JPH0930857A - Sintered compact comprising coal ash and its production - Google Patents

Sintered compact comprising coal ash and its production

Info

Publication number
JPH0930857A
JPH0930857A JP20285795A JP20285795A JPH0930857A JP H0930857 A JPH0930857 A JP H0930857A JP 20285795 A JP20285795 A JP 20285795A JP 20285795 A JP20285795 A JP 20285795A JP H0930857 A JPH0930857 A JP H0930857A
Authority
JP
Japan
Prior art keywords
coal ash
ash
surface area
less
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20285795A
Other languages
Japanese (ja)
Inventor
Ryosuke Narishima
良輔 成島
Takao Tanosaki
隆雄 田野崎
Takeyuki Ookami
剛幸 大神
Kenji Nozaki
賢二 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP20285795A priority Critical patent/JPH0930857A/en
Publication of JPH0930857A publication Critical patent/JPH0930857A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • C04B18/085Pelletizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact having high strength by carrying out air classification or pulverization treatment and heating treatment of coal ash so as to have specific BET specific surface area value or below and a specific residual content or below on the sieve and forming and sintering the coal ash. SOLUTION: Coal ash such as fry ash, sinter ash, bottom ash generated from fine coal powder burning fire power boiler is subjected to air classification or pulverization treatment and heat treatment to prepare coal ash raw material having <=6.0m<2> /g BET specific surface area and <=5wt.% residual content on 80μm sieve. Then, coal ash raw material is mixed with <= about 20wt.% of a plasticizer, a tacky agent or a fusing agent, etc., and the mixture is subjected to press forming to form a formed article having <=3.0 specific gravity and sintered at 1250-l450 deg.C to provide the objective lightweight sintered compact free from crack having <=1.5 specific gravity and <=5.5 porosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石炭火力発電所等
から排出される石炭灰を有効に利用した焼結体とその製
造方法に関する。より詳しくは、石炭火力発電所等から
排出される石炭灰から焼結体を製造する際、その未燃カ
ーボン量を効果的に管理することにより、ひび割れが無
く、強度の大きな焼結体を製造する方法とその焼結体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered body which effectively utilizes coal ash discharged from a coal-fired power plant or the like, and a method for producing the same. More specifically, when producing a sintered body from coal ash discharged from a coal-fired power plant, etc., by effectively managing the amount of unburned carbon, there is no crack and a strong sintered body is produced. And a sintered body thereof.

【0002】[0002]

【従来技術】エネルギー源としての石炭の利用を見直す
うえで、発生する石炭灰の処理が問題になる。この石炭
灰の有効利用を図る用途として、セメント、コンクリー
ト混和材等としての大量利用やタイル、レンガや人工骨
材等のいわゆるセラミックス原料としての高度利用が注
目を集めている。
2. Description of the Related Art When reviewing the use of coal as an energy source, the treatment of generated coal ash becomes a problem. As an application for effectively utilizing this coal ash, a large amount of it is used as a cement, a concrete admixture, etc., and a high level utilization as a so-called ceramic raw material such as tiles, bricks and artificial aggregates has been attracting attention.

【0003】一般にセラミックスの製造工程は、原料調
整→成形→焼結に大別されるが、高度に管理されたファ
インセラミックス原料と異なり、産業廃棄物たる石炭灰
を焼結体の原料に用いる場合、原料の調整が製品の性状
を大きく左右する。なかでも石炭灰に含まれる未燃カー
ボンの存在は、焼結時における酸化還元雰囲気および熱
伝導性に影響して、焼結体にヒビ割れや膨脹を生じるば
かりでなく、炭素の燃焼により内部に空孔が生じ、機械
的強度など製品の物性を低下させる原因になり、安定し
た品質の焼結体が得られない問題がある。とくに、近
年、着火性の悪い海外炭の使用や煤煙中の窒素酸化物を
低減する必要から、未燃カーボン量の高い石炭灰が多く
なりつつあり、その対応が求められている。
Generally, the manufacturing process of ceramics is roughly divided into raw material adjustment → molding → sintering, but unlike the highly controlled fine ceramics raw material, when coal ash, which is an industrial waste, is used as the raw material of the sintered body. The adjustment of raw materials greatly affects the properties of the product. Among them, the presence of unburned carbon contained in coal ash affects the redox atmosphere and thermal conductivity during sintering, causing not only cracking and expansion in the sintered body, but also internal combustion due to carbon combustion. There is a problem that voids are generated, which causes deterioration of physical properties of the product such as mechanical strength, and a sintered body of stable quality cannot be obtained. In particular, in recent years, coal ash having a high unburned carbon content has been increasing due to the use of foreign coal having a poor ignitability and the need to reduce nitrogen oxides in soot and smoke.

【0004】一方、セラミックス焼結体の性状は原料の
化学的性質や鉱物組成が同一であれば原料粒径によって
左右されるため、従来、原料の粒度管理が行なわれてき
た。特にセメントコンクリート分野では、空気透過式に
よるブレーン比表面積が多用されている。例えば、特開
昭61-163152 号には、ブレーン比表面積によって粒径を
管理した石炭灰を原料とした人工骨材の製造方法が記載
されており、この方法では、原料の石炭灰はブレーン比
表面積が4000cm2 /g以上の微粉であるほど焼結体の
強度が高いとしている。
On the other hand, the properties of the ceramics sintered body depend on the particle size of the raw material if the raw material has the same chemical properties and mineral composition, so that the grain size of the raw material has been conventionally controlled. Especially in the field of cement and concrete, the air-permeable brane specific surface area is often used. For example, Japanese Patent Application Laid-Open No. 61-163152 describes a method for producing an artificial aggregate from a raw material of coal ash whose grain size is controlled by the Blaine specific surface area. It is said that the finer the powder has a surface area of 4000 cm 2 / g or more, the higher the strength of the sintered body.

【0005】[0005]

【発明の解決課題】ところが、近年の未燃カーボン量の
多い石炭灰の中には、ブレーン比表面積が5000cm2
/gに達するものでも平均粒径が80μm 以上と大きく、
このため成形性が悪く、焼結体の強度や吸水率等の点か
ら全く使用に耐えないものが多くなりつつある。この理
由は、未燃カーボンを含むものは、比較的粗粒であって
も、未然カーボン表面の多孔性により粉体の比表面積が
著く増加するためである。しかも流動床ボイラーにおい
ては、微粉炭ボイラーに比べ石炭を粗砕、低温燃焼する
ため未燃カーボン量がさらに増加し、また粒径が粗くな
る傾向があり、従来の粒度管理では石炭灰を焼結体原料
に有効利用するうえで問題が大きい。さらに、ブレーン
比表面積は測定する粉体の比重などが普通ポルトランド
セメントと同様であることを前提としているが、石炭灰
の物性値はセメントとかなり異なるので、この点からも
問題が多い。
However, among coal ash containing a large amount of unburned carbon in recent years, the Blaine specific surface area is 5000 cm 2
Even if it reaches / g, the average particle size is as large as 80 μm or more,
For this reason, the moldability is poor, and many of them are not usable at all from the viewpoint of the strength and water absorption of the sintered body. The reason for this is that even if the particles containing unburned carbon are relatively coarse particles, the specific surface area of the powder is significantly increased due to the porosity of the carbon surface. Moreover, in a fluidized bed boiler, the amount of unburned carbon tends to increase further because the coal is crushed and burned at a lower temperature than the pulverized coal boiler, and the particle size tends to become coarse. There is a big problem in using it effectively as a body material. Furthermore, the Blaine specific surface area is based on the assumption that the specific gravity of the powder to be measured is the same as that of ordinary Portland cement, but the physical properties of coal ash are quite different from those of cement, so there are many problems from this point as well.

【0006】一方、従来、石炭灰中の未燃カーボン量は
750℃加熱による強熱減量値(Ig.Loss) によって管理
しているが、未然カーボンは少量でも焼結体の物性に大
きな影響を与えるので強熱減量値が小さくても製品性状
が損なわれる場合がある。従って、未然カーボンを含む
石炭灰は強熱減量値による管理では不十分であり、実際
に石炭灰を成形して燃焼してみなければ焼結体の性状を
把握できないのが現状である。また、石炭灰の未燃分の
代用測定項目として、コンクリート分野ではメチレンブ
ルー色素の吸着量を測定することが多いが、未燃分が5
%以上になると差が不明瞭になり、この方法では適確な
把握ができない。
On the other hand, conventionally, the amount of unburned carbon in coal ash is controlled by the ignition loss value (Ig. Loss) by heating at 750 ° C. However, even if a small amount of carbon is present, it has a great influence on the physical properties of the sintered body. Since it is given, the product properties may be impaired even if the ignition loss value is small. Therefore, it is insufficient to manage the coal ash containing carbon by the ignition loss value, and it is the current situation that the properties of the sintered body cannot be grasped unless the coal ash is actually molded and burned. In addition, as a substitute measurement item for the unburned content of coal ash, the adsorbed amount of methylene blue pigment is often measured in the concrete field, but the unburned content is 5%.
If it is more than%, the difference becomes unclear, and it is not possible to accurately grasp it with this method.

【0007】[0007]

【課題の解決手段】以上のように、未然カーボンを含む
石炭灰について、従来のブレーン比表面積や強熱減量値
などでは焼結体原料としての物性を十分に把握できな
い。本発明は従来の製造方法における上記問題を解決し
たものであって、従来、強熱減量値によって管理してい
た未然カーボン量をBET比表面積を指標として把握
し、これをフルイ上残分量で表される粒度と共に管理指
標とすることにより焼結体原料として良質な石炭灰を選
別し、高強度でヒビ割れの無い焼結体を得たものであ
る。
As described above, with regard to coal ash containing carbon, it is not possible to sufficiently grasp the physical properties of the sintered body as a raw material for the sintered body by the conventional Blaine specific surface area and ignition loss value. The present invention is to solve the above-mentioned problems in the conventional manufacturing method, and grasps the amount of carbon which has been conventionally controlled by the loss on ignition value as a BET specific surface area as an index, and expresses this as a residual amount on a sieve. The quality of the coal ash is selected as a raw material of the sintered body by using it as a control index together with the grain size to be obtained, and a high-strength and crack-free sintered body is obtained.

【0008】すなわち、本発明によれば以下の構成から
なる焼結体およびその製造方法が提供される。 (1)BET比表面積6.0m2 /g以下および80μm
フルイ上残分5重量%以下の石炭灰を成形後、焼結して
なる焼結体。 (2)石炭灰が微粉炭燃焼石炭火力ボイラーより発生し
たフライアッシュ、シンダーアッシュ、ボトムアッシュ
である請求項1に記載の焼結体。 (3)石炭灰が固定床燃焼ボイラーあるいは流動床ボイ
ラーより発生した石炭灰である請求項1に記載の焼結
体。 (4)空気分級ないし粉砕あるいはこれらの処理と共に
加熱処理を行うことによりBET比表面積6.0m2 /g
以下および80μm フルイ上残分5重量%以下に調製し
た石炭灰を原料とする上記(1) に記載の焼結体。 (5)BET比表面積6.0m2 /g以下および80μm
フルイ上残分5重量%以下の石炭灰を原料として比重
3.0以下の成形体を製造し、該成形体を1250〜1
450℃で焼結することにより比重1.5以下の焼結体
を製造する方法。
That is, according to the present invention, a sintered body having the following constitution and a method for manufacturing the same are provided. (1) BET specific surface area of 6.0 m 2 / g or less and 80 μm
A sintered body obtained by molding coal ash with a residue of 5% by weight or less on a sieve and sintering it. (2) The sintered body according to claim 1, wherein the coal ash is fly ash, cinder ash, or bottom ash generated from a pulverized coal combustion coal-fired boiler. (3) The sintered body according to claim 1, wherein the coal ash is coal ash generated from a fixed bed combustion boiler or a fluidized bed boiler. (4) BET specific surface area of 6.0 m 2 / g by air classification or pulverization or heat treatment together with these treatments.
The sintered body according to (1) above, which is made of coal ash prepared as follows, and having a residual content of 5% by weight or less on a 80 μm sieve. (5) BET specific surface area of 6.0 m 2 / g or less and 80 μm
A molded product having a specific gravity of 3.0 or less is produced from coal ash having a residue on the sieve of 5% by weight or less as a raw material, and the molded product is 1250 to 1
A method for producing a sintered body having a specific gravity of 1.5 or less by sintering at 450 ° C.

【0009】本発明は、従来のブレーン比表面積による
粒度管理に代えてBET比表面積を指標として未然カー
ボン量を管理する。ブレーン比表面積は一定量の空気が
粉体層を通過して吸収される時間によって粉体の比表面
積を測定する方法であるが、未然カーボンは多孔質であ
るため比表面積が高く、この方法では誤差が大きい。一
方、BET比表面積は、活性炭の評価などに用いられる
方法であり、窒素ガスを吸脱着させその差により表面空
孔を含めた比表面積を測定する方法であり、未然カーボ
ンについて正確な比表面積を表す。
The present invention manages the amount of carbon in advance by using the BET specific surface area as an index, instead of the conventional particle size management by the brane specific surface area. Blaine specific surface area is a method of measuring the specific surface area of powder by the time when a certain amount of air passes through the powder layer and is absorbed, but since carbon is porous, it has a high specific surface area. The error is large. On the other hand, the BET specific surface area is a method used for evaluation of activated carbon and the like, and is a method of measuring the specific surface area including surface pores by adsorbing and desorbing nitrogen gas and measuring the difference between them to obtain an accurate specific surface area for carbon. Represent

【0010】各種石炭灰について、その組成および強熱
減量値等の物性値と共にブレーン比表面積とBET比表
面積とを対比して表1に示す。この結果に示すように、
概ねBET値はブレーン値の2〜20倍程高い値になる
が、試料Eのようにブレーン値が他の試料より小さくて
もBET値は大きく、また試料C,Gのようにブレーン
値は近似するがBET値は大幅に異なるものもあり、ブ
レーン値とBET値との間に特定の相関はみられない。
また試料Bと試料A,Gに対比されるように強熱減量値
は小さいがBET値は高いものもある。すなわち、各種
石炭灰を焼成体原料に用いる場合には、ブレーン比表面
積を基準とした粒度管理や強熱減量による管理では原料
物性を適確に把握できない。
Table 1 shows the composition and physical properties such as loss on ignition and the Blaine specific surface area and the BET specific surface area of various types of coal ash. As shown in this result,
The BET value is about 2 to 20 times higher than the Blaine value, but the BET value is large even if the Blaine value is smaller than other samples like Sample E, and the Blaine values are similar to Samples C and G. However, there are some cases where the BET values are significantly different, and there is no specific correlation between the Blaine value and the BET value.
Further, as compared with Sample B and Samples A and G, there are some samples having a small ignition loss value but a high BET value. That is, when various types of coal ash are used as the raw material for the calcined body, the physical properties of the raw material cannot be accurately grasped by grain size control based on the Blaine specific surface area or control by ignition loss.

【0011】このBET値に関し、試料B,Gについ
て,焼成後(B1,G1) および粒度調整後(B2,B3,G2,G3) の
BET値をみると、空気分級および粉砕処理したものの
BET値は高いが、焼成したもののBET値は著しく小
さい。この焼成後のBET値は未燃カーボン以外の無機
質部分、例えばフライアッシュバルーン等の比表面積で
あり、従って、焼成前の石炭灰全体の比表面積は大部分
が未燃カーボンによるものと考えられる。
Regarding the BET values, the BET values of Samples B and G after firing (B1, G1) and after particle size adjustment (B2, B3, G2, G3) were examined. Is high, but the BET value of the fired product is extremely small. The BET value after firing is a specific surface area of an inorganic part other than unburned carbon, for example, fly ash balloons. Therefore, it is considered that most of the specific surface area of the entire coal ash before firing is due to unburned carbon.

【0012】因みに、粉砕処理したものは粉砕によりガ
ラス固化等により閉じ込められていた未燃カーボンが表
面に出るために比表面積および強熱減量値が高くなる。
また空気分級したものは未燃カーボンが粉砕などにより
軽量化するため微粉部分のために原粉よりも比表面積及
び強熱減量が増加する。
By the way, in the pulverized product, unburned carbon confined by vitrification and the like by pulverization appears on the surface, so that the specific surface area and the loss on ignition value become high.
Further, in the air-classified product, the unburned carbon is reduced in weight by pulverization or the like, and therefore the specific surface area and the ignition loss are increased as compared with the raw powder due to the fine powder portion.

【0013】本発明は、BET比表面積6.0m2 /g以
下であって、80μm フルイ上残分5重量%以下の石炭
灰を焼結体の原料として用いる。BET値が上記範囲を
超えるものは未燃カーボンを多量に含有しており焼結体
原料として適さない。即ち、未然カーボンは第1に燃焼
により空孔を生じて焼結体物性に影響を与え、また第2
に多孔面に空気を連行して加熱時にそれらの空気が膨
張、脱気するため焼結体のヒビ割れ等を招く、さらに第
3に酸化雰囲気下での焼結がカーボン燃焼のために部分
的に還元雰囲気になり、焼結不良を生じるなどの問題が
あり、BET値が上記範囲を超えるものはこれが著しく
なる。
In the present invention, coal ash having a BET specific surface area of 6.0 m 2 / g or less and a residue of 5% by weight or less on an 80 μm sieve is used as a raw material for a sintered body. If the BET value exceeds the above range, it contains a large amount of unburned carbon and is not suitable as a raw material for a sintered body. That is, the carbon causes voids due to combustion to affect the physical properties of the sintered body, and
At the same time, air is entrained in the porous surface and the air expands and deaerates during heating, which causes cracks in the sintered body. Thirdly, sintering in an oxidizing atmosphere is partially due to carbon combustion. In addition, there is a problem that the atmosphere becomes a reducing atmosphere and sintering failure occurs, and this is remarkable when the BET value exceeds the above range.

【0014】さらに原料として用いる石炭灰は80μm
フルイ上残分5重量%以下の粒度のものである。粒径が
これより大きいと、焼結が遅れるばかりでなく、粒子周
囲の空隙が大きくなり、焼結体の組織に欠陥を生じる。
因みに、80μm フルイ上残分が5重量%を超えるもの
は、φ50径の人工骨材や大型レンガ(100 ×100 ×10
mm)において著しい物性の低下を招き易く、一例とし
て、機械的強度が50%以上低下し、またヒビ割れや反
り等の発生率が30%以上になり、色むら等が生じる。
なお、80μm フルイ上残分は、80μm ±2μm の網
目を有するフルイに、測定する粉体を一定量入れ、空気
や水を流し、あるいは振動を加えて強制的にフルイ目を
通過させ、フルイ上に残った粉体量により測定すること
ができる。
Further, the coal ash used as a raw material is 80 μm
The particle size of the residue on the sieve is 5% by weight or less. If the particle size is larger than this, not only the sintering is delayed, but also the voids around the particles become large, causing defects in the structure of the sintered body.
By the way, if the residue on the 80 μm sieve exceeds 5% by weight, the artificial aggregate with a diameter of φ50 or a large brick (100 × 100 × 10
mm), the physical properties are likely to be remarkably deteriorated, and as an example, the mechanical strength is reduced by 50% or more, the occurrence rate of cracking or warping is 30% or more, and color unevenness occurs.
The residue on the 80 μm sieve is placed on a sieve with a mesh of 80 μm ± 2 μm, a certain amount of the powder to be measured, and air or water is made to flow, or vibration is applied to force the sieve to pass through the sieve. It can be measured by the amount of powder remaining in the.

【0015】BET値6.0m2 /g以下であって、80
μm フルイ上残分5重量%以下の石炭灰は、火力発電所
などから排出される石炭灰を空気分級や機械粉砕などに
より粒度調整し、さらには必要に応じて加熱処理するこ
とにより得られる。
BET value of 6.0 m 2 / g or less, 80
Coal ash with a residual content of 5% by weight or less on the μm sieve is obtained by adjusting the particle size of coal ash discharged from a thermal power plant or the like by air classification, mechanical pulverization or the like, and further subjecting it to heat treatment if necessary.

【0016】上記石炭灰を成形後、焼結するが、成形の
際に一般の可塑剤、粘着剤ないし溶融剤を20重量%以
下添加して成形することができる。これらの添加量が2
0重量%を超えると、これらの燃焼により焼結体の密度
が低下し、強度が損なわれるので好ましくない。また、
成形体の密度は焼成後の気孔率が5.5%以下となるよ
うに成形するのが好ましい。焼結体の気孔率が5.5%
を上回ると吸水率が高くなり、また強度が低下するので
好ましくない。
The above coal ash is sintered after molding, but it can be molded by adding a general plasticizer, an adhesive or a melting agent in an amount of 20% by weight or less at the time of molding. The addition amount of these is 2
If it exceeds 0% by weight, the density of the sintered body is lowered by the combustion of these and the strength is impaired, which is not preferable. Also,
As for the density of the molded body, it is preferable to mold so that the porosity after firing is 5.5% or less. Porosity of sintered body is 5.5%
If it exceeds, the water absorption is increased and the strength is decreased, which is not preferable.

【0017】上記石炭灰を用いて人工軽量骨材を得るに
は、成形体の比重を3.0以下に調整し、1200〜1
450℃の温度範囲で焼成するのが好ましい。本発明の
範囲から外れる石炭灰を原料とするものは、焼結温度を
高めても比重はあまり低下せず、比重1.5以下の軽量
焼成体を得るのが難しい。
In order to obtain an artificial lightweight aggregate using the above-mentioned coal ash, the specific gravity of the compact is adjusted to 3.0 or less and 1200 to 1
Baking is preferably performed in the temperature range of 450 ° C. Those using coal ash as a raw material which is out of the scope of the present invention do not have a significant decrease in specific gravity even if the sintering temperature is raised, and it is difficult to obtain a lightweight fired body having a specific gravity of 1.5 or less.

【0018】[0018]

【発明の実施形態】以下に本発明の実施例を示す。なお
本実施例は例示であり発明の範囲を限定するものではな
い。
Embodiments of the present invention will be described below. It should be noted that the present embodiment is an example and does not limit the scope of the invention.

【0019】実施例1 一般に入手される各種の石炭灰について、その主な成分
と物性値、およびブレーン比表面積と共にBET比表面
積を測定した。この結果を表1に示した。また試料B,
Gについて加熱処理(試料B1,G1 )、空気分級(試料B
2,G2 )、機械粉砕処理(試料B3,G3 )および加熱処理
と機械粉砕とを行ったもの(試料B4,G4 )の物性値、ブ
レーン比表面積およびBET比表面積を表2に示した。
なお、比較のためポルトランドセメントの上記物性値を
表1に対比して示した。こられの石炭灰に水道水を10
重量%添加して、粒径約10mmに造粒した。この成形体
のJIS Z 8841による圧壊強度を表3に示した。
Example 1 The BET specific surface area of various commercially available coal ash was measured together with its main components and physical properties, and the Blaine specific surface area. The results are shown in Table 1. Sample B,
Heat treatment for G (Sample B1, G1), Air classification (Sample B)
2, G2), mechanical pulverization treatment (samples B3, G3) and those subjected to heat treatment and mechanical pulverization (sample B4, G4), the physical property values, the Blaine specific surface area and the BET specific surface area are shown in Table 2.
For comparison, the physical property values of Portland cement are shown in comparison with Table 1. 10 tap water to these coal ash
The mixture was added by weight% and granulated to a particle size of about 10 mm. Table 3 shows the crush strength of this molded product according to JIS Z 8841.

【0020】また上記石炭灰にPVA液1%を添加して
よく混合し、金型プレスに装入し、1 t/m2 の圧力を加
えて大型レンガ(115× 115×15mm) に成形し、この成形
体を1350℃まで5℃/minの昇温度速度で加熱し、1
350℃に1時間保持した後に室温まで放冷した。得ら
れた焼成体の外観を赤色色素で着色し、ヒビ、亀裂、反
り等の不良品数を調べた。また、外観に異常が見られな
い試料について供試片(3 ×4 ×40mm) を切出し、JIS R
6201に従って3点曲げ強度、ビッカース硬度および気
孔率を測定した。これらの結果を表3に纏めて示した。
なお、各測定値は各10個の試料の平均値であり、成形
体の比重は1.5±0.1に調製した。
In addition, 1% of PVA liquid was added to the above coal ash and mixed well, charged into a mold press, and a pressure of 1 t / m 2 was applied to form a large brick (115 × 115 × 15 mm). , Heating the molded body to 1350 ° C. at a temperature rising rate of 5 ° C./min, and
After holding at 350 ° C. for 1 hour, it was allowed to cool to room temperature. The appearance of the obtained fired body was colored with a red dye, and the number of defective products such as cracks, cracks, and warpage was examined. In addition, a specimen (3 × 4 × 40 mm) was cut out from a sample with no abnormal appearance and JIS R
According to 6201, 3-point bending strength, Vickers hardness and porosity were measured. The results are summarized in Table 3.
Each measured value is an average value of 10 samples, and the specific gravity of the molded body was adjusted to 1.5 ± 0.1.

【0021】本発明の範囲に含まれる試料(A,B2,B3,G2,
G3) は何れも他の試料よりも圧壊強度が格段に高く、し
かも不良品が殆ど発生せず、曲げ強度および硬度も大幅
に高い。また気孔率も小さく、緻密な焼結体が得られ
る。
Samples included in the scope of the present invention (A, B2, B3, G2,
All of G3) have significantly higher crushing strength than other samples, and almost no defective products are generated, and bending strength and hardness are also significantly higher. Also, the porosity is small, and a dense sintered body can be obtained.

【0022】実施例2 上記石炭灰に水道水を10重量%添加し、比重2.95
〜2.45、粒径約10mmの成形体を造粒した。この成
形体を電気炉で1100〜1450℃に加熱して焼成し
た。得られた焼結体の比重を表4に示した。ここで、本
発明の範囲から外れる試料Eの石炭灰は強熱減量が2
5.5%であり、全試料中最も未然カーボン量が多い
が、この燃焼による減量は少なく焼結温度を高めても比
重はあまり低下せず、1250℃を超えるとむしろ高く
なる。一方、本発明の範囲に含まれる試料(A,B2,G2,G3)
は、比重を3.0以下に調整し、1250〜1450℃
で焼成することにより何れも比重1.5以下の軽量焼成
体が得られる。
Example 2 10% by weight of tap water was added to the above coal ash to give a specific gravity of 2.95.
A molded product having a particle size of about 2.45 and a particle size of about 10 mm was granulated. The molded body was heated to 1100 to 1450 ° C. in an electric furnace and fired. The specific gravity of the obtained sintered body is shown in Table 4. Here, the coal ash of Sample E, which is outside the scope of the present invention, has a loss on ignition of 2
It is 5.5%, which is the largest amount of carbon in all the samples, but the weight loss due to this combustion is small, and the specific gravity does not decrease much even if the sintering temperature is raised, and it becomes rather high when it exceeds 1250 ° C. On the other hand, samples included in the scope of the present invention (A, B2, G2, G3)
Adjust the specific gravity to 3.0 or less, 1250 to 1450 ℃
In each case, a lightweight fired body having a specific gravity of 1.5 or less can be obtained by firing.

【0023】実施例3 試料B3 の石炭灰にPVA1重量%を添加し、スプレー
ドライヤーを用いて粒径0.6mmの顆粒に造粒した。こ
の顆粒をゴム型に詰め、静水圧プレス(CIP) で加圧(1.
5t/m2 )して内径 450mm、厚さ10mm、長さ 200mmのパイ
プを成形した。この成形体をガス炉に装入し、2℃/min
の昇温速度で1350℃に加熱焼結し、この温度に4時
間保持した後に、−2℃/min降温速度で放冷した。得ら
れたセラミックス管を10ヶ接合し、セメント粉砕品圧
送パイプに配管した。この配管を用いて2kg/minのセメ
ント通過を1年間行なったところ、内部の磨耗量は1mm
であり、同条件の鋼管(SUS 304) の磨耗量12mmより大
幅に少なかった。
Example 3 1 % by weight of PVA was added to the coal ash of sample B3 and granulated into particles having a particle size of 0.6 mm using a spray dryer. The granules are packed in a rubber mold and pressed with a hydrostatic press (CIP) (1.
5t / m 2 ) and a pipe having an inner diameter of 450 mm, a thickness of 10 mm and a length of 200 mm was formed. Charge this compact into a gas furnace, and 2 ℃ / min
After heat-sintering at 1350 ° C. at a temperature rising rate of 4 ° C., holding at this temperature for 4 hours, and cooling at −2 ° C./min temperature decreasing rate. Ten of the obtained ceramic pipes were joined together and connected to a cement crushed product pressure feed pipe. When 2 kg / min of cement was passed through this pipe for 1 year, the internal wear amount was 1 mm.
The wear amount of the steel pipe (SUS 304) under the same conditions was significantly less than 12 mm.

【0024】[0024]

【発明の効果】本発明の焼結体は、未然カーボンを含む
石炭灰について、BET比表面積を指標として未然カー
ボン量を把握し、これをフルイ上残分量で表される粒度
と共に管理指標とすることにより焼結体原料として良質
な石炭灰を選別して製造したものであり、高強度でヒビ
割れが無く、従って各種の用途に広く用いることができ
る。また、本発明によれば、石炭火力発電所などから大
量に排出される石炭灰を有効に利用することができる。
EFFECT OF THE INVENTION The sintered body of the present invention grasps the amount of carbon in advance for coal ash containing carbon by using the BET specific surface area as an index, and uses this as a management index together with the particle size represented by the residual amount on the screen. As a result, high-quality coal ash is selected and produced as a raw material for the sintered body, and it has high strength and is free from cracks, and thus can be widely used for various purposes. Further, according to the present invention, a large amount of coal ash discharged from a coal-fired power plant or the like can be effectively used.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野崎 賢二 千葉県佐倉市大作2丁目4番2号 秩父小 野田株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Nozaki Kenji Nozaki 2-4-2 Daisaku Sakura, Chiba Prefecture Chichibu Konoda Central Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】BET比表面積6.0m2 /g以下および8
0μm フルイ上残分5重量%以下の石炭灰を成形後、焼
結してなる焼結体。
1. A BET specific surface area of 6.0 m 2 / g or less and 8
0 μm A sintered body obtained by molding coal ash having a residue of 5% by weight or less on a sieve and sintering it.
【請求項2】石炭灰が微粉炭燃焼石炭火力ボイラーより
発生したフライアッシュ、シンダーアッシュ、ボトムア
ッシュである請求項1に記載の焼結体。
2. The sintered body according to claim 1, wherein the coal ash is fly ash, cinder ash or bottom ash generated from a pulverized coal burning coal fired boiler.
【請求項3】石炭灰が固定床燃焼ボイラーあるいは流動
床ボイラーより発生した石炭灰である請求項1に記載の
焼結体。
3. The sintered body according to claim 1, wherein the coal ash is a coal ash generated from a fixed bed combustion boiler or a fluidized bed boiler.
【請求項4】空気分級ないし粉砕あるいはこれらの処理
と共に加熱処理を行うことによりBET比表面積6.0
2 /g以下および80μm フルイ上残分5重量%以下に
調製した石炭灰を原料とする請求項1に記載の焼結体。
4. A BET specific surface area of 6.0 by subjecting to air classification or pulverization or heat treatment together with these treatments.
The sintered body according to claim 1, wherein the raw material is coal ash prepared to a m 2 / g or less and a residue on an 80 µm sieve of 5% by weight or less.
【請求項5】BET比表面積6.0m2 /g以下および8
0μm フルイ上残分5重量%以下の石炭灰を原料として
比重3.0以下の成形体を製造し、該成形体を1250
〜1450℃で焼結することにより比重1.5以下の焼
結体を製造する方法。
5. A BET specific surface area of 6.0 m 2 / g or less and 8
A molded body having a specific gravity of 3.0 or less was produced from a coal ash having a residue of 0 μm on a sieve at 5% by weight or less as a raw material, and the molded body was subjected to 1250
A method for producing a sintered body having a specific gravity of 1.5 or less by sintering at ˜1450 ° C.
JP20285795A 1995-07-17 1995-07-17 Sintered compact comprising coal ash and its production Pending JPH0930857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20285795A JPH0930857A (en) 1995-07-17 1995-07-17 Sintered compact comprising coal ash and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20285795A JPH0930857A (en) 1995-07-17 1995-07-17 Sintered compact comprising coal ash and its production

Publications (1)

Publication Number Publication Date
JPH0930857A true JPH0930857A (en) 1997-02-04

Family

ID=16464351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20285795A Pending JPH0930857A (en) 1995-07-17 1995-07-17 Sintered compact comprising coal ash and its production

Country Status (1)

Country Link
JP (1) JPH0930857A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695902B2 (en) 2000-11-14 2004-02-24 Boral Material Technologies, Inc. Asphalt composites including fly ash fillers or filler blends, methods of making same, and methods for selecting or modifying a fly ash filler for use in asphalt composites
EP1544183A2 (en) * 2003-12-11 2005-06-22 Ohonokaihatsu Co., Ltd. Porous landscape pebble and method of manufacturing the same
US6916863B2 (en) 2000-11-14 2005-07-12 Boral Material Technologies, Inc. Filler comprising fly ash for use in polymer composites
JP2007131496A (en) * 2005-11-11 2007-05-31 Chugoku Electric Power Co Inc:The Method for producing coal ash sintered compact from coal ash powder as raw material
US7655088B2 (en) 2005-01-14 2010-02-02 Alkemy, Ltd. Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
US7704317B2 (en) 2005-01-14 2010-04-27 Alkemy, Ltd. Pyroprocessed aggregates comprising IBA and PFA and methods for producing such aggregates
US7780781B2 (en) 2005-01-14 2010-08-24 Alkemy, Ltd. Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
US9932457B2 (en) 2013-04-12 2018-04-03 Boral Ip Holdings (Australia) Pty Limited Composites formed from an absorptive filler and a polyurethane
WO2020174592A1 (en) * 2019-02-26 2020-09-03 太平洋セメント株式会社 Fly ash and cement composition containing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695902B2 (en) 2000-11-14 2004-02-24 Boral Material Technologies, Inc. Asphalt composites including fly ash fillers or filler blends, methods of making same, and methods for selecting or modifying a fly ash filler for use in asphalt composites
US6916863B2 (en) 2000-11-14 2005-07-12 Boral Material Technologies, Inc. Filler comprising fly ash for use in polymer composites
US7879144B2 (en) 2000-11-14 2011-02-01 Boral Material Technologies Inc. Filler comprising fly ash for use in polymer composites
US7241818B2 (en) 2000-11-14 2007-07-10 Boral Material Technologies, Inc. Filler comprising fly ash for use in composites
EP1544183A2 (en) * 2003-12-11 2005-06-22 Ohonokaihatsu Co., Ltd. Porous landscape pebble and method of manufacturing the same
US7462310B2 (en) 2003-12-11 2008-12-09 Ohonokaihatsu Co., Ltd. Porous landscape pebble and method of manufacturing the same
EP1544183A3 (en) * 2003-12-11 2009-10-07 Ohonokaihatsu Co., Ltd. Porous landscape pebble and method of manufacturing the same
US7704317B2 (en) 2005-01-14 2010-04-27 Alkemy, Ltd. Pyroprocessed aggregates comprising IBA and PFA and methods for producing such aggregates
US7655088B2 (en) 2005-01-14 2010-02-02 Alkemy, Ltd. Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
US7780781B2 (en) 2005-01-14 2010-08-24 Alkemy, Ltd. Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
US8206504B2 (en) 2005-01-14 2012-06-26 Alkemy, Ltd. Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
US8349070B2 (en) 2005-01-14 2013-01-08 Alkemy, Ltd. Pyroprocessed aggregates comprising IBA and low calcium silicoaluminous materials and methods for producing such aggregates
JP4601539B2 (en) * 2005-11-11 2010-12-22 中国電力株式会社 Method for producing coal ash sintered body using coal ash powder as raw material
JP2007131496A (en) * 2005-11-11 2007-05-31 Chugoku Electric Power Co Inc:The Method for producing coal ash sintered compact from coal ash powder as raw material
US9932457B2 (en) 2013-04-12 2018-04-03 Boral Ip Holdings (Australia) Pty Limited Composites formed from an absorptive filler and a polyurethane
US10324978B2 (en) 2013-04-12 2019-06-18 Boral Ip Holdings (Australia) Pty Limited Composites formed from an absorptive filler and a polyurethane
WO2020174592A1 (en) * 2019-02-26 2020-09-03 太平洋セメント株式会社 Fly ash and cement composition containing same

Similar Documents

Publication Publication Date Title
CN109867513A (en) A kind of preparation method of foamed ceramic
RU2752414C2 (en) Method for producing porous sintered magnesia, a charge for producing a coarse-ceramic fireproof product with a granular material from sintered magnesia, such products, as well as methods for producing them, lining of an industrial furnace and an industrial furnace
CN104870399B (en) Chrome oxide product
CN109173748A (en) A kind of preparation method of coal ash ceramic film
CN102372496A (en) Material formula for preparing gasification furnace slag ceramisite and production method of ceramisite
KR102324211B1 (en) Method of Preparing Artificial Lightweight Aggregate
Phonphuak et al. Effects of charcoal on physical and mechanical properties of fired test briquettes
CN111875274A (en) Method for preparing ceramsite and ceramsite prepared by same
JPH0930857A (en) Sintered compact comprising coal ash and its production
EP2139825B1 (en) Tempered refractory concrete block having controlled deformation
CN1108634A (en) Fired microporous carbon-aluminium brick
US4053320A (en) Production of refractory articles
Suvorov et al. High-temperature heat-insulating materials based on vermiculite
JP5194202B2 (en) Manufacturing method of high-strength glassy balloon
CN105837168A (en) Preparation method of high-strength building blocks
Mishulovich et al. Ceramic tiles from high-carbon fly ash
JPH069266A (en) Preparation of fire-resistant chromium oxide stone
CN109251047A (en) A kind of preparation method of novel fire-resistant clay brick
CN100413804C (en) Sheet-like microcrystalline toughened MgAlON composite corindon material preparation method
RU2332386C2 (en) Furnace burden for firebrick production
Abdelfattah et al. Effect of firing on mineral phases and properties of lightweight expanded clay aggregates
JP3623021B2 (en) Artificial aggregate and method for producing the same
JPH0368411A (en) Cordierite-based gas filter and its production
RU2720337C1 (en) Mixture for production of refractory structural ceramic material
CN114751727B (en) Preparation method of compact anorthite refractory material