JPH061675A - Manufacture of insulating fire-resisting sintered compact - Google Patents

Manufacture of insulating fire-resisting sintered compact

Info

Publication number
JPH061675A
JPH061675A JP4202871A JP20287192A JPH061675A JP H061675 A JPH061675 A JP H061675A JP 4202871 A JP4202871 A JP 4202871A JP 20287192 A JP20287192 A JP 20287192A JP H061675 A JPH061675 A JP H061675A
Authority
JP
Japan
Prior art keywords
fire
pores
raw material
coal
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4202871A
Other languages
Japanese (ja)
Inventor
Hajime Kato
肇 加藤
Seiji Matsuzaki
征治 松▲崎▼
Yoshinori Nakano
良則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOMURA TAIKA KK
Omura Refractories Co Ltd
Original Assignee
OOMURA TAIKA KK
Omura Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOMURA TAIKA KK, Omura Refractories Co Ltd filed Critical OOMURA TAIKA KK
Priority to JP4202871A priority Critical patent/JPH061675A/en
Publication of JPH061675A publication Critical patent/JPH061675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To continuously obtain an excellent insulating fire-resisting sintered compact stabilized the quality by a simple process by mixing easily combustible coal to a fire resisting characteristic raw material and firing it. CONSTITUTION:The easily combustible coal is mixed to the fire resisting characteristic raw material and fired, thus the insulating fire sintered compact is produced. A single raw material such as clay of halloysite alumina, and silica, or the raw material to produce the fire resisting characteristic materials such as mullite and spinel after >=2 kinds raw materials are reacted or a mixture of both, are mentioned as the using fire resisting characteristic materials. Since the insulating fire-resisting sintered compact is mixed the easily combustible coal to the raw material and is molded, the combustible coal burns away in a short firing time and the easily combustible coal material vanishes perfectly before sintering of the molded body, and pores are formed. Beside in order to avoid disappearance of the pores accompanied by firing shrinkage, the combustible coal the particle size of which has been adjusted is used, the pores with a controlled diameter is surely formed and then the porous insulating fire-resisting sintered compact superior in a heat insulating property is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種窯炉等に使用する
断熱煉瓦、断熱キャスタブル等に適する断熱耐火性焼結
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating refractory sintered body suitable for heat insulating bricks, heat insulating castables and the like used in various kilns and the like.

【0002】[0002]

【従来の技術】従来の断熱耐火性焼結体の製造方法とし
ては、耐火粘土、カオリン、アルミナ等の耐火性物質に
もみ殻を混合し成型後、焼成する方法や、界面活性剤に
よりスラリーに気泡を導入する方法や、タールピッチ、
オイルコークス等を混合、成型、乾燥、仮焼後、本焼成
にて焼結してなるものがある。しかし、もみ殻を焼成し
た材料は主成分がシリカと炭素であるため、耐火材がシ
リカ以外の場合には、シリカに汚染され耐火性を低下さ
せる等の欠点がある。又、タールピッチ、オイルコーク
ス等を用いた方法によれば燃焼反応が遅いため炭素材を
完全に燃焼させ有効な気孔を得るためには長時間の仮焼
を行ったりする必要がある。その際に、仮焼温度は本焼
成温度より低温にて実施するため仮焼体の強度は弱く、
ロータリーキルン等の連続窯炉での本焼成時、又、これ
を最終製品に焼成されるまでの乾燥、移動等のその他の
操作の際に、成型体は、すり減り破損等を生じ、収率が
著しく低下したり、せっかく形成された気孔を減じたり
する。又、これを避けるため仮焼温度を高くしすぎる
と、仮焼体の表面のみが急速に焼結し内部の炭素質材料
の焼却除去ができなくなり、本焼成後も焼成体内部に炭
素質材料の残存する結果となり、耐火断熱材料とは程遠
い材料となったりして、好ましくない。又、仮焼、本焼
成の2段階の焼成を含む工程は複雑な操作を要し経済性
も低下する。スラリーへの気泡導入も成型体が極めて弱
くハンドリングに問題がある。他の方法には、トンネル
窯、シャトルキルン等でゆっくり焼成する方法により前
記欠点を避けることが可能である。しかし、焼成完了ま
でには数日間という長期に亘る焼成となり、効率が悪く
コスト高などの問題がある。
2. Description of the Related Art As a conventional method for producing a heat-insulating refractory sintered body, a method of mixing rice husks with refractory substances such as refractory clay, kaolin, and alumina, followed by molding and firing, or a slurry with a surfactant is used. How to introduce bubbles, tar pitch,
In some cases, oil coke or the like is mixed, molded, dried, calcined, and then sintered by main firing. However, since the main components of the material obtained by firing the rice husks are silica and carbon, when the refractory material is other than silica, there is a drawback that it is contaminated by silica and the fire resistance is lowered. Further, according to the method using tar pitch, oil coke, etc., since the combustion reaction is slow, it is necessary to perform calcination for a long time in order to completely burn the carbon material and obtain effective pores. At that time, since the calcination temperature is lower than the main calcination temperature, the strength of the calcination body is weak,
At the time of main firing in a continuous kiln such as a rotary kiln, or during other operations such as drying and moving until it is fired into a final product, the molded body is worn out and damaged, and the yield is remarkably increased. It lowers and reduces the pores that have been formed. If the calcination temperature is raised too high to avoid this, only the surface of the calcined body will sinter rapidly and the carbonaceous material inside cannot be removed by incineration. The result is that it is not desirable because it becomes a material far from the refractory heat insulating material. In addition, the process including the two-stage firing of calcination and main firing requires complicated operations and also reduces the economical efficiency. When air bubbles are introduced into the slurry, the molded body is extremely weak and there is a problem in handling. As another method, it is possible to avoid the above drawbacks by slowly firing in a tunnel kiln, a shuttle kiln or the like. However, it takes a long time of several days until the firing is completed, and there are problems such as inefficiency and high cost.

【0003】[0003]

【発明が解決しようとする問題点】本発明の目的は、耐
火性材に断熱効果に最も有効な多孔質体を形成させるこ
とにあり、しかも簡略な工程により品質が安定した良好
な断熱耐火性焼結体を連続的に生産することである。仮
焼工程を省き、1回の焼成にて気孔形成用の炭材を燃焼
除去し、引き続き焼結させるには炭材は微粉とし、空気
との反応を速やかにして燃焼除去させることが必要であ
る。しかしながら、この場合炭材の燃焼後の気孔が結果
として小さくなるため耐火性材の焼き締まりによって気
孔が減少あるいは消滅する。その結果焼結体内部に気孔
を存在せしめる目的を達成し得ず、残った気孔も微細過
ぎる場合には、気孔間の隔壁強度が弱く、耐火物の骨材
として破砕粒を得ようとする時に、不要粒度である微細
粒の発生量が際だって多くなる。一方、炭材の粒を粗く
するとロータリーキルン、流動焼成炉等の連続的、高効
率な焼成方法において、焼結体中に未燃焼の炭材が残
り、本来の目的を達成できないなどの問題点を有する。
The object of the present invention is to form a porous body which is most effective for the heat insulating effect on the refractory material, and has a good heat insulating fire resistance with stable quality by a simple process. It is to continuously produce a sintered body. To eliminate the calcination step and burn away the carbonaceous material for pore formation in one firing, and to subsequently sinter it, it is necessary to make the carbonaceous material into a fine powder and to promptly react with air to remove it. is there. However, in this case, the pores after burning the carbonaceous material become small as a result, so the pores are reduced or eliminated due to the shrinkage of the refractory material. As a result, the purpose of making pores inside the sintered body cannot be achieved, and when the remaining pores are too fine, the partition strength between the pores is weak, and when trying to obtain crushed particles as an aggregate of refractory material. However, the amount of fine particles, which is an unnecessary particle size, is remarkably increased. On the other hand, if the particles of the carbonaceous material are made coarse, unburned carbonaceous material remains in the sintered body in a continuous and highly efficient firing method such as a rotary kiln and a fluidized firing furnace, which causes a problem that the original purpose cannot be achieved. Have.

【0004】[0004]

【問題点を解決するための手段】本発明による断熱耐火
性焼結体は、密閉気孔を多く有する耐火性多孔質体であ
って、その製造工程は効率が良く、低コスト、高品質の
断熱耐火性焼結体の製造が可能となる。気孔形成には、
易焼却炭すなわち、微粉の炭材を造粒し(以下単に造粒
微粉炭という)、及び、又は、細粒の炭材で賦活したも
の(以下単に活性炭という)を、粒外径を調整して用い
る。このため1つには炭材の燃焼が速やかで、成型体の
表面部分より燃焼を開始し、炭材の消失跡が開気孔状態
である間に更に深部の炭材を短時間に燃焼させることが
可能となる。すなわち焼結が開始し、成型体が収縮を開
始する前に内部まで気孔が形成され、引き続き焼結体と
なるため1度の短時間の焼成により炭材が残らない多孔
質体を得ることを可能とする。このため、ロータリーキ
ルン等の窯炉での焼成が可能になる。又、1つには、易
焼却炭すなわち、造粒微粉炭及び、又は、活性炭の粒外
径を調整して用いるため焼成収縮によって消滅する気孔
が少なく有効な気孔が形成できる。これらの結果、簡略
な工程を以って品質が安定した良好な断熱耐火性焼結体
を連続的に生産することを可能とした。
The adiabatic refractory sintered body according to the present invention is a refractory porous body having a large number of closed pores, and its manufacturing process is efficient, low cost, and high-quality adiabatic. It becomes possible to manufacture a refractory sintered body. For pore formation,
Easily incinerated coal, that is, granulated fine carbonaceous material (hereinafter simply referred to as granulated finely divided coal), and / or activated with fine-grained carbonaceous material (hereinafter simply referred to as activated carbon), the outer diameter of the grain is adjusted. To use. Therefore, one of the reasons is that the combustion of the carbonaceous material is rapid, the combustion is started from the surface portion of the molded body, and the carbonaceous material in the deeper portion is burned in a short time while the trace of disappearance of the carbonaceous material is in the open pore state. Is possible. That is, since the sintering starts, the pores are formed inside the molded body before the shrinkage starts, and the molded body continues to become a sintered body. It is possible. Therefore, it becomes possible to perform firing in a kiln such as a rotary kiln. Further, one of them is that the easily incinerated coal, that is, the granulated pulverized coal and / or the activated carbon is used by adjusting the outer diameter of the particles, so that it is possible to form effective pores with few pores disappearing due to firing shrinkage. As a result, it has become possible to continuously produce a good adiabatic refractory sintered body with stable quality by a simple process.

【0005】本発明において耐火性原料と易焼却炭の混
合は常法により、湿式混合、半乾式混練、乾式混合等の
方法で行なう。混練、混合に際し成型体の強度を保つた
めに、有機又は無機のバインダーを用いても良い。
In the present invention, the refractory raw material and the easily incinerated coal are mixed by a conventional method such as wet mixing, semi-dry kneading, and dry mixing. An organic or inorganic binder may be used in order to maintain the strength of the molded body during kneading and mixing.

【0006】本発明における成型方法としては、常法に
より、鋳込み成型、プレス成型、押し出し成型、ペレタ
イザーによる造粒等のいずれの方法でも成型することが
でき、該成型品を乾燥若しくは乾燥なしで焼成すること
により、有効な気孔を多く有した多孔質で強度に優れた
断熱耐火性焼結体が得られる。
As the molding method in the present invention, any of ordinary methods such as casting molding, press molding, extrusion molding and granulation by a pelletizer can be used, and the molded article is dried or dried without drying. By doing so, it is possible to obtain a porous adiabatic refractory sintered body having many effective pores and excellent in strength.

【0007】本発明で使用する耐火性原料は、ハロイサ
イト等の粘土、アルミナ、シリカ等の単味原料若しく
は、2種類以上の原料が反応してムライト、スピネル等
の耐火性材料を生成する原料、又は、両者の混合物も用
いることができる。
The refractory raw material used in the present invention is a simple raw material such as clay such as halloysite, alumina, silica or the like, or a raw material for reacting two or more kinds of raw materials to produce a refractory material such as mullite or spinel, Alternatively, a mixture of both can be used.

【0008】配合の割合としては耐火性原料を40〜9
5重量%、易焼却炭を5〜60重量%、より好ましくは
耐火性原料を60〜90重量%、易焼却炭を10〜40
重量%の割合が成型体の強度、易焼却炭の燃焼焼却時間
の点で好ましい。又、耐火性原料と易焼却炭を混練、混
合するに際し常法により、成型品の強度を保つためにカ
オリン等の粘土質原料では水、アルミナ等の成型強度が
低いものでは、水ガラス、シリカゾル、アルミナゾル、
デンプン、MC、CMC、PVA等の有機又は無機のバ
インダーを用いても良い。これらの材料は湿式混合、半
乾式混練、乾式混合等で混合、又は、混練し、鋳込み成
型、プレス成型、押し出し成型、ペレタイザーによる造
粒等により成型され、自然もしくは加熱乾燥もしくは乾
燥せずして、ロータリーキルン、流動焼成炉等の窯炉に
て1100〜1900℃の温度にて焼成され、断熱耐火
性焼結体が製造される。
The proportion of the refractory raw material is 40 to 9
5% by weight, easy incineration charcoal 5 to 60% by weight, more preferably refractory raw material 60 to 90% by weight, easy incineration charcoal 10 to 40%
A weight% ratio is preferable in terms of the strength of the molded body and the combustion and incineration time of the easily incinerated coal. In addition, when kneading and mixing the refractory raw material and the easily incinerated coal, in order to maintain the strength of the molded product, water is used for clay materials such as kaolin and water glass, silica sol for low molding strength such as alumina. , Alumina sol,
Organic or inorganic binders such as starch, MC, CMC and PVA may be used. These materials are mixed by wet mixing, semi-dry kneading, dry mixing or the like, or kneaded, and are molded by casting, press molding, extrusion molding, granulation by a pelletizer, etc. and dried naturally or without heating or drying. , A rotary kiln, a fluidized bed kiln, etc. are fired at a temperature of 1100 to 1900 ° C. to produce an adiabatic refractory sintered body.

【0009】[0009]

【作用】本発明の断熱耐火性焼結体は、易焼却炭を材料
に混合、成型するため、短い焼成時間で易焼却炭の、燃
焼が完了し、成型体の焼結前に完全に易焼却性炭材が消
失し、気孔が形成される。更に、焼成収縮に伴う気孔の
消失を避けるために粒外径を調整した易焼却炭を用いる
ためコントロールされた径の気孔が確実に形成され、断
熱性に優れた多孔質な断熱耐火性焼結体が得られる。
The heat-insulating refractory sintered body of the present invention mixes and molds easily incinerated charcoal with a material, so that the combustion of the easily incinerated charcoal is completed in a short firing time, and the completely burned coal can be completely burned before sintering. Incinerator carbonaceous material disappears and pores are formed. In addition, easy incineration charcoal with an adjusted outer diameter is used to avoid the disappearance of pores due to firing shrinkage, so pores with a controlled diameter are reliably formed, and a porous adiabatic refractory sintered material with excellent heat insulation properties. The body is obtained.

【0010】[0010]

【実験例】以下、本発明を実験例により詳しく説明す
る。
[Experimental Examples] The present invention will be described in detail below with reference to experimental examples.

【0011】[0011]

【実験例1】仮焼アルミナ(Al 99.6%、
NaO 0.35%、SiO0.02%、Fe
0.02%、日本軽金属(株)製 商品名 A−1
1)を79.5重量%と有機バインダー(信越化学工業
(株)製 メチルセルローズ)を0.5重量%をアルミ
ナポットミルにて、比表面積、プレーン8050cm
/gに粉砕し、活性炭として、市販活性炭(クラレ社
(株)製 商品名 クラレコール)の比表面積(B.
E.T法)1100〜1780m/g有するものを1
〜0.5mm、0.5〜0.3mm、0.3〜0.15
mm、0.15〜0.106mm、0.106〜0.0
05mm、0.005mm以下に調整したもの各々を2
0重量%、水を10重量%添加、ホバートミキサーにて
混合し20mm×25φにプレス成型、120℃で乾燥
後、ガス炉(容積1800cmアセチレン−酸素式)
にて1900℃までの昇温に120分間、1900℃で
10分間保持の焼成を行なった。このときのに得られた
断熱耐火性焼結体の見掛気孔率、嵩比重、見掛比重(J
IS法)、残炭量(断熱耐火性焼結体を0.045mm
の篩を全通するように微粉砕し、ルツボにて1000℃
で30分間強熱し、恒量になった後の減量を重量%にて
表す。)を第1表に示す。
Experimental Example 1 Calcined alumina (Al 2 O 3 99.6%,
Na 2 O 0.35%, SiO 2 0.02%, Fe 2 O
3 0.02%, Nippon Light Metal Co., Ltd. product name A-1
7) 19.5% by weight and 0.5% by weight of an organic binder (methyl cellulose manufactured by Shin-Etsu Chemical Co., Ltd.) in an alumina pot mill, specific surface area, plain 8050 cm 2
Specific surface area (B.I.) of commercially available activated carbon (Kuraray Co., Ltd., trade name: Kuraray Coal) as the activated carbon.
E. T method) 1 having 1100 to 1780 m 2 / g
~ 0.5 mm, 0.5-0.3 mm, 0.3-0.15
mm, 0.15-0.106 mm, 0.106-0.0
05mm, each adjusted to 0.005mm or less 2
0% by weight, 10% by weight of water were added, mixed by a Hobart mixer, press-molded to 20 mm × 25φ, dried at 120 ° C., and gas furnace (volume 1800 cm 3 acetylene-oxygen type).
At 120 ° C., the temperature was raised to 1900 ° C., and the temperature was maintained at 1900 ° C. for 10 minutes. The apparent porosity, bulk specific gravity, and apparent specific gravity (J
IS method), amount of residual coal (0.045 mm for adiabatic fire resistant sintered body
Finely pulverize so that it can pass through the sieve of the
It is ignited for 30 minutes, and the weight loss after the weight becomes constant is expressed in% by weight. ) Is shown in Table 1.

【0012】[0012]

【実験例2】カオリン粘土(SiO 46.3%、A
36.1%、Fe2.1%、耐火度
SK36)を80重量%に対し、炭材として、紙の炭化
微粉造粒物、比表面積20m/g(B.E.T法)、
粒外径0.5〜0.15mm。木屑の炭化微粉造粒物、
比表面積4m/g(B.E.T法)、粒外径0.5〜
0.15mm。オイルコークス微粉造粒物、比表面積5
/g(B.E.T法)、粒外径0.5〜0.15m
m。オイルコークス微粉造粒物、比表面積8m/g
(B.E.T法)、粒外径0.5〜0.15mmの4種
各々を20重量%、水を30重量%添加、ホバートミキ
サーにて混合し、20mm×25φにプレス成型、12
0℃で乾燥後、ガス炉(容積1800cm アセチレ
ン−酸素式)にて1420℃まで120分間、1420
℃で10分間の焼成を行なった。このときに得られた断
熱耐火性焼結体の見掛気孔率、嵩比重、見掛比重、残炭
量を参考として炭材無添加品の性質とともに第2表に示
す。
[Experimental Example 2] Kaolin clay (SiO 2 46.3%, A
l 2 O 3 36.1%, Fe 2 O 3 2.1%, fire resistance
80% by weight of SK36) as carbon material, carbonized fine powder granules of paper, specific surface area of 20 m 2 / g (BET method),
Outer diameter of grain is 0.5 to 0.15 mm. Carbonized fine powder granules of wood chips,
Specific surface area 4 m 2 / g (BET method), grain outer diameter 0.5 to
0.15 mm. Oil coke fine granules, specific surface area 5
m 2 / g (BET method), particle outer diameter 0.5 to 0.15 m
m. Oil coke fine powder granules, specific surface area 8 m 2 / g
(BET method), 20% by weight of each of four types having an outer diameter of 0.5 to 0.15 mm and 30% by weight of water were added, mixed by a Hobart mixer, and pressed into 20 mm × 25φ.
After drying at 0 ° C., a gas furnace (volume of 1800 cm 3 acetylene-oxygen type) was heated to 1420 ° C. for 120 minutes at 1420 ° C.
Firing was performed at 10 ° C. for 10 minutes. The apparent porosity, bulk specific gravity, apparent specific gravity, and amount of residual coal of the heat-insulating fire-resistant sintered body obtained at this time are shown in Table 2 together with the properties of the carbonaceous material-free product for reference.

【0013】[0013]

【第1表】 [Table 1]

【0014】[0014]

【第2表】 [Table 2]

【0015】第1表、2表、の結果より、耐火性材料8
0重量%に易焼却炭の20重量%を粒外径の1〜0.5
mm、0.5〜0.3mm、0.3〜0.15mm、
0.15〜0.106mm、0.106〜0.005m
m、0.005mm以下の6種類の粒外径に調整し各々
を混合、成型、乾燥、焼成、冷却したものでは実験例1
のNo.2、No.3すなわち、粒外径を0.5〜0.
3mmと0.3〜0.15mmに調整したものは、気孔
率が大きく嵩比重が低く、残炭量が少ない。又、実験例
1のNo.4、No.5、No.6すなわち、0.15
〜0.106mm、0.106〜0.005mm、0.
005mm以下に調整したものは、実験例1のNo.
2、No.3に比較して気孔率が小さく嵩比重が大き
く、残炭量がやや多い。このことは、気孔形成に易焼却
炭を粒外径を調整したものを用いることによって、1つ
には易焼却炭の、燃焼が粒外径調整品の0.5〜0.3
mmと0.3〜0.15mmの2種類が実験例1のN
o.4、No.5、No.6の粒外径調整品よりも燃焼
が速やかであるため成型体の表面部分より燃焼を開始
し、易焼却炭の、消失跡が開気孔である間に、すなわち
全体の燃焼が開始し焼成体が収縮を開始する前に気孔が
形成される為に多孔質体と成すことを可能とし又、1つ
には、易焼却炭の、粒外径を調整して用いるため焼結に
よって消失する気孔が少ないために有効な気孔が形成で
きる。このことは、実験例1のNo.4、No.5、N
o.6の粒外径0.15〜0.106mm、0.106
〜0.005mm、0.005mm以下に従って生成し
た気孔の消失が顕著となる。実験例1のNo.1は、気
孔の大きい部分が目立ち、見掛気孔率において、やや低
いものとなる。
From the results of Tables 1 and 2, refractory material 8
20% by weight of easily incinerated coal to 0% by weight of 1 to 0.5 of the outer diameter of the grain
mm, 0.5 to 0.3 mm, 0.3 to 0.15 mm,
0.15-0.106 mm, 0.106-0.005 m
m, 0.005 mm or less of 6 kinds of outer diameter of the particles are adjusted, and each is mixed, molded, dried, fired, and cooled.
No. 2, No. 3, that is, the outer diameter of the grain is 0.5 to 0.
Those adjusted to 3 mm and 0.3 to 0.15 mm have a large porosity, a low bulk specific gravity, and a small amount of residual coal. In addition, No. 4, No. 5, No. 6 or 0.15
.About.0.106 mm, 0.106 to 0.005 mm, 0.
No. 5 of Experimental Example 1 was adjusted to 005 mm or less.
2, No. Compared with No. 3, the porosity is small, the bulk specific gravity is large, and the amount of residual coal is slightly large. This means that by using easy-burning coal whose grain outer diameter is adjusted to form pores, it is possible to use 0.5 to 0.3 of the easy-burning coal whose combustion is adjusted for grain outer diameter.
mm and 0.3 to 0.15 mm are N of Experimental Example 1
o. 4, No. 5, No. Since the combustion is faster than that of the grain outer diameter adjusted product of 6, the combustion starts from the surface portion of the molded body, and the entire combustion starts while the disappearance traces of the easily incinerated coal are open pores, that is, the fired body. It is possible to form a porous body because the pores are formed before the contraction starts, and one is the pores of easily incinerated coal that disappear by sintering because the outer diameter of the grain is adjusted. Effective pores can be formed due to the small amount. This is because the No. 4, No. 5, N
o. No. 6 grain outer diameter 0.15-0.106 mm, 0.106
Disappearance of generated pores becomes remarkable when the thickness is 0.005 mm or less and 0.005 mm or less. No. 1 in Experimental Example 1 In No. 1, the large pores are conspicuous, and the apparent porosity is slightly low.

【0016】耐火性材料80重量%に比表面積の異なる
易焼却炭、20重量%を混合、成型、乾燥、焼成、冷却
したものでは実験例2のNo.6すなわち、比表面積2
0m/gのものでは、気孔率は大きく残炭量も少な
く、嵩比重も適切であるが、実験例2のNo.7比表面
積4m/g、実験例2のNo.8比表面積5m
g、実験例2のNo.9比表面積8m/gでは、気孔
率は小さく残炭量も多い。このことは、比表面積が20
/gに満たないものは、炭材の消失速度に較べ、成
型体の表面の焼結が速く、成型体の内部に未燃の炭材が
残り、残炭量が多くなる。又、気孔形成に用いる易焼却
炭の比表面積により、各々の炭の粒外径と焼却時間の関
係が異なる。
No. 2 of Experimental Example 2 was prepared by mixing 80% by weight of the refractory material with 20% by weight of easy-burning coal having a different specific surface area, molding, drying, firing and cooling. 6 ie specific surface area 2
In the case of 0 m 2 / g, the porosity was large, the amount of residual coal was small, and the bulk specific gravity was also appropriate, but No. 7 specific surface area of 4 m 2 / g, No. 7 of Experimental example 2. 8 Specific surface area 5 m 2 /
g, No. 2 of Experimental Example 2. 9 With a specific surface area of 8 m 2 / g, the porosity is small and the amount of residual coal is large. This means that the specific surface area is 20
In the case of less than m 2 / g, the surface of the molded body is sintered faster than the disappearance rate of the carbonaceous material, unburned carbonaceous material remains inside the molded body, and the amount of residual carbon increases. Further, the relationship between the outer diameter of the grain of each charcoal and the incineration time differs depending on the specific surface area of the easily incinerated charcoal used for forming pores.

【0017】[0017]

【実施例】以下、本発明の実施例により更に詳しく説明
する。
EXAMPLES The present invention will now be described in more detail by way of examples.

【0018】[0018]

【実施例1】カオリン粘土(SiO 46.3%、A
36.1%、Fe2.1%、耐火度
SK36)を90重量%と活性炭として、市販活性炭
(クラレ社(株)製 商品名 クラレコール)の比表面
積(B.E.T法)1100〜1780m/g、粒外
径0.3〜0.15mmを10重量%に水を30重量%
添加、ホバートミキサーにて混合する。そして、この材
料をペレタイザーにて20φの転動造粒成型し、120
℃の温度にて乾燥し、ロータリーキルン(内径500φ
長さ9m)にて焼点温度1420℃で投入から排出ま
で50分にて焼成、クーラーにて冷却を行なった。この
ときに得られた断熱耐火性焼結体の見掛気孔率、嵩比
重、見掛比重、残炭量を第3表に示す。
Example 1 Kaolin Clay (SiO 2 46.3%, A
l 2 O 3 36.1%, Fe 2 O 3 2.1%, fire resistance
90% by weight of SK36) as activated carbon, and the specific surface area (BET method) of commercially available activated carbon (Kuraray Co., Ltd., trade name: Kuraray Coal), 1100 to 1780 m 2 / g, outer diameter of grain: 0.3 to 0 15mm 10% by weight and water 30% by weight
Add and mix with Hobart mixer. Then, this material was tumbled and granulated at 20φ with a pelletizer to obtain 120
Dry at a temperature of ℃, rotary kiln (inner diameter 500φ
It was fired at a burning point temperature of 1420 ° C. in a length of 9 m) for 50 minutes from charging to discharging, and cooled in a cooler. Table 3 shows the apparent porosity, bulk specific gravity, apparent specific gravity, and amount of residual coal of the heat-insulating fire-resistant sintered body obtained at this time.

【0019】[0019]

【実施例2】カオリン粘土(SiO 46.3%、A
36.1%、Fe2.1%、耐火度
SK36)を80重量%と造粒微粉炭として、木屑の炭
化微粉造粒物の比表面積162m/g(B.E.T
法)を0.3〜0.15mmに調整したものを20重量
%に水を30重量%添加、ホバートミキサーにて混合し
押し出し成型機にて20mm×25φの長柱状に成型
し、自然乾燥後、ロータリーキルン(内径500φ 長
さ9m)にて焼点温度1420℃で投入から排出まで5
0分にて焼成、クーラーにて冷却を行なった。このとき
に得られた断熱耐火性焼結体の見掛気孔率、嵩比重、見
掛比重、残炭量を第3表に示す。
Example 2 Kaolin Clay (SiO 2 46.3%, A
l 2 O 3 36.1%, Fe 2 O 3 2.1%, fire resistance
SK36) as 80% by weight as granulated pulverized coal, specific surface area 162 m 2 / g (BET)
Method) was adjusted to 0.3 to 0.15 mm, and 20% by weight of water was added to 30% by weight of water, and the mixture was mixed by a Hobart mixer, and was molded into a long column of 20 mm × 25φ by an extrusion molding machine, which was naturally dried. , With a rotary kiln (inner diameter 500φ, length 9m) at a burning point temperature of 1420 ° C.
It was fired at 0 minutes and cooled by a cooler. Table 3 shows the apparent porosity, bulk specific gravity, apparent specific gravity, and amount of residual coal of the heat-insulating fire-resistant sintered body obtained at this time.

【0020】[0020]

【実施例3】仮焼アルミナ(Al 99.6%、
NaO 0.35%、SiO0.02%、Fe
0.02%、日本軽金属(株)製 商品名 A−1
1)を49.5重量%と有機バインダー(第一工業製薬
(株)製 カルボキシルメチルセルローズ)を0.5重
量%をチューブミルにて(比表面積、プレーン6980
cm/g)粉砕したものと、活性炭として、市販活性
炭(クラレ社(株)製 商品名 クラレコール)の比表
面積(B.E.T法)1100〜1780m/gの粒
外径を0.5〜0.15mmに調整したものを50重量
%、水を10重量%添加、ホバートミキサーにて混合し
20×34×30mmにプレス成型、自然乾燥後、ロー
タリーキルン(内径500φ 長さ9m)にて焼点温度
1900℃で投入から排出まで100分にて焼成、クー
ラーにて冷却を行なった。このときに得られた断熱耐火
性焼結体の見掛気孔率、嵩比重、見掛比重、残炭量を第
3表に示す。
Example 3 Calcined alumina (Al 2 O 3 99.6%,
Na 2 O 0.35%, SiO 2 0.02%, Fe 2 O
3 0.02%, Nippon Light Metal Co., Ltd. product name A-1
49.5 wt% of 1) and 0.5 wt% of an organic binder (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. carboxylmethylcellulose) in a tube mill (specific surface area, plain 6980).
cm 2 / g) and the specific surface area (BET method) 1100 to 1780 m 2 / g of commercially available activated carbon (Kuraray Co., Ltd., trade name: Kuraray Coal) as activated carbon having an outer diameter of 0. 50% by weight adjusted to 0.5 to 0.15 mm and 10% by weight of water were added, mixed with a Hobart mixer, press-molded to 20 × 34 × 30 mm, air-dried, and then rotary kiln (inner diameter 500φ length 9 m). It was fired at a firing point temperature of 1900 ° C. for 100 minutes from charging to discharging, and cooled in a cooler. Table 3 shows the apparent porosity, bulk specific gravity, apparent specific gravity, and amount of residual coal of the heat-insulating fire-resistant sintered body obtained at this time.

【0021】[0021]

【第3表】 [Table 3]

【0022】[0022]

【発明の効果】本発明による断熱耐火性焼結体は、気孔
形成に易焼却炭すなわち、造粒微粉炭及び、又は、活性
炭の比表面積が20m/g(B.E.T法)以上あり
粒外径を0.005mm以上に調整した炭材を用いるこ
とによって、1つには易焼却炭の燃焼が速やかであるた
め成型体の表面部分より燃焼を開始し、易焼却炭の消失
跡が開気孔である間に全体の炭材が燃焼を終えるため、
すなわち全体の燃焼が開始し成型体が収縮を開始する前
に気孔が形成される為に多孔質体と成すことを可能とす
る。又、1つには、易焼却炭の粒外径を耐火性材の収縮
量に応じたものとすることにより、断熱性に最も有効な
気孔径、気孔量が設定可能であり消失する気孔を少なく
し、有効な気孔が形成でき、所要の焼結体強度をもつも
のを、短時間に焼成が可能なためにロータリーキルン等
の窯炉により、簡略な工程により品質が安定した良好な
断熱耐火性焼結体を連続的に生産することを可能とし
た。
The adiabatic refractory sintered body according to the present invention has a specific surface area of 20 m 2 / g (BET method) of easily incinerated coal, that is, granulated pulverized coal and / or activated carbon, for forming pores. By using a carbonaceous material whose grain outer diameter is adjusted to 0.005 mm or more, one of them is that the combustion of easy-burning coal is rapid, so combustion starts from the surface of the molded body, and the trace of disappearance of easy-burning coal Since the entire carbonaceous material finishes burning while is an open pore,
That is, it becomes possible to form a porous body because pores are formed before the entire combustion starts and the molded body starts contracting. One is that the outer diameter of the easily incinerated coal is adjusted according to the shrinkage amount of the refractory material so that the most effective pore diameter and pore volume for heat insulation can be set and the pores that disappear Good adiabatic fire resistance with stable quality due to a simple process by using a kiln such as a rotary kiln because it is possible to form a small number of effective pores and to have a required sintered body strength in a short time. It has become possible to continuously produce sintered bodies.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 耐火性原料に易焼却炭を混合し、焼
結させてなる断熱耐火性焼結体の製造方法。
1. A method for producing an adiabatic refractory sintered body by mixing easily incinerated coal with a refractory raw material and sintering the mixture.
JP4202871A 1992-06-19 1992-06-19 Manufacture of insulating fire-resisting sintered compact Pending JPH061675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4202871A JPH061675A (en) 1992-06-19 1992-06-19 Manufacture of insulating fire-resisting sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202871A JPH061675A (en) 1992-06-19 1992-06-19 Manufacture of insulating fire-resisting sintered compact

Publications (1)

Publication Number Publication Date
JPH061675A true JPH061675A (en) 1994-01-11

Family

ID=16464580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202871A Pending JPH061675A (en) 1992-06-19 1992-06-19 Manufacture of insulating fire-resisting sintered compact

Country Status (1)

Country Link
JP (1) JPH061675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321970A (en) * 2022-08-30 2022-11-11 河南瑞泰耐火材料科技有限公司 Andalusite-hercynite composite brick for zinc volatilization rotary kiln and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321970A (en) * 2022-08-30 2022-11-11 河南瑞泰耐火材料科技有限公司 Andalusite-hercynite composite brick for zinc volatilization rotary kiln and preparation method thereof
CN115321970B (en) * 2022-08-30 2023-08-22 河南瑞泰耐火材料科技有限公司 Andalusite-hercynite composite brick for zinc volatilization rotary kiln and preparation method of andalusite-hercynite composite brick

Similar Documents

Publication Publication Date Title
KR101901732B1 (en) Refractory coarse ceramic product and method for producing the same and its use
JP7299157B2 (en) A method for producing porous sintered magnesia, a batch for producing a coarse ceramic refractory product with granules of sintered magnesia, such a product and the product Manufacturing method, industrial furnace lining (Zustellung) and industrial furnace
EP0677495B1 (en) Nonhazardous pumpable refractory insulating composition
US3758318A (en) Production of mullite refractory
CN100378027C (en) Porous mullite ceramic materials and method for preparing same
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
CN106380223A (en) High-temperature-resistant light brick and preparation method thereof
JPH08283073A (en) Kiln tool
CN106946585B (en) Method for preparing low-heat-conductivity magnesia-alumina spinel refractory brick by utilizing artificially synthesized microporous spinel
US5219802A (en) Porous ceramic radiation plate
US3591393A (en) Insulating fire brick
KR100415329B1 (en) Method for manufacturing a brick and bottom materials with fly ash
JPH061675A (en) Manufacture of insulating fire-resisting sintered compact
US4627878A (en) Method of producing porous magnesia clinker
JP2004339042A (en) Method of manufacturing porous ceramic using charcoal powder or bamboo charcoal powder as main raw material
JPH069266A (en) Preparation of fire-resistant chromium oxide stone
JPH0368411A (en) Cordierite-based gas filter and its production
JPH04228460A (en) Method for manufacture of lightweight construction material
JPH09301766A (en) Porous spinel clinker and its production
KR900003318B1 (en) Lighting magnesia clinkers
JPS6216847A (en) Heat insulating material for molten iron
JPH03208870A (en) Production of porous ceramic body
JP2625218B2 (en) Method for firing coal ash granules
RU2214574C2 (en) Method for high-speed manufacture of roasting molded products
JPS5869766A (en) Manufacture of lightweight spinel refractories