JPH0628203U - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine

Info

Publication number
JPH0628203U
JPH0628203U JP6488792U JP6488792U JPH0628203U JP H0628203 U JPH0628203 U JP H0628203U JP 6488792 U JP6488792 U JP 6488792U JP 6488792 U JP6488792 U JP 6488792U JP H0628203 U JPH0628203 U JP H0628203U
Authority
JP
Japan
Prior art keywords
gear
axial direction
camshaft
pressure receiving
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6488792U
Other languages
Japanese (ja)
Inventor
誠次 鶴田
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP6488792U priority Critical patent/JPH0628203U/en
Publication of JPH0628203U publication Critical patent/JPH0628203U/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

(57)【要約】 【目的】 筒状歯車の移動中における各歯間の摺動摩擦
抵抗を小さくして、筒状歯車のスムーズな移動性を確保
し、バルブタイミング制御応答性を向上させる。 【構成】 従動スプロケット1とカムシャフト2の間に
各歯9a,10a、9b,10bを介して噛合させた筒
状歯車8を駆動機構によって軸方向に移動させることに
より両者1,2の相対回動位相を変換する。両者1,2
間に設けられた受圧ピストン13及び支持ピン16によ
って両歯車構成部9,10を互いに離間した状態で軸方
向へ移動させるようにした。
(57) [Abstract] [Purpose] To reduce the sliding frictional resistance between the teeth during the movement of the tubular gear, to ensure the smooth mobility of the tubular gear, and to improve the responsiveness of the valve timing control. [Structure] A tubular gear 8 meshed between a driven sprocket 1 and a camshaft 2 via respective teeth 9a, 10a, 9b, 10b is moved in the axial direction by a drive mechanism, so that a relative rotation of the two is obtained. Convert the dynamic phase. Both 1, 2
The pressure receiving piston 13 and the support pin 16 provided between the two gear component parts 9 and 10 are moved in the axial direction while being separated from each other.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、内燃機関の吸気・排気バルブの開閉時期を運転状態に応じて可変制 御するバルブタイミング制御装置の改良に関する。 The present invention relates to an improvement in a valve timing control device that variably controls opening / closing timings of intake / exhaust valves of an internal combustion engine according to operating conditions.

【0002】[0002]

【従来の技術】[Prior art]

この種のバルブタイミング制御装置としては、例えば本出願人が先に出願した 特開昭61−279713号公報に記載されたものがある。 An example of this type of valve timing control device is described in Japanese Patent Application Laid-Open No. 61-279713 previously filed by the present applicant.

【0003】 この装置は、機関のクランク軸から駆動伝達されるタイミングプーリと、該タ イミングプーリから回転力が伝達されるカムシャフトとの間に、内外周に設けた 歯のうち少なくともいずれか一方がはす歯である筒状歯車を、前記タイミングプ ーリの内歯とカムシャフトの外歯とに噛合させながら介装し、機関運転状態に応 じて前記筒状歯車を駆動機構を介してカムシャフトの軸方向に移動させることに より、タイミングプーリとカムシャフトとの相対回動を得て吸気・排気バルブの 開閉時期を進遅制御するようになっている。This device includes at least one of teeth provided on the inner and outer circumferences between a timing pulley to which drive is transmitted from a crankshaft of an engine and a camshaft to which rotational force is transmitted from the timing pulley. A cylindrical gear, which is a helical gear, is inserted while meshing with the internal teeth of the timing pulley and the external teeth of the camshaft, and the cylindrical gear is inserted through a drive mechanism according to the engine operating condition. By moving the camshaft in the axial direction, the relative rotation between the timing pulley and the camshaft is obtained to control the opening / closing timing of the intake / exhaust valve.

【0004】 また、前記筒状歯車は、略中央から軸直角方向に切断して2分割され、はす歯 に形成された同一歯形の外歯と内歯とを夫々有する前後2個の歯車構成部を備え ている。この両歯車構成部は、両者に跨がって内部軸方向に挿通された連結ピン によって互いに離間あるいは接近する方向へ移動自在に連結されていると共に、 前側歯車構成部と連結ピン頭部との間に弾装されたコイルスプリングによって相 互に接近する方向に付勢されて、弾性的に連結されている。Further, the cylindrical gear is divided into two parts by cutting in a direction perpendicular to the axis from substantially the center, and two front and rear gear structures each having an external tooth and an internal tooth of the same tooth profile formed on a helical tooth are formed. It has a section. The two gear structure parts are movably connected to each other by a connecting pin extending in the inner axial direction across the both parts so as to be movable in a direction in which they are separated from each other or approaching each other. Coil springs mounted between them are urged in directions toward each other and elastically connected.

【0005】 そして、斯かる両歯車構成部の弾性的な連結作用により、各歯車構成部相互の 軸方向の移動時に、これらの内外歯の見掛け上の歯厚を増大させて歯すじをずら して該内外歯の歯側面をインナ歯とアウタ歯の各歯側面に圧接させることにより 、タイミングプーリとカムシャフトとの各内外歯に対する噛合移動時におけるバ ックラッシュを十分に減少させることが可能となる。これによって、バルブスプ リングのばね反力に起因して発生するカムシャフトの正逆回転トルク変動に伴う 各歯間の衝突による打音の発生を十分に抑制するようになっている。Due to the elastic coupling action of both gear component parts, the apparent tooth thickness of these inner and outer teeth is increased to shift the tooth trace when the gear component parts move in the axial direction. By pressing the tooth flanks of the inner and outer teeth against the tooth flanks of the inner and outer teeth, it is possible to sufficiently reduce the backlash during the meshing movement of the timing pulley and the cam shaft with respect to the inner and outer teeth. . As a result, it is possible to sufficiently suppress the generation of hammering sound due to the collision between the teeth due to the fluctuation of the forward / reverse rotational torque of the camshaft caused by the spring reaction force of the valve spring.

【0006】[0006]

【考案が解決しようとする課題】[Problems to be solved by the device]

然し乍ら、前記従来のバルブタイミング制御装置にあっては、機関が低負荷域 から高負荷域に移行して、例えば前側歯車構成部の前端側に有する圧力室内の油 圧によって該前側歯車構成部が後方に移動すると、同時に後側歯車構成部も前側 歯車構成部の後端面で後押しされながら、該両者が常に接近した状態で後方移動 する。即ち、該両歯車構成部は、前記コイルスプリングのばね力と圧力室内の油 圧との強い合成力で常に接近しながら後方へ移動する。このため、両歯車構成部 の各外歯のインナ歯に対する圧接力及び各内歯のアウタ歯に対する圧接力が一段 と強くなり、したがって、各歯間の摺動摩擦抵抗が増加する。この結果、筒状歯 車全体の後方移動速度が低下し、タイミングプーリとカムシャフトとの相対回動 の位相変換速度が緩慢となり、バルブタイミング制御応答性が悪化する。 However, in the above-mentioned conventional valve timing control device, when the engine shifts from the low load region to the high load region, the front gear component is driven by the hydraulic pressure in the pressure chamber at the front end side of the front gear component. When moving backward, at the same time, the rear gear component is also pushed by the rear end face of the front gear component, and the two components move backward in a state where they are always close to each other. That is, the both gear component parts move backward while always approaching each other by a strong combined force of the spring force of the coil spring and the hydraulic pressure in the pressure chamber. For this reason, the pressure contact force of each outer tooth of each gear component with respect to the inner tooth and the pressure contact force of each inner tooth with respect to the outer tooth become much stronger, so that the sliding friction resistance between each tooth increases. As a result, the backward movement speed of the entire cylindrical toothed gear decreases, the phase conversion speed of the relative rotation between the timing pulley and the cam shaft becomes slow, and the valve timing control responsiveness deteriorates.

【0007】 また、機関運転状態が高負荷域から低負荷域に移行して駆動機構の圧縮スプリ ングのばね力で後側歯車構成部で前側歯車構成部が後押しされながら筒状歯車全 体を前方に移動させる場合も同様な問題を招く。Further, the engine operating state shifts from the high load region to the low load region, and the front gear component is pushed backward by the rear gear component by the spring force of the compression spring of the drive mechanism, and the entire tubular gear is moved. The same problem is caused when moving it forward.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、前記従来の問題点に鑑みて案出されたもので、とりわけ回転体とカ ムシャフトとの間に、受圧ピストンをカムシャフト軸方向へ摺動自在に設けると 共に、該受圧ピストンに軸方向から固定された支持ピンに受圧ピストン側の一方 の歯車構成部を軸方向へ摺動自在に連結したことを特徴としている。 The present invention has been devised in view of the above-mentioned conventional problems. In particular, a pressure-receiving piston is provided between a rotating body and a camshaft so as to be slidable in the camshaft axial direction, and It is characterized in that one gear component on the pressure receiving piston side is connected to a support pin fixed in the axial direction so as to be slidable in the axial direction.

【0009】[0009]

【作用】[Action]

前記構成の本考案によれば、機関運転状態の変化に伴い例えば前側歯車構成部 の前端側に有する圧力室内に油圧が供給されると、該油圧は各歯車構成部と回転 体及びカムシャフトとの各歯間の隙間を通って受圧ピストンの一端面に作用し、 該受圧ピストンを一方軸方向へ摺動させる。これにより、支持ピンが後側歯車構 成部を受圧ピストンの摺動方向に引っ張ると共に、前側歯車構成部も連結手段を 介して同方向に引っ張られながら一方軸方向へ移動する。 According to the present invention having the above-mentioned configuration, when hydraulic pressure is supplied to a pressure chamber provided on the front end side of the front gear component, for example, as the engine operating state changes, the hydraulic pressure is applied to each gear component, the rotor, and the camshaft. It acts on one end surface of the pressure receiving piston through the gaps between the teeth, and causes the pressure receiving piston to slide in one axial direction. As a result, the support pin pulls the rear gear component in the sliding direction of the pressure receiving piston, and the front gear component also moves in the one axial direction while being pulled in the same direction via the connecting means.

【0010】 一方、圧力室の内圧が低下し受圧ピストンの他端面に例えば圧縮スプリングの ばね力が作用すると、今度は受圧ピストンが他方軸方向へ摺動するのに伴い、支 持ピンが後側歯車構成部から一方向に突出して先端部で前側歯車構成部を押し出 す。このため、後側歯車構成部も連結手段を介して前側歯車構成部に引っ張られ ながら他方軸方向へ移動する。On the other hand, when the internal pressure of the pressure chamber decreases and the spring force of, for example, a compression spring acts on the other end surface of the pressure receiving piston, this time, as the pressure receiving piston slides in the other axial direction, the support pin moves rearward. It projects in one direction from the gear structure and pushes out the front gear structure at the tip. Therefore, the rear gear component also moves in the other axial direction while being pulled by the front gear component via the connecting means.

【0011】 つまり、筒状歯車全体が一方あるいは他方軸方向へ移動する際には、両歯車構 成部が互いに離間する方向に力が作用する。このため、両歯車構成部に内外周に 有する各内外歯による回転体のインナ歯及びカムシャフトのアウタ歯に対する挾 持力(圧接力)が低下して各歯間の摺動摩擦抵抗が小さくなる。That is, when the entire tubular gear moves in one axial direction or the other axial direction, a force acts in a direction in which both gear component parts are separated from each other. Therefore, the holding force (pressure contact force) between the inner teeth and the outer teeth on the inner and outer circumferences of both gear components to the inner teeth of the rotor and the outer teeth of the camshaft is reduced, and the sliding frictional resistance between the teeth is reduced.

【0012】[0012]

【実施例】【Example】

図1は本考案に係る内燃機関のバルブタイミング制御装置をDOHC型動弁機 構の吸気バルブ側に適用した一実施例を示している。 FIG. 1 shows an embodiment in which a valve timing control device for an internal combustion engine according to the present invention is applied to the intake valve side of a DOHC type valve mechanism.

【0013】 図中1は図外のクランク軸からタイミングチェーンにより駆動力が伝達される 回転体たる円筒状の従動スプロケット、2は一端部2aがシリンダヘッド3のカ ム軸受3aに回転自在に支持されて、従動スプロケット1から伝達された回転力 により図外の吸気弁をバルブスプリングのばね力に抗して開作動させるカムを有 するカムシャフトであって、このカムシャフト2の一端部2aには、従動スプロ ケット1の内部軸方向に挿通されたスリーブ4が固定ボルト5によって軸方向か ら固定されている。このスリーブ4は、後端側の大径フランジ部4aがカムシャ フト一端部2aに嵌合していると共に、外周面の略中央位置にアウタ歯4bが形 成されている。In FIG. 1, reference numeral 1 denotes a cylindrical driven sprocket, which is a rotating body to which a driving force is transmitted from a crankshaft (not shown) by a timing chain, and 2 has one end 2 a rotatably supported by a cam bearing 3 a of a cylinder head 3. A camshaft having a cam that opens the intake valve (not shown) against the spring force of the valve spring by the rotational force transmitted from the driven sprocket 1, and the camshaft 2 has one end 2a In the driven sprocket 1, a sleeve 4 inserted in the inner axial direction of the driven sprocket 1 is fixed from the axial direction by a fixing bolt 5. In this sleeve 4, a large-diameter flange portion 4a on the rear end side is fitted in the camshaft one end portion 2a, and outer teeth 4b are formed at a substantially central position on the outer peripheral surface.

【0014】 前記従動スプロケット1は、筒状本体1aの後端部外周に一体に設けられた歯 車1bと、スリーブ4の前端縁に固定ボルト5により共締め固定されて、筒状本 体1aの前端開口を閉塞する円板状のフロントカバー7とから構成されている。 また、筒状本体1aは、前端部がフロントカバー7の外周面に摺動自在に支持さ れていると共に、内周面略中央にインナ歯1cが形成されている。The driven sprocket 1 is fixed to the gear 1b integrally provided on the outer periphery of the rear end of the tubular main body 1a and the front end edge of the sleeve 4 together with a fixing bolt 5 to fix the driven sprocket 1 to the tubular main body 1a. And a disk-shaped front cover 7 that closes the front end opening. The front end of the cylindrical main body 1a is slidably supported on the outer peripheral surface of the front cover 7, and the inner teeth 1c are formed substantially at the center of the inner peripheral surface.

【0015】 また、スリーブ4と筒状本体1aとの間には、後述する駆動機構を介して軸方 向に移動する筒状歯車8が介装されている。この筒状歯車8は、長尺な歯車を軸 直角方向に切断分割して形成された2個の歯車構成部9,10からなり、両歯車 構成部9,10は、夫々縦断面略コ字形を呈し、後側の歯車構成部10内に装着 された連結手段たるコイルスプリング11と連結ピン12により互いに接近する 方向へ弾性的に連結されている。また、各歯車構成部9,10の内外周には、両 方がはす歯の内歯9a,10aと外歯9b,10bが夫々形成されており、この 両内外歯9a,10a、9b,10bに前記筒状本体1aのインナ歯1cとスリ ーブ4のアウタ歯4bがスパイラル噛合している。また、後側歯車構成部10の 内部軸方向には貫通孔10cが形成されている。更に、この筒状歯車8は、前側 歯車構成部9の前端縁がフロントカバー7の内端面に突き当たった位置で最大前 方向への移動が規制され、一方、後側歯車構成部10の後端縁がピストン13と 圧縮スプリング24を介して大径フランジ部4aの内側面に突き当たった位置で 最大後方向(図中右方向)への移動が規制されるようになっている。A tubular gear 8 that moves in the axial direction via a drive mechanism described later is interposed between the sleeve 4 and the tubular body 1a. The tubular gear 8 is composed of two gear components 9 and 10 formed by cutting and dividing a long gear in the direction perpendicular to the axis. Both gear components 9 and 10 are substantially U-shaped in vertical cross section. And is elastically connected in a direction in which they approach each other by a coil spring 11 and a connecting pin 12 which are connecting means mounted in the rear gear component 10. Inner and outer teeth 9a, 10a and 9b, 10b, which are helical teeth on both sides, are formed on the inner and outer peripheries of the respective gear components 9, 10, and these inner and outer teeth 9a, 10a, 9b, An inner tooth 1c of the tubular body 1a and an outer tooth 4b of the sleeve 4 are spirally meshed with each other at 10b. Further, a through hole 10c is formed in the inner gear direction of the rear gear component 10. Further, the tubular gear 8 is restricted from moving in the maximum forward direction at the position where the front end edge of the front gear forming portion 9 abuts on the inner end surface of the front cover 7, while the rear end of the rear gear forming portion 10 is restricted. The maximum rearward movement (rightward in the figure) is restricted at the position where the edge abuts the inner surface of the large-diameter flange portion 4a via the piston 13 and the compression spring 24.

【0016】 また、前記筒状本体1aの後端部内周とスリーブ4に後端部外周との間に、円 環状の受圧ピストン13がカムシャフト軸方向へ摺動自在に設けられている。こ の受圧ピストン13は、一端面13aと後側歯車構成部10の後端面との間に形 成された環状の第1受圧室14と他端面13bと大径フランジ部4aの内側面と の間に形成された円筒状の第2受圧室15とに隔成していると共に、周方向の所 定個所に支持ピン16を挿通固定する固定用孔17が軸方向に貫通形成されてい る。前記支持ピン16は、比較的長尺に形成され、頭部16a側が固定用孔17 に圧入固定されていると共に、軸部16bの外周面に前記貫通孔10cを介して 後側歯車構成部10を軸方向へ摺動自在に支持している。また、軸部16bの先 端外周に有する嵌着溝内に径方向から嵌着したスナップリング18によって後側 歯車構成部10に係止すると共に、軸部16bの先端縁16cが前側歯車構成部 9の後端面に適宜当接するようになっている。尚、受圧ピストン13の内外周に は、両受圧室14,15間をシールするシールリング19,20が設けられてい る。An annular pressure-receiving piston 13 is provided between the inner circumference of the rear end of the cylindrical main body 1a and the outer circumference of the rear end of the sleeve 4 so as to be slidable in the camshaft axial direction. The pressure receiving piston 13 includes an annular first pressure receiving chamber 14 formed between one end surface 13a and a rear end surface of the rear gear component 10, an other end surface 13b, and an inner surface of the large-diameter flange portion 4a. It is separated from the cylindrical second pressure receiving chamber 15 formed therebetween, and a fixing hole 17 through which the support pin 16 is inserted and fixed is axially formed at a fixed position in the circumferential direction. The support pin 16 is formed to have a relatively long length, the head 16a side is press-fitted and fixed in the fixing hole 17, and the rear gear forming portion 10 is provided on the outer peripheral surface of the shaft portion 16b through the through hole 10c. Is supported slidably in the axial direction. Further, the snap ring 18 fitted in the fitting groove formed on the outer periphery of the front end of the shaft portion 16b is engaged with the rear gear component 10 by the snap ring 18, and the tip edge 16c of the shaft portion 16b is fixed to the front gear component portion. The rear end surface 9 is abutted appropriately. Sealing rings 19 and 20 for sealing between the pressure receiving chambers 14 and 15 are provided on the inner and outer circumferences of the pressure receiving piston 13.

【0017】 前記駆動機構は、前側歯車構成部9とフロントカバー7との間に形成されて、 前記第1受圧室14に各歯1c,4b,9a,9b,10a,10b間の隙間を 介して連通する圧力室21と、該圧力室21と第2受圧室15に油圧を給排する 2経路の第1,第2油圧回路22,23と、第2受圧室15内に弾装されて受圧 ピストン13を前方に付勢する圧縮スプリング24とを備えている。The drive mechanism is formed between the front gear forming section 9 and the front cover 7, and is provided in the first pressure receiving chamber 14 via the gaps between the teeth 1c, 4b, 9a, 9b, 10a, 10b. Pressure chamber 21 communicating with each other, two first and second hydraulic circuits 22 and 23 for supplying and exhausting hydraulic pressure to and from the pressure chamber 21 and the second pressure receiving chamber 15, and mounted in the second pressure receiving chamber 15 The pressure receiving piston 13 is provided with a compression spring 24 that biases the piston 13 forward.

【0018】 前記第1油圧回路22は、シリンダヘッド3とカム軸受3a内及びカムシャフ ト2の半径方向に沿って形成されて一端部がオイルポンプ25と連通する第1油 通路26と、固定ボルト5の軸部内に軸方向に沿って形成されて、一端部が第1 油路26に、他端部が軸部の直径方向孔27及びスリーブ4の通孔28を介して 圧力室21に夫々連通する連通路29とを備えている。また、第1油通路26と オイルポンプ25との間に第1油通路26の上下流と第1ドレン通路30を切り 換える3方向型の第1電磁切換弁31が設けられている。The first hydraulic circuit 22 is formed in the cylinder head 3, the cam bearing 3 a and along the radial direction of the cam shaft 2 and has a first oil passage 26 having one end communicating with the oil pump 25, and a fixing bolt. 5 is formed along the axial direction in the shaft portion of 5, and the one end is in the first oil passage 26, and the other end is in the pressure chamber 21 through the diameter hole 27 of the shaft portion and the through hole 28 of the sleeve 4, respectively. And a communication path 29 communicating with each other. A three-way first electromagnetic switching valve 31 is provided between the first oil passage 26 and the oil pump 25 to switch between the upstream and downstream of the first oil passage 26 and the first drain passage 30.

【0019】 第2油圧回路23は、シリンダヘッド3とカム軸受3a内及びカムシャフト2 の半径方向に沿って形成されて一端部がオイルポンプ25と連通する第2油通路 32と、固定ボルト5の軸部外周面とカムシャフト2及びスリーブ4のボルト挿 通孔の内周面との間に形成されて、一端部が第2油通路32に、他端部がスリー ブ4の直径方向孔33を介して第2受圧室15に連通する環状通路34とを備え ている。また、第2油通路32とオイルポンプ25との間に、第2油通路32の 上下流と第2ドレン通路35を切り換える3方向型の第2電磁切換弁36が設け られている。The second hydraulic circuit 23 is formed in the cylinder head 3, the cam bearing 3 a, and along the radial direction of the cam shaft 2, and has a second oil passage 32 whose one end communicates with the oil pump 25, and the fixing bolt 5. Is formed between the outer peripheral surface of the shaft portion and the inner peripheral surfaces of the bolt insertion holes of the cam shaft 2 and the sleeve 4, one end of which is in the second oil passage 32 and the other end of which is the diametrical hole of the sleeve 4. And an annular passage 34 communicating with the second pressure receiving chamber 15 via 33. Further, between the second oil passage 32 and the oil pump 25, a three-way second electromagnetic switching valve 36 that switches between the upstream and downstream of the second oil passage 32 and the second drain passage 35 is provided.

【0020】 また、前記第1,第2電磁切換弁31,36は、クランク角センサやエアーフ ローメータ等から出力された機関回転数や吸入空気量信号に基づいて現在の機関 運転状態を検出する図外のコントロールユニットからの制御手段に基づいて相対 的に切り換え作動するようになっている。Further, the first and second electromagnetic switching valves 31, 36 detect the current engine operating state based on the engine speed or intake air amount signal output from a crank angle sensor, an air flow meter, or the like. The switching operation is performed relative to each other based on the control means from the external control unit.

【0021】 以下、本実施例の作用について説明する。まず、例えば機関低負荷域から高負 荷域に移行した場合は、図2に示すように第2電磁切換弁35にOFF信号が出 力されて、第2油通路32と第2ドレン通路35とを連通する一方、第1電磁切 換弁31にON信号が出力されて第1ドレン通路30を閉成して第1油通路26 の上下流を連通する。したがって、第2受圧室15の内圧が低下すると共に、圧 力室21を介して第1受圧室14の内圧が上昇し、一端面13aに作用した油圧 によって受圧ピストン13が圧縮スプリング24のばね力に抗して最大後方向へ 摺動する。これにより、支持ピン16のスナップリング18が貫通孔10cの孔 縁に係止して後側歯車構成部10を受圧ピストン13の摺動方向に引っ張ると共 に、前側歯車構成部9も連結ピン12を介して同方向へ引っ張られながら追従移 動する。ここで、前側歯車構成部9は、各歯1c,4b,9a,9b間の摺動抵 抗によりコイルスプリング11のばね力に抗して後側歯構成部10から離れる方 向に力が作用する。このため、両歯車構成部9,10の各内歯9a,10aとス リーブ4のアウタ歯4bとの歯側面同士の圧接力が低下するとと共に、各外歯9 b,10bと従動スプロケット1のインナ歯1cとの歯側面同志の圧接力が低下 する。したがって、各歯1c,4b,9a,10a,9b,10b間の摺動摩擦 抵抗が小さくなり、筒状歯車8全体を後方向へスムーズに移動させることができ る。この結果、従動スプロケット1とカムシャフト2との一方側への相対回動の 位相変換速度が上昇し、バルブタイミングの制御応答性が向上する。The operation of this embodiment will be described below. First, for example, when the engine shifts from the low load region to the high load region, an OFF signal is output to the second electromagnetic switching valve 35 as shown in FIG. 2, and the second oil passage 32 and the second drain passage 35 are output. On the other hand, an ON signal is output to the first electromagnetic switching valve 31 to close the first drain passage 30 to connect the upstream and downstream of the first oil passage 26. Therefore, the internal pressure of the second pressure receiving chamber 15 decreases and the internal pressure of the first pressure receiving chamber 14 increases via the pressure chamber 21, and the pressure receiving piston 13 causes the spring force of the compression spring 24 by the hydraulic pressure applied to the one end surface 13a. It slides in the maximum backward direction against. As a result, the snap ring 18 of the support pin 16 is engaged with the hole edge of the through hole 10c to pull the rear gear component 10 in the sliding direction of the pressure receiving piston 13, and the front gear component 9 is also connected to the connecting pin. It moves following while being pulled in the same direction via 12. Here, the front gear component 9 acts on the direction away from the rear tooth component 10 against the spring force of the coil spring 11 due to the sliding resistance between the teeth 1c, 4b, 9a, 9b. To do. For this reason, the pressure contact force between the tooth flanks of the inner teeth 9a, 10a of both gear component parts 9, 10 and the outer tooth 4b of the sleeve 4 is reduced, and the outer teeth 9b, 10b and the driven sprocket 1 are also reduced. The pressure contact force between the tooth side surface and the inner tooth 1c is reduced. Therefore, the sliding frictional resistance between the teeth 1c, 4b, 9a, 10a, 9b, 10b is reduced, and the entire tubular gear 8 can be smoothly moved backward. As a result, the phase conversion speed of the relative rotation of the driven sprocket 1 and the cam shaft 2 to one side is increased, and the control response of the valve timing is improved.

【0022】 一方、機関が高負荷域から低負荷域に移行した場合は、第1電磁切換弁31に OFF信号が、第2電磁切換弁36にON信号が夫々出力されて、第2油通路3 2の上下流が連通すると共に、第1油通路26と第1ドレン通路30とが夫々連 通する。したがって、第1受圧室14及び圧力室21内の油圧が第1ドレン通路 30から排出されて低圧状態になる一方、第2受圧室15内に油圧が供給されて 高圧状態となり、斯かる油圧が他端面13bに作用して受圧ピストン13が図1 に示すように前方に摺動する。これにより、支持ピン16が、貫通孔10c内を 摺動して先端縁16cで前側歯車構成部9の後端面を前方に直接押圧する。した がって、圧縮スプリング15のばね力との合成力で前側歯車構成部9の前方移動 に伴い後側歯車構成部10も連結ピン12及びコイルスプリング11のばね力を 介して前方へ引っ張られながら同方向へ追従移動する。ここで、両歯車構成部9 ,10は、互いに離れる方向に力が作用し、各歯9a,9b,10a,10bと インナ歯1c,アウタ歯4bとの歯側面同士の圧接力が低下して摺動摩擦抵抗が 小さくなり、筒状歯車8全体を前方へスムーズに移動させることができる。これ によって、両者1,2の他方側への相対回動位相変換速度が上昇する。On the other hand, when the engine shifts from the high load range to the low load range, an OFF signal is output to the first electromagnetic switching valve 31 and an ON signal is output to the second electromagnetic switching valve 36, respectively, and the second oil passage The upstream and downstream sides of 32 are communicated with each other, and the first oil passage 26 and the first drain passage 30 are communicated with each other. Therefore, while the hydraulic pressure in the first pressure receiving chamber 14 and the pressure chamber 21 is discharged from the first drain passage 30 to be in a low pressure state, the hydraulic pressure is supplied in the second pressure receiving chamber 15 to be in a high pressure state. By acting on the other end surface 13b, the pressure receiving piston 13 slides forward as shown in FIG. As a result, the support pin 16 slides in the through hole 10c and directly presses the rear end face of the front gear component 9 forward with the front edge 16c. Therefore, the rear gear component 10 is also pulled forward by the combined force of the compression spring 15 and the front gear component 9 along with the forward movement of the front gear component 9 via the spring force of the connecting pin 12 and the coil spring 11. While moving in the same direction. Here, in both gear component parts 9 and 10, a force acts in a direction away from each other, and the pressure contact force between the tooth side surfaces of the teeth 9a, 9b, 10a and 10b and the inner teeth 1c and the outer teeth 4b decreases. The sliding friction resistance is reduced, and the entire tubular gear 8 can be smoothly moved forward. As a result, the relative rotational phase conversion speed of the both 1 and 2 to the other side increases.

【0023】 また、筒状歯車8の最大前方向への移動後は、第2電磁切換弁36にもOFF が出力されて、第2受圧室15の内圧も低下し、筒状歯車8を最大前方向位置に 保持すると共に、移動待機状態にする。After the tubular gear 8 is moved in the maximum forward direction, OFF is also output to the second electromagnetic switching valve 36, the internal pressure of the second pressure receiving chamber 15 is also reduced, and the tubular gear 8 is moved to the maximum. Hold it in the forward position and put it in a movement standby state.

【0024】[0024]

【考案の効果】[Effect of device]

以上の説明で明らかなように、本考案によれば、各歯間のバックラッシュによ るカムシャフトの回転トルク変動に起因する衝突打音の発生を十分に抑制できる ことは勿論のこと、受圧ピストン及び支持ピンによって前後の歯車構成部を互い に離間状態で軸方向へ移動させることができるため、該筒状歯車の軸方向の移動 中における各歯間の摺動摩擦抵抗が小さくなる。この結果、筒状歯車のスムーズ な移動性が得られ、回転体とカムシャフトとの相対回動位相変換速度が上昇し、 バルブタイミングの制御応答性が向上する。 As is clear from the above description, according to the present invention, it is of course possible to sufficiently suppress the occurrence of a collision hammering sound due to the rotational torque fluctuation of the camshaft due to the backlash between the teeth. Since the piston and the support pin can move the front and rear gear components in the axial direction in a state of being separated from each other, the sliding friction resistance between the teeth during the axial movement of the tubular gear is reduced. As a result, the smooth movement of the cylindrical gear is obtained, the relative rotational phase conversion speed between the rotating body and the cam shaft is increased, and the valve timing control response is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例を示す縦断面図。FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.

【図2】本実施例の作用を示す縦断面図。FIG. 2 is a vertical sectional view showing the operation of this embodiment.

【符号の説明】[Explanation of symbols]

1…従動スプロケット(回転体) 1c…インナ歯 2…カムシャフト 4…スリーブ 4b…アウタ歯 8…筒状歯車 9…前側歯車構成部 10…後側歯車構成部 9a,10a…内歯 9b,10b…外歯 11…コイルスプリング 12…連結ピン 13…受圧ピストン 16…支持ピン DESCRIPTION OF SYMBOLS 1 ... Followed sprocket (rotating body) 1c ... Inner tooth 2 ... Cam shaft 4 ... Sleeve 4b ... Outer tooth 8 ... Cylindrical gear 9 ... Front gear component 10 ... Rear gear component 9a, 10a ... Inner tooth 9b, 10b ... External teeth 11 ... Coil spring 12 ... Connecting pin 13 ... Pressure receiving piston 16 ... Support pin

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 機関により駆動されかつ内周にインナ歯
を有する回転体と、該回転体から回転力が伝達されかつ
外周にアウタ歯を有するカムシャフトと、該回転体とカ
ムシャフトとの間に少なくとも一方がはす歯形の内外歯
が前記インナ歯とアウタ歯に噛合し、かつ軸方向に2分
割された両歯車構成部を連結手段を介して互いに接近す
る方向へ弾性的に連結してなる筒状歯車と、該筒状歯車
をカムシャフト軸方向に移動させて前記回転体とカムシ
ャフトとの相対回動位相を変換する駆動機構とを備えた
バルブタイミング制御装置において、前記回転体とカム
シャフトとの間に、受圧ピストンをカムシャフト軸方向
へ摺動自在に設けると共に、該受圧ピストンに軸方向か
ら固定された支持ピンに受圧ピストン側の一方の歯車構
成部を軸方向へ摺動自在に連結したことを特徴とする内
燃機関のバルブタイミング制御装置。
1. A rotating body driven by an engine and having inner teeth on its inner circumference, a camshaft to which rotational force is transmitted from the rotating body and having outer teeth on its outer circumference, and between the rotating body and the camshaft. In addition, at least one of the helical tooth-shaped inner and outer teeth meshes with the inner tooth and the outer tooth, and both gear component parts that are axially divided into two are elastically connected to each other through connecting means in a direction in which they approach each other. A valve timing control device comprising: a tubular gear, and a drive mechanism that moves the tubular gear in the camshaft axial direction to convert the relative rotational phase between the rotary body and the camshaft. A pressure receiving piston is provided slidably in the cam shaft axial direction between the cam shaft and the gear pin on the pressure receiving piston side is slid in the axial direction on a support pin fixed to the pressure receiving piston in the axial direction. A valve timing control device for an internal combustion engine, which is freely connected.
JP6488792U 1992-09-18 1992-09-18 Valve timing control device for internal combustion engine Pending JPH0628203U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6488792U JPH0628203U (en) 1992-09-18 1992-09-18 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6488792U JPH0628203U (en) 1992-09-18 1992-09-18 Valve timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0628203U true JPH0628203U (en) 1994-04-15

Family

ID=13271061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6488792U Pending JPH0628203U (en) 1992-09-18 1992-09-18 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0628203U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002449A (en) * 2011-06-15 2013-01-07 Mahle Internatl Gmbh Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002449A (en) * 2011-06-15 2013-01-07 Mahle Internatl Gmbh Internal combustion engine

Similar Documents

Publication Publication Date Title
JPH0547309U (en) Valve timing control device for internal combustion engine
JPH04191406A (en) Valve timing control device for internal combustion engine
JPH0868305A (en) Valve timing control device for internal combustion engine
JPH0533614A (en) Valve timing controller for internal combustion engine
JPH0521102U (en) Valve timing control device for internal combustion engine
JPH0628203U (en) Valve timing control device for internal combustion engine
JP2758890B2 (en) Valve timing control device for internal combustion engine
JPH0683907U (en) Valve timing control device for internal combustion engine
JP2551823Y2 (en) Valve timing control device for internal combustion engine
JP2581585Y2 (en) Valve timing control device for internal combustion engine
JPH0874529A (en) Valve timing controller of internal combustion engine
JPH08334006A (en) Valve timing control device of internal combustion engine
JPH07305609A (en) Valve timing control device in internal combustion engine
JPH0547307U (en) Valve timing control device for internal combustion engine
JPH07238807A (en) Valve timing control device for internal combustion engine
JPH0828218A (en) Valve timing controller for internal combustion engine
JP2508038Y2 (en) Valve timing control device for internal combustion engine
JP3326281B2 (en) Valve timing control device for internal combustion engine
JPH087045Y2 (en) Variable valve timing device
JP2812775B2 (en) Valve timing control device for internal combustion engine
JP2823955B2 (en) Valve timing control device for internal combustion engine
JPH0693812A (en) Valve timing control device for internal combustion engine
JPH0637506U (en) Valve timing control device for internal combustion engine
JP2573344Y2 (en) Valve timing control device for internal combustion engine
JPH051514A (en) Valve timing controlling device for internal combustion engine