is also preferably used because it has excellent thermal shock resistance.

【0013】さらに、SiC、Si3 4 、AlN、B
N、B4 C、TiC、TiN、TiB2 、その他サイア
ロン(SIALON)などの非酸化物系セラミック材料
も好ましく適用される。
Further, SiC, Si 3 N 4 , AlN, B
Non-oxide ceramic materials such as N, B 4 C, TiC, TiN, TiB 2 and SIALON are also preferably applied.

【0014】上記セラミック材料に金属又は合金を混合
して成るセラミック系材料も適宜使用される。一例を挙
げれば、ジルコニアとステンレス鋼との混合粉の焼結体
である。
A ceramic material formed by mixing a metal or an alloy with the above ceramic material is also appropriately used. An example is a sintered body of a mixed powder of zirconia and stainless steel.

【0015】本発明のセラミック消炎素子の製造は、次
のようにしてなされる。所定粒度に調製した上記セラミ
ック原料粉を半乾式プレス法、静水圧プレス法、鋳込成
型法、押出し成型法あるいは射出成型法により、円筒状
などの所定形状に賦型し、ガス炉、電気炉又は誘導加熱
炉を用いて高温焼成して、消炎素子とする。
The ceramic extinguishing element of the present invention is manufactured as follows. The ceramic raw material powder prepared to have a predetermined particle size is shaped into a predetermined shape such as a cylinder by a semi-dry pressing method, a hydrostatic pressing method, a casting method, an extrusion molding method or an injection molding method, and a gas furnace, an electric furnace. Alternatively, it is fired at a high temperature using an induction heating furnace to obtain a flame-extinguishing element.

【0016】セラミック粉体は、焼成時の焼結を容易に
するため粒径20μm以下、好ましくは10μm以下と
し、水とともに有機質の気孔形成材が配合混練されて可
塑性軟質の坏土とする。この気孔形成材は後の焼成過程
で焼却除去されて、その焼け孔が連続した気孔となり、
気孔率を高めるのである。気孔形成材には、合成樹脂の
微粉や天然の植物系有機物の微粉が使用される。この坏
土を半乾式プレス法あるいは押出し成型法等により、ま
たスラリー状として鋳込法により賦型し、水分が残存す
る場合には後に乾燥して、グリーン体とする。
The ceramic powder has a particle size of 20 μm or less, preferably 10 μm or less in order to facilitate sintering during firing, and an organic pore-forming material is mixed and kneaded with water to obtain a plastic soft kneaded clay. This pore-forming material is incinerated and removed in the subsequent firing process, and the burnt pores become continuous pores,
It increases the porosity. As the pore-forming material, fine powder of synthetic resin or fine powder of natural plant-based organic material is used. The kneaded material is shaped by a semi-dry pressing method, an extrusion molding method, or the like, or formed into a slurry by a casting method, and when water remains, it is dried later to obtain a green body.

【0017】このグリーン体を、まず、予備加熱して、
配合した植物系有機物などの気孔形成材を燃焼酸化させ
て後、焼結可能温度で焼成して、多孔性焼結体を得る。
この焼結体を消炎素子とするのである。
This green body is first preheated,
The mixed pore-forming material such as a plant-based organic material is burned and oxidized, and then fired at a temperature at which sintering is possible to obtain a porous sintered body.
This sintered body is used as a flame extinguishing element.

【0018】[0018]

【作用】本発明の多孔性セラミックから成る消炎素子
は、連続気孔を有しているから、可燃性ガスを透過する
ことができ、その気孔径が中央細孔径で1〜100μ
m、好ましくは3〜50μmであって、逆火の際には、
逆火炎がその細孔を通過する過程で冷却されて、火炎ラ
ジカルが活性を失って、火炎が消失する。
Since the flame-extinguishing element made of the porous ceramic of the present invention has continuous pores, it can pass a combustible gas, and its pore diameter is 1 to 100 μm in the central pore diameter.
m, preferably 3 to 50 μm, and when flashback occurs,
As the reverse flame cools as it passes through its pores, the flame radicals lose activity and the flame disappears.

【0019】気孔径が小さいと有効に消炎するが、圧力
損失が高くなり、可燃性ガスの供給流量に制限が生じ
る。他方、気孔径が大きいと、可燃性ガスの圧力損失は
小さくて好都合であるが、逆火炎が気孔を通過して、さ
らに遡上する危険性がある。一般に混合ガスが爆轟性で
あるとき、例えば、アセチレン−酸素ガスなどでは、中
央細孔径で1〜10μmを適当とし、燃焼速度の遅い混
合ガスであるとき、例えばメタン−酸素ガスなどでは、
10〜50μmでよい。
When the pore diameter is small, the flame is effectively extinguished, but the pressure loss becomes high and the supply flow rate of the combustible gas is limited. On the other hand, if the pore diameter is large, the pressure loss of the combustible gas is small, which is convenient, but there is a risk that the reverse flame will pass through the pores and further go up. In general, when the mixed gas is detonating, for example, in the case of acetylene-oxygen gas or the like, a median pore diameter of 1 to 10 μm is suitable, and when the mixed gas has a slow burning rate, for example, in methane-oxygen gas or the like,
It may be 10 to 50 μm.

【0020】セラミック系消炎素子の気孔率は、30〜
90%の範囲とするが、特に40〜80%の範囲が好ん
で選ばれる。気孔率30%未満では、通過可燃性ガスの
圧損が大きくなる問題があり、他方90%を越えると、
消炎素子の強度が低下し、逆火時の衝撃により、素子が
破損する危険性がある。
The porosity of the ceramic flame-extinguishing element is 30 to.
The range is 90%, but a range of 40-80% is particularly preferred. If the porosity is less than 30%, there is a problem that the pressure loss of the flammable gas passing through becomes large, while if it exceeds 90%,
The strength of the flame-extinguishing element is reduced, and there is a risk that the element will be damaged by the impact during flashback.

【0021】消炎素子は、連続気孔の気孔径分布が可能
の限り狭いことが重要であり、消炎能力は最大気孔径で
概ね定まり、他方、通気抵抗は平均気孔径で定まるから
である。気孔径分布の狭いセラミック筒体とすることに
より、流量の大きい可燃性ガス用消炎素子の成形が容易
となる。
It is important for the flame-extinguishing element that the pore size distribution of continuous pores is as narrow as possible, and the quenching ability is generally determined by the maximum pore size, while the ventilation resistance is determined by the average pore size. By forming the ceramic cylindrical body having a narrow pore size distribution, it becomes easy to form a flammable gas quenching element having a large flow rate.

【0022】上述の成型法は、いずれも多少の水をもっ
てセラミック材料を混練した可塑性の坏土や多量の水中
に分散させたスラリー、又は熱可塑性合成樹脂粉とセラ
ミック粉との混練下混合物を、比較的低圧で成型するも
のであるから、成型時のセラミック粒子の充填が均一で
あり、その成型体の焼成品も、気孔径分布の狭い連通孔
を有する多孔体となっている。そこで、焼成品は、消炎
能力を定める最大気孔径に近い気孔径の多数の連続孔を
有しており、且つ気孔径の分布も狭いから、圧損も小さ
くなる。このような成型法によるセラミック消炎素子
は、大型化する場合も、同様に気孔径分布を狭くするこ
とが容易である。
In any of the above-mentioned molding methods, a plastic kneaded clay in which a ceramic material is kneaded with a little water, a slurry dispersed in a large amount of water, or a mixture under kneading of a thermoplastic synthetic resin powder and a ceramic powder is used. Since the molding is performed at a relatively low pressure, the ceramic particles are uniformly filled at the time of molding, and the fired product of the molded body is also a porous body having communicating pores with a narrow pore size distribution. Therefore, the calcined product has a large number of continuous pores having a pore diameter close to the maximum pore diameter that determines the flame-extinguishing ability, and the pore diameter distribution is narrow, resulting in a small pressure loss. Even when the ceramic flame-extinguishing element manufactured by such a molding method is increased in size, it is easy to narrow the pore size distribution.

【0023】特に、消炎素子が植物系有機微粒子などの
気孔形成材を配合した坏土からの押出成型品又は鋳込み
成型品であるときには、成型時に水及び有機物粒子が塑
性を与えて、成型性がよく、高密度となり、焼成時に
は、当該有機物粒子の焼け跡が気孔となり、焼結過程で
気孔及びセラミック粒子群の焼結反応による再配列を起
こして、気孔径分布の狭い安定した連通気孔が得られ、
さらに有機物粒子材料の配合割合を調製することによ
り、焼結体の気孔率を広い範囲に調製することができる
のである。
In particular, when the extinguishing element is an extrusion-molded product or a cast-molded product from kneaded clay containing a pore-forming material such as plant-based organic fine particles, the water and the organic particles give plasticity during molding, and the moldability is improved. Well, the density is high, and the burning traces of the organic particles become pores during firing, which causes rearrangement due to the sintering reaction of the pores and the ceramic particle group during the sintering process, and a stable continuous pore with a narrow pore size distribution can be obtained. ,
Furthermore, the porosity of the sintered body can be adjusted in a wide range by adjusting the compounding ratio of the organic particle material.

【0024】[0024]

【実施例】セラミックとして、チタン酸アルミニウム
(実施例1)、アルミナ(実施例2)及びジルコニア−
ステンレス鋼混合物(実施例3)の三種を選んで、消炎
素子を作り、逆火試験と強度及び圧力損失の試験を実施
した。
EXAMPLE As a ceramic, aluminum titanate (Example 1), alumina (Example 2) and zirconia-
Three types of stainless steel mixtures (Example 3) were selected to prepare flame-extinguishing elements, and flashback tests and tests of strength and pressure loss were performed.

【0025】焼成した消炎素子について、気孔径、気孔
率、強度、圧力損失を試験し、逆火試験を行った。
The fire extinguishing element was tested for pore diameter, porosity, strength and pressure loss, and a flashback test was conducted.

【0026】気孔径は、円筒状の焼結体の一部を破砕し
て粒状物とし、水銀圧入法を用いて(使用測定器;マイ
クロメリティックス社製ポアサイザ9130型)、体積
換算の中央細孔径を算出し、これを気孔径とした。即
ち、次式に示した気孔径Dと細孔容積との各測定値から
得られる積算細孔径分布において、細孔容積が中央値
(50%)に相当する気孔径を求めた。 D=−4σ・cosθ/P ここで、Dは気孔径、σは水銀表面張力(473dyn
e/cm)、θは水銀の試料に対する接触角(130
°)、Pは水銀の印加圧力を、それぞれ示す。
The pore diameter was determined by crushing a part of a cylindrical sintered body into a granular material, and using a mercury press-in method (measuring instrument; Micromeritics Poisizer 9130 type), the center of volume conversion. The pore size was calculated and used as the pore size. That is, in the integrated pore size distribution obtained from the measured values of the pore size D and the pore volume shown in the following equation, the pore size corresponding to the median value (50%) of the pore volume was determined. D = −4σ · cos θ / P where D is the pore diameter and σ is the mercury surface tension (473 dyn).
e / cm), θ is the contact angle of mercury with respect to the sample (130
°) and P indicate the applied pressure of mercury, respectively.

【0027】気孔率は、消炎素子の焼結体の乾燥重量W
1 (g)と、水中重量W2 (g)と、含水重量W
3 (g)とを測定して、下記の式より算出した。 気孔率=((W3 −W1 )/(W3 −W2 ))×100
(%)
The porosity is the dry weight W of the fire extinguishing element sintered body.
1 (g), underwater weight W 2 (g), and water content weight W
3 (g) was measured and calculated from the following formula. Porosity = ((W 3 -W 1) / (W 3 -W 2)) × 100
(%)

【0028】強度は、50mm長さの円筒状焼結体を試
料として圧環強度試験を行い(ヘッド速度0.5mm/
min)、10個の測定値の平均値を使用した。
For the strength, a radial crushing strength test was conducted using a 50 mm long cylindrical sintered body as a sample (head speed: 0.5 mm /
min) The average value of 10 measured values was used.

【0029】圧力損失は、円筒状焼結体を用いて、産業
安全研究所技術指針「ガス溶接切断作業用乾式安全器指
針」(平成2年3月20日発行)に準拠して測定した。
The pressure loss was measured using a cylindrical sintered body in accordance with the Industrial Safety Research Institute's technical guideline “Dry cutout device guide for gas welding cutting work” (published on March 20, 1990).

【0030】逆火試験は、上記同様の産業安全研究所技
術指針に従って、実施した。混合ガスとして、後述の実
施例1と同2とはアセチレンと酸素との、また、実施例
3は水素と酸素との完全燃焼の化学量論比にそれぞれ混
合した圧力2kg/cm2 の混合ガスを使用した。
The flashback test was carried out in accordance with the same technical guideline of the Institute of Industrial Safety as above. As a mixed gas, a mixed gas having a pressure of 2 kg / cm 2 is mixed with acetylene and oxygen in Examples 1 and 2 described later, and in Example 3 in a stoichiometric ratio of complete combustion of hydrogen and oxygen. It was used.

【0031】(実施例1)セラミック原料粉として、粒
径3μmのチタン酸アルミニウム(Al2 3 ・TiO
2 )を使用し、このセラミック原料100重量部にバイ
ンダーとしてメチルセルロースを5重量部と、気孔形成
材としてジャガイモ澱粉(粒子系10μm)と籾殻(5
0μm)とを表1の通り配合して所定の水とを混練して
坏土を得た。この坏土を2軸スクリュー押出成形機によ
り円筒状成形体を作り加熱乾燥し、この乾燥体をガス炉
中で450℃4時間の予備加熱をして、乾燥体中有機物
を焼失し、次いで1450℃で表1に示した焼成時間で
焼成を行い、円筒状の焼結体を得た。焼結体を外径60
mm、内径50mm、長さ100mmに加工した。
Example 1 As a ceramic raw material powder, aluminum titanate (Al 2 O 3 .TiO 3) having a particle size of 3 μm was used.
2 ) was used, and 100 parts by weight of this ceramic raw material, 5 parts by weight of methyl cellulose as a binder, potato starch (10 μm in particle size) and rice husks (5 as a pore-forming material).
0 μm) was blended as shown in Table 1 and kneaded with predetermined water to obtain a kneaded clay. This kneaded material was made into a cylindrical molded body by a twin-screw extruder and heated and dried, and this dried body was preheated at 450 ° C. for 4 hours to burn off organic matter in the dried body, and then 1450. Firing was performed at 0 ° C. for the firing time shown in Table 1 to obtain a cylindrical sintered body. Outer diameter of the sintered body is 60
mm, inner diameter 50 mm, length 100 mm.

【0032】以上の焼結体を用いて試験を行い、表1に
結果をまとめた。
Tests were carried out using the above sintered bodies, and the results are summarized in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1において、気孔形成材の配合を一定に
して、焼成時間を調整することにより、気孔径(1〜4
μm)と気孔率(30〜50%)を調整することができ
た(試験番号1〜4)。焼成時間の長い試料番号4の消
炎素子は逆火試験が不合格となったが、焼成時間を短か
くして、気孔率を大きくすれば、圧力損失が低下し、ま
た強度が低下するが、逆火試験は合格であった。
In Table 1, the pore size (1 to 4) was obtained by adjusting the firing time while keeping the composition of the pore-forming material constant.
(μm) and porosity (30 to 50%) could be adjusted (test numbers 1 to 4). The flame-extinguishing element of Sample No. 4, which had a long firing time, failed the flashback test. However, if the firing time is shortened and the porosity is increased, the pressure loss and the strength are reduced, but the flashback fires. The test passed.

【0035】(実施例2)セラミック材料粉としては、
粒径0.4μmのアルミナ(Al2 3 )単独を100
重量部に対して、バインダーとしてジャガイモ澱粉(粒
子径10μm、糊化温度70.5℃)と籾殻(粒子径5
0μm)とを、表2の通り配合し、所定量の水を添加し
てスラリーとした。このスラリーを中子を有する円筒型
の間隙に流し込み、75℃で10hの湿熱処理を行った
後、更に75℃で10hの乾燥処理を行って、乾燥体を
得た。
(Example 2) As a ceramic material powder,
Alumina (Al 2 O 3 ) alone having a particle size of 0.4 μm is 100
Based on parts by weight, potato starch (particle size 10 μm, gelatinization temperature 70.5 ° C.) and rice husk (particle size 5) were used as binders.
0 μm) was blended as shown in Table 2, and a predetermined amount of water was added to obtain a slurry. The slurry was poured into a cylindrical gap having a core, subjected to a moist heat treatment at 75 ° C. for 10 hours, and further dried at 75 ° C. for 10 hours to obtain a dried body.

【0036】この乾燥体をガス炉に挿入して400℃3
hの予備加熱を行って有機成分を焼失したのち、表2の
所定温度で3hの焼成を行った。焼成体を外径30m
m、内径20mm、長さ50mmに加工して、試験をお
こなった。その結果を表2に示す。
This dried product was inserted into a gas furnace and heated at 400 ° C. for 3 hours.
After preheating for h to burn off the organic components, baking was performed for 3 h at the predetermined temperature shown in Table 2. Outer diameter of fired body is 30m
m, inner diameter 20 mm, length 50 mm were processed and tested. The results are shown in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】表2につき、アルミナ消炎素子の焼成温度
1450〜1550℃の範囲では、気孔径約2μmでほ
ぼ一定であるが、低温焼成品(試験番号6,9)では、
気孔率が大きく、圧環強度が小さくなり、逆火試験は、
亀裂の発生により、不合格となった。アルミナ消炎素子
は高温焼成することにより、圧環強度を確保して、消炎
素子として、充分に使用することができた。
As shown in Table 2, in the firing temperature range of 1450 to 1550 ° C. of the alumina flame-extinguishing element, the pore diameter is approximately constant at about 2 μm, but in the low temperature firing product (test numbers 6 and 9),
Porosity is large, radial crushing strength is small, flashback test
It was rejected due to the generation of cracks. The alumina extinguishing element was able to secure the radial crushing strength by being fired at a high temperature, and could be sufficiently used as the extinguishing element.

【0039】(実施例3)次に、セラミックと金属との
混合物の焼結体を調査した。セラミック材料粉として、
粒径0.3μmの部分安定化ジルコニア(Y2 3 3モ
ル%配合)と、金属粉として粒径4μmのステンレス鋼
粉とを配合し、この混合物100重量部に対して、ジャ
ガイモ澱粉10重量部、ヒドロキシメチルセルローズ5
重量部、気孔形成材として籾殻の添加量を焼成後の気孔
率55%となるように選定し、水とともに混練して坏土
を得た。
Example 3 Next, a sintered body of a mixture of ceramic and metal was investigated. As ceramic material powder,
Partially stabilized zirconia with a particle size of 0.3 μm (Y 2 O 3 3 mol% blended) and stainless steel powder with a particle size of 4 μm were blended as metal powder, and 10 parts by weight of potato starch was added to 100 parts by weight of this mixture. Part, hydroxymethyl cellulose 5
By weight, the amount of rice husks added as a pore-forming material was selected so that the porosity after firing was 55%, and the mixture was kneaded with water to obtain a kneaded clay.

【0040】この坏土を2軸スクリュー押出し機により
円筒体に押出成型したのち、自然乾燥及び加温乾燥して
乾燥体を得た。乾燥体を500℃5時間の予備焼成と引
続き水素還元雰囲気中で1350℃6時間の焼成をし
て、外径70mm、内径約30mm、長さ約120mm
の焼結体とした。
This kneaded material was extruded into a cylindrical body by a twin-screw extruder and then dried naturally and heated to obtain a dried body. The dried product was pre-baked at 500 ° C. for 5 hours and subsequently baked at 1350 ° C. for 6 hours in a hydrogen reducing atmosphere to give an outer diameter of 70 mm, an inner diameter of about 30 mm and a length of about 120 mm.
Of the sintered body.

【0041】逆火試験においては、水素と酸素との化学
量論比の混合ガスに用いて行った。試験結果を表3にま
とめた。
The flashback test was carried out by using a mixed gas of hydrogen and oxygen in a stoichiometric ratio. The test results are summarized in Table 3.

【0042】[0042]

【表3】 [Table 3]

【0043】表3により、ジルコニアとステンレス鋼と
の混合比を変えても、酸水素炎用の消炎素子として利用
できることが判る。
Table 3 shows that even if the mixing ratio of zirconia and stainless steel is changed, it can be used as a quenching element for an oxyhydrogen flame.

【0044】[0044]

【発明の効果】本発明の連続気孔を有する耐熱性セラミ
ック多孔体から成る消炎素子を実施すれば、次のような
効果を奏することができる。
When the flame-extinguishing element made of the heat-resistant ceramic porous body having continuous pores of the present invention is implemented, the following effects can be obtained.

【0045】セラミック消炎素子は、気孔径の分布をそ
の消炎素子の全体に亘り狭い範囲に規制することが容易
であるから、焼結金属製の同一形状の消炎素子と比較す
ると、混合ガスで定まる最大気孔径以下の気孔径に制御
し得て、圧力損失を少なくすることができる。また消炎
素子の気孔径とは別個独立に寸法形状と気孔率を広範囲
に制御し得るから、圧力損失の小さい大流量用大型の焼
結体の消炎素子を容易に、かつ、安価に提供することが
できる。
Since it is easy to control the pore size distribution of the ceramic flame-extinguishing element to a narrow range over the entire flame-extinguishing element, it is determined by the mixed gas as compared with the flame-extinguishing element of the same shape made of sintered metal. The pore diameter can be controlled to be equal to or smaller than the maximum pore diameter, and the pressure loss can be reduced. Further, since the size and shape and the porosity can be controlled in a wide range independently of the pore diameter of the flame extinguishing element, it is possible to easily and inexpensively provide the flame extinguishing element of a large sintered body for a large flow rate with a small pressure loss. You can

【0046】セラミック焼結体は、焼結金属に比して比
重が小さいので、軽量になり、携帯用の小型の乾式安全
器を軽量にすることができ、また材料を選定すれば、セ
ラミック焼結体は耐食性にすぐれているので、長期寿命
に優れる利点がある。
Since the ceramic sintered body has a smaller specific gravity than the sintered metal, it is light in weight, and a small portable dry type safety device can be made light in weight. Since the bonded body has excellent corrosion resistance, it has an advantage of having a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】乾式安全器の断面図。FIG. 1 is a cross-sectional view of a dry cutout.

【符号の説明】[Explanation of symbols]

1 安全器本体 2 ガス入口 4 消炎素子 5 障壁板 7 ガス出口 1 Safety device main body 2 Gas inlet 4 Flame suppression element 5 Barrier plate 7 Gas outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島田 嘉雄 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 (72)発明者 佐渡 優之 大阪市都島区友渕町2丁目12番21−303号 (72)発明者 真野 稔正 山口県防府市鐘紡町6番8−304号 (72)発明者 桝屋 眞暢 東大阪市新喜多99−1有限会社孝安総合技 術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshio Shimada 1-5 Doyama-cho, Kita-ku, Osaka City High-pressure gas industry Co., Ltd. (72) Inventor Masayuki Sado 2-12-21 Tomobuchi-cho, Miyakojima-ku, Osaka No. 303 (72) Minoru Tomasasa Mano 6-8-304 Kanebocho, Hofu City, Yamaguchi Prefecture (72) Inventor Masanobu Masaki 99-1 Shinkita, Higashi Osaka City Koan Research Institute of Technology

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 連続気孔を有する耐熱性セラミック系多
孔体から成る逆火防止用消炎素子。
1. A flame-retardant fire-extinguishing element comprising a heat-resistant ceramic-based porous body having continuous pores.
【請求項2】 当該セラミック系多孔体は、気孔径が1
〜100μmで、且つ気孔率が40〜80%である請求
項1記載の消炎素子。
2. The ceramic-based porous body has a pore diameter of 1
The flame-extinguishing device according to claim 1, which has a porosity of 40 to 80%.
【請求項3】 当該セラミック系多孔体が、押出し成型
又は鋳込み成型による焼成円筒体である請求項2記載の
消炎素子。
3. The flame-extinguishing element according to claim 2, wherein the ceramic-based porous body is a fired cylindrical body formed by extrusion molding or casting molding.
【請求項4】 当該セラミック系多孔体が、アルミナ単
独、アルミナとジルコニアとの混合物、チタン酸アルミ
ニウム単独若しくはアルミナとチタン酸アルミニウムと
の混合物の焼結体である請求項2又は3記載の消炎素
子。
4. The quenching element according to claim 2, wherein the ceramic-based porous body is a sintered body of alumina alone, a mixture of alumina and zirconia, aluminum titanate alone or a mixture of alumina and aluminum titanate. .
【請求項5】 当該セラミック系多孔体が、セラミック
微粉とステンレス鋼微粉との混合物の焼成体である請求
項1乃至3いずれか記載の消炎素子。
5. The flame extinguishing element according to claim 1, wherein the ceramic-based porous body is a fired body of a mixture of ceramic fine powder and stainless steel fine powder.
JP19003392A 1992-06-23 1992-06-23 Flame diminishing element Pending JPH062822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19003392A JPH062822A (en) 1992-06-23 1992-06-23 Flame diminishing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19003392A JPH062822A (en) 1992-06-23 1992-06-23 Flame diminishing element

Publications (1)

Publication Number Publication Date
JPH062822A true JPH062822A (en) 1994-01-11

Family

ID=16251249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19003392A Pending JPH062822A (en) 1992-06-23 1992-06-23 Flame diminishing element

Country Status (1)

Country Link
JP (1) JPH062822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771039A1 (en) * 1995-10-23 1997-05-02 Corning Incorporated Deep-discharge battery separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771039A1 (en) * 1995-10-23 1997-05-02 Corning Incorporated Deep-discharge battery separator

Similar Documents

Publication Publication Date Title
US3324924A (en) Radiant heating devices
EP1036048B1 (en) Method for firing ceramic honeycomb bodies
EP0187508B1 (en) High temperature surface combustion burner
EP0157432B1 (en) Radiant surface combustion burner
US4327188A (en) Multicellular monolithic ceramic body and preparation thereof
JP4523499B2 (en) Degreasing method
US6089860A (en) Method for firing ceramic honeycomb bodies and a tunnel kiln used therefor
UA112457C2 (en) COMPOSITION SOURCE OF HEAT FOR SMOKING PRODUCTS
JPH0745348B2 (en) Firing method of ceramic honeycomb structure
US3932310A (en) Reduction firing of ceramics composited with organic binders
US4839049A (en) Ceramic composition
JPS6327303B2 (en)
JPH062822A (en) Flame diminishing element
JPH0930857A (en) Sintered compact comprising coal ash and its production
EP0950854B1 (en) Combustion device
GB2135766A (en) Burner skeleton
RU2031886C1 (en) Charge for preparing of porous thermostable ceramic material
JPH088114B2 (en) Fuel cell anode waste gas combustion method
JPS6246514B2 (en)
KR102088034B1 (en) Heat-resistant burner tile
JPS6251226B2 (en)
JP4093488B2 (en) Method for producing brick with high coal ash content and brick obtained by the method
SU1269088A1 (en) Mixture for producing cordierite fire ammunition
JPH061675A (en) Manufacture of insulating fire-resisting sintered compact
JPS6246515B2 (en)