JP2581585Y2 - Valve timing control device for internal combustion engine - Google Patents
Valve timing control device for internal combustion engineInfo
- Publication number
- JP2581585Y2 JP2581585Y2 JP1991097574U JP9757491U JP2581585Y2 JP 2581585 Y2 JP2581585 Y2 JP 2581585Y2 JP 1991097574 U JP1991097574 U JP 1991097574U JP 9757491 U JP9757491 U JP 9757491U JP 2581585 Y2 JP2581585 Y2 JP 2581585Y2
- Authority
- JP
- Japan
- Prior art keywords
- gear
- valve timing
- timing control
- camshaft
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Valve Device For Special Equipments (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
Description
【0001】[0001]
【産業上の利用分野】本考案は、内燃機関の吸気・排気
バルブの開閉時期を運転状態に応じて可変制御するバル
ブタイミング制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve timing control device for variably controlling the opening / closing timing of intake and exhaust valves of an internal combustion engine in accordance with an operation state.
【0002】[0002]
【従来の技術】従来のバルブタイミング制御装置として
は、種々提供されており、その一例としては米国特許第
4,535,731号公報に開示されたものや、該公報記
載の発明を改良したものとして、本出願人が先に出願し
た実願平2−19537号に記載されたものがある。2. Description of the Related Art Various conventional valve timing control devices have been provided, examples of which are disclosed in U.S. Pat. No. 4,535,731 and improved versions of the invention described in the publication. An example is described in Japanese Utility Model Application No. 2-19537 filed earlier by the present applicant.
【0003】この本出願人が出願したバルブタイミング
制御装置は、図2に示すように、機関のクランク軸から
駆動力が伝達される円筒状の従動スプロケット1と、該
従動スプロケット1の回転力によって例えば吸気バルブ
を開閉作動させる駆動カムを一体に有するカムシャフト
2と、該スプロケット1とカムシャフト2との間に噛合
して、左右軸方向の移動に伴い該両者1,2の相対回動
位相を変換する筒状歯車3と、該筒状歯車3を左右軸方
向に移動させる駆動機構4とを備えている。As shown in FIG. 2, the valve timing control device filed by the present applicant employs a cylindrical driven sprocket 1 to which a driving force is transmitted from a crankshaft of an engine, and a rotational force of the driven sprocket 1. For example, a camshaft 2 integrally having a drive cam for opening and closing an intake valve is meshed with the sprocket 1 and the camshaft 2, and the relative rotation phase of the two 1 and 2 with the movement in the left-right axis direction. And a drive mechanism 4 for moving the cylindrical gear 3 in the left-right axial direction.
【0004】前記従動スプロケット1は、筒状本体5の
前端に円環状の保持部材6がかしめ固定されていると共
に、筒状本体5の内周面にインナ歯7が形成されてい
る。一方、カムシャフト2は、一端部2aにボルト8に
より固定されたスリーブ9の外周面にアウタ歯10が形
成されている。In the driven sprocket 1, an annular holding member 6 is fixed to the front end of a cylindrical main body 5 by caulking, and inner teeth 7 are formed on the inner peripheral surface of the cylindrical main body 5. On the other hand, the camshaft 2 has outer teeth 10 formed on an outer peripheral surface of a sleeve 9 fixed to one end 2 a by bolts 8.
【0005】前記筒状歯車3は、軸直角方向から2分割
された前側歯車構成部11と後側歯車構成部12とから
形成されている。この両歯車構成部11,12は、内外
周に図3に示すように前記インナ歯7とアウタ歯8に夫
々噛合するはす歯形の内外歯11a,11b、12a,
12bが形成されていると共に、内部中央を貫通した連
結ピン13と該連結ピン13の頭部側外周に巻装された
コイルスプリング14のばね力によって互いに接近する
方向に弾性的に連結されている。更に、前記各歯車構成
部11,12は、各内外歯11a,12a、11b,1
2bのみかけ上の歯すじをずらすことにより、コイルス
プリング14のばね力を介して各外歯11b,12bの
歯側面間で従動スプロケット1のインナ歯7を挾圧支持
(圧接)する一方、各内歯11a,12a歯側面間でス
リーブ9のアウタ歯10を挾圧支持して各歯間のバック
ラッシュに起因するカムシャフトの回転トルク変動に伴
う各歯間の打音の発生を抑制するようになっている。The cylindrical gear 3 is formed by a front gear component 11 and a rear gear component 12 divided into two parts from a direction perpendicular to the axis. As shown in FIG. 3, the two gear components 11 and 12 have helical inner and outer teeth 11a, 11b, 12a, which mesh with the inner teeth 7 and the outer teeth 8, respectively.
12b are formed, and are elastically connected in a direction approaching each other by the spring force of a connecting pin 13 penetrating the center of the inside and a coil spring 14 wound around the head side outer periphery of the connecting pin 13. . Further, each of the gear components 11 and 12 is provided with each of the internal and external teeth 11a, 12a, 11b, 1
The inner teeth 7 of the driven sprocket 1 are pinched and supported (pressed) between the tooth side surfaces of the external teeth 11b and 12b by the spring force of the coil spring 14 by shifting the apparent tooth streaks of 2b. The outer teeth 10 of the sleeve 9 are clamped and supported between the side faces of the inner teeth 11a and 12a so as to suppress the generation of tapping noise between the teeth due to the fluctuation of the rotational torque of the camshaft due to the backlash between the teeth. It has become.
【0006】前記駆動機構4は、筒状歯車3の前端部側
に有する圧力室15の2つの受圧室15a,15bに相
対的に油圧を給排する油圧回路16と、筒状歯車3の後
端部に弾装された圧縮スプリング17とを備えており、
油圧回路16の上流側には、三方型の電磁弁18が設け
られていると共に、下流側のスリーブ9前端部にはスプ
ール弁19aと電磁アクチュエータ19bとからなる油
圧切替機構19が設けられている。The drive mechanism 4 includes a hydraulic circuit 16 for supplying and discharging hydraulic pressure to two pressure receiving chambers 15a and 15b of a pressure chamber 15 provided at a front end side of the cylindrical gear 3; And a compression spring 17 elastically mounted at the end.
A three-way solenoid valve 18 is provided on the upstream side of the hydraulic circuit 16, and a hydraulic switching mechanism 19 including a spool valve 19a and an electromagnetic actuator 19b is provided on the front end of the sleeve 9 on the downstream side. .
【0007】そして、機関低負荷時には、コントローラ
20から電磁弁18及び電磁アクチュエータ19bに夫
々OFF信号(非通電)が出力されて、油供給通路16
aを閉成する。したがって、オイルポンプ21から圧送
された圧油は、ドレン通路18aから排出されて第1受
圧室15aへの供給が遮断される。したがって、筒状歯
車3は、圧縮スプリング17のばね力で左方向へ最大に
移動し、従動スプロケット1とカムシャフト2との相対
回動位相を一方側に変換する。When the engine is under a low load, the controller 20 outputs an OFF signal (non-energized) to the solenoid valve 18 and the solenoid actuator 19b, respectively, so that the oil supply passage 16
a is closed. Therefore, the pressure oil pumped from the oil pump 21 is discharged from the drain passage 18a and the supply to the first pressure receiving chamber 15a is cut off. Therefore, the cylindrical gear 3 moves to the left to the maximum by the spring force of the compression spring 17, and converts the relative rotation phase between the driven sprocket 1 and the camshaft 2 to one side.
【0008】一方、低負荷域から中負荷域に移行する
と、電磁弁18にON信号(通電)が出力されて、オイ
ルポンプ21からの圧油が油供給通路16a及び第1油
路部16cを通って第1受圧室15aに導入される。依
って、圧力室15内に設けられた可動部材22が、スト
ッパ部23,24に突き当たるまで図中右方向に移動
し、筒状歯車3を所定量だけ右方向に移動させるため、
従動スプロケット1とカムシャフト2とは、他方側へ所
定量だけ相対回動する。On the other hand, when the load shifts from the low load range to the middle load range, an ON signal (energization) is output to the solenoid valve 18 so that the pressure oil from the oil pump 21 flows through the oil supply passage 16a and the first oil passage 16c. Then, it is introduced into the first pressure receiving chamber 15a. Accordingly, the movable member 22 provided in the pressure chamber 15 moves rightward in the figure until it hits the stopper portions 23 and 24, and moves the cylindrical gear 3 rightward by a predetermined amount.
The driven sprocket 1 and the camshaft 2 relatively rotate by a predetermined amount toward the other side.
【0009】さらに、高負荷域に移行した場合は、電磁
アクチュエータ19bにもON信号が出力されて、駆動
ロッド19cがスプール弁19aをコイルスプリング1
9dのばね圧に抗して押圧して該スプール弁19aによ
り連通路16bと第2油路部16dとを連通させる一
方、ドレン孔16eと外部を連通させる。このため、第
1受圧室15a内の油圧が外部に排出されると共に、第
2受圧室15b内に圧油が導入されて、可動部材22を
左方向へ最大に移動させると同時に、筒状歯車3をさら
に右方向へ移動させる。これによって、従動スプロケッ
ト1とカムシャフト2が、他方側へ最大に相対回動す
る。Further, when shifting to the high load region, an ON signal is also output to the electromagnetic actuator 19b, and the drive rod 19c causes the spool valve 19a to move the spool valve 19a.
The spool valve 19a presses against the spring pressure of 9d to make the communication passage 16b communicate with the second oil passage portion 16d, while the drain hole 16e communicates with the outside. For this reason, the hydraulic pressure in the first pressure receiving chamber 15a is discharged to the outside, and the pressure oil is introduced into the second pressure receiving chamber 15b to move the movable member 22 to the left to the maximum, and at the same time, the cylindrical gear 3 is further moved rightward. As a result, the driven sprocket 1 and the camshaft 2 rotate relative to each other at the maximum.
【0010】したがって、従動スプロケット1とカムシ
ャフト2とを、単に正逆2段階に相対回動変換ではな
く、任意の中間相対回動位相移動にも安定的に保持する
ことができる。Therefore, the driven sprocket 1 and the camshaft 2 can be stably held in any intermediate relative rotation phase movement instead of simply performing relative rotation conversion in two steps.
【0011】[0011]
【考案が解決しようとする課題】然し乍ら、前記先願に
係る考案にあっては、機関運転状態が前述のように低負
荷域から中負荷域に移行して、電磁弁18等にON信号
が出力されて第1受圧室15aの圧力上昇に伴い可動部
材22が筒状歯車3の前側歯車構成部11の前端縁11
cを押圧し、同時に該前側歯車構成部11が後側歯車構
成部12を押圧して、両者11,12が常に圧接した状
態で後方移動する。即ち、両者11,12は、スプリン
グ14のばね力と可動部材22の押圧力との強い合成力
で常に接近しようとしながら後方へ移動する。このた
め、図3に示すように該両者11,12のインナ歯7に
対する各外歯11b,12bの挾持力(圧接力)及びア
ウタ歯10に対する各内歯11a,12aの挾持力が一
段と増加し、各歯11a,11b、12a,12b間に
大きな摺動摩擦力が発生する。この結果、筒状歯車3の
移動速度が低下し、バルブタイミング制御応答性が悪化
する虞がある。However, in the invention according to the prior application, the engine operating state shifts from the low load range to the medium load range as described above, and the ON signal is sent to the solenoid valve 18 and the like. The movable member 22 is output and the front edge 11 of the front-side gear component 11 of the cylindrical gear 3 is increased with the increase in the pressure of the first pressure receiving chamber 15a.
c, and at the same time, the front gear component 11 presses the rear gear component 12, so that the two move backward with the two components 11 and 12 constantly pressed against each other. That is, the two 11 and 12 move rearward while always trying to approach each other with a strong combined force of the spring force of the spring 14 and the pressing force of the movable member 22. Therefore, as shown in FIG. 3, the clamping force (pressing force) of each of the outer teeth 11b and 12b against the inner teeth 7 of the two 11 and 12 and the clamping force of each of the inner teeth 11a and 12a against the outer teeth 10 are further increased. A large sliding friction force is generated between the teeth 11a, 11b, 12a, 12b. As a result, there is a possibility that the moving speed of the cylindrical gear 3 decreases, and the responsiveness of the valve timing control deteriorates.
【0012】尚、機関運転状態が高負荷域から低負荷域
に移行して、圧縮スプリング17のばね力で筒状歯車3
を前方に移動させる場合も同様な問題を招く。The engine operating state shifts from a high load range to a low load range, and the cylindrical gear 3 is moved by the spring force of the compression spring 17.
A similar problem is caused when the camera is moved forward.
【0013】[0013]
【課題を解決するための手段】本考案は、前記従来の問
題点に鑑みて案出されたもので、とりわけ軸方向に分割
された筒状歯車の各歯車構成部を連結ピンとばね部材に
よって構成される連結手段により接近する方向へ弾性的
に連結すると共に、一方側の歯車構成部内を遊挿しかつ
他方側の歯車構成部に固定された前記連結ピンと前記駆
動機構とを直接連係させ、一方側の歯車構成部側から作
用する前記駆動機構の押圧力を、前記連結ピンを介して
他方側の歯車構成部に直接伝達したことを特徴としてい
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems. In particular, each gear component of a cylindrical gear divided in the axial direction is connected to a connecting pin and a spring member.
Elastically connected in the approaching direction by the connecting means configured as described above , while loosely inserting into one side of the gear component and
The connecting pin fixed to the other gear component and the drive
And the pressing force of the drive mechanism acting from one of the gear constituent parts through the connection pin.
The transmission is directly transmitted to the other gear component .
【0014】[0014]
【作用】前記構成の本考案によれば、駆動機構の押圧力
が例えば一方側の歯車構成部側から作用すると、該押圧
力が連結手段の連結ピンの一端部に直接作用し、この連
結ピンから他方側の歯車構成部に直接伝達されるため、
該他方側の歯車構成部の一方向への移動に伴って一方側
の歯車構成部が引っ張られながら移動する。つまり、筒
状歯車が一方向へ移動する際には、両歯車構成部が各歯
間の摺動摩擦抵抗によりばね部材のばね力に抗して互い
に離間する方向に力が作用する。このため、両歯車構成
部の内外周に有する各内外歯による回転体のインナ歯及
びカムシャフトのアウタ歯に対する挾持力が若干低下し
筒状歯車の移動時における摺動摩擦抵抗が低下して、ス
ムーズな移動性が得られる。According to the present invention having the above construction, when the pressing force of the drive mechanism acts on, for example, one of the gear components, the pressing force directly acts on one end of the connecting pin of the connecting means.
Since it is transmitted directly from the connecting pin to the gear component on the other side,
With the movement of the other gear component in one direction, the one gear component moves while being pulled. That is, when the cylindrical gear moves in one direction, the two gear constituent parts are opposed to each other against the spring force of the spring member due to the sliding frictional resistance between the teeth.
The force acts in the direction away from. For this reason, the pinching force of the inner and outer teeth of the inner and outer teeth of the two gear components with respect to the inner teeth of the rotating body and the outer teeth of the camshaft is slightly reduced, and the sliding friction resistance during the movement of the cylindrical gear is reduced. Mobility is obtained.
【0015】[0015]
【実施例】以下、本考案の実施例を図1に基づいて詳述
する。尚、本実施例も吸気バルブ側に適用したものであ
って、基本構成は先願のものと同一であるから、共通の
構成個所には同一の符号を付して簡単に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIG. Note that this embodiment is also applied to the intake valve side, and the basic configuration is the same as that of the prior application. Therefore, common components are denoted by the same reference numerals and described briefly.
【0016】即ち、図中1は回転体たる従動スプロケッ
ト、2は前端部にスリーブ9がボルト8により固定され
たカムシャフト、3は両者1,2の相対回動位相を変換
する筒状歯車、4は該筒状歯車3を左右軸方向に移動さ
せる駆動機構である。That is, in the figure, 1 is a driven sprocket which is a rotating body, 2 is a camshaft in which a sleeve 9 is fixed to a front end by a bolt 8, 3 is a cylindrical gear which converts the relative rotational phase of the two, 1 and 2, Reference numeral 4 denotes a drive mechanism for moving the cylindrical gear 3 in the left-right axial direction.
【0017】前記従動スプロケット1は、前端が保持部
材6で閉塞された筒状本体5の内周面にインナ歯7が形
成されている一方、カムシャフト2は、スリーブ9の外
周面にアウタ歯10が形成されている。The driven sprocket 1 has inner teeth 7 formed on the inner peripheral surface of a cylindrical main body 5 whose front end is closed by a holding member 6, while the camshaft 2 has outer teeth formed on the outer peripheral surface of a sleeve 9. 10 are formed.
【0018】前記筒状歯車3は、軸直角方向から2分割
された前側歯車構成部11と後側歯車構成部12とから
なり、この両者11,12は、内外周にインナ歯7とア
ウタ歯10に噛合する内外歯11a,11b、12a,
12bが夫々形成されていると共に、この各内歯11
a,12a並びに外歯11b,12bは互いに見掛け上
の歯すじが周方向に僅かにずらされている。また、両歯
車構成部11,12は、縦断面略コ字状に形成され、対
向する底壁の中央軸方向に通孔11c,12cが貫通形
成されていると共に、該通孔11c,12cに貫通配置
された連結ピン30によって連結されている。The cylindrical gear 3 is composed of a front gear component 11 and a rear gear component 12 divided into two parts from a direction perpendicular to the axis, and these two parts 11 and 12 have inner teeth 7 and outer teeth on the inner and outer circumferences. 10, the internal and external teeth 11a, 11b, 12a,
12b are formed, and each of the internal teeth 11b is formed.
a, 12a and the external teeth 11b, 12b are slightly shifted in the circumferential direction from the apparent tooth traces. The two gear components 11 and 12 are formed in a substantially U-shape in vertical cross section. Through holes 11c and 12c are formed in the opposed bottom walls in the central axis direction, and the through holes 11c and 12c are formed in the through holes 11c and 12c. They are connected by connecting pins 30 arranged through.
【0019】つまり、この連結ピン30は、先端部30
aが前側歯車構成部11の通孔11cを遊挿していると
共に、後側歯車構成部12の通孔12c内に圧入固定さ
れて、両者11,12を通孔11c,12cを介して互
いに離接方向へ移動自在に連結されている。また、この
連結ピン30は、両歯車構成部11,12の底壁面が互
いに接触した状態では、頭部30bの外端面30cが前
側歯車構成部11の前端面11dから所定量突出するよ
うに形成されている。更に、両者11,12は、前側歯
車構成部11の凹溝底壁と連結ピン頭部30bとの間に
弾装されたばね部材であるコイルスプリング14のばね
力によって互いに接近する方向に付勢されている。斯か
る連結ピン30とコイルスプリング14によって連結手
段が構成されている。That is, the connecting pin 30 is
a is loosely inserted into the through hole 11c of the front gear component 11 and is press-fitted and fixed in the through hole 12c of the rear gear component 12, so that the two 11, 12 are separated from each other through the through holes 11c, 12c. They are movably connected in the tangential direction. The connecting pin 30 is formed such that the outer end face 30c of the head 30b projects a predetermined amount from the front end face 11d of the front gear component 11 when the bottom wall surfaces of the two gear components 11 and 12 are in contact with each other. Have been. Further, the two 11 and 12 are urged in directions approaching each other by a spring force of a coil spring 14 which is a spring member elastically mounted between the concave groove bottom wall of the front gear component 11 and the connecting pin head 30b. Have been. The connecting means is constituted by the connecting pin 30 and the coil spring 14.
【0020】前記駆動機構4は、前側歯車構成部11の
前端面11aと保持部材6との間に形成された圧力室1
5と、該圧力室15を第1受圧室15aと第2受圧室1
5bに隔成しつつ軸方向へ摺動する円環状の可動部材2
2と、前記各受圧室15a,15bに相対的に油圧を給
排する油圧回路16と、後側歯車構成部12と歯車部1
aの内端面との間に弾装されて筒状歯車3を前方に付勢
する圧縮スプリング17とを備えている。The driving mechanism 4 includes a pressure chamber 1 formed between the front end face 11a of the front gear component 11 and the holding member 6.
5 and the first pressure receiving chamber 15a and the second pressure receiving chamber 1
Annular movable member 2 which slides in the axial direction while being separated from 5b
2, a hydraulic circuit 16 for supplying and discharging hydraulic pressure to and from each of the pressure receiving chambers 15a and 15b, a rear gear forming unit 12 and a gear unit 1.
and a compression spring 17 which is elastically mounted between the inner end surface of the cylindrical gear a and biases the cylindrical gear 3 forward.
【0021】前記可動部材22は、筒状本体5の略前端
側内周とスリーブ9の略中央側外周に夫々設けられた段
差状の環状ストッパ部23,24によって圧力室15の
略中間位置でそれ以上の後方移動が規制されるようにな
っており、この最大右方向の移動位置まで前端面22a
が連結ピン30の頭部外端面30cに常時当接してい
る。また、油圧回路16は、シリンダヘッド25やカム
軸受26及びボルト8の内部軸方向に形成された油供給
通路16と、各受圧室15a,15bと油供給通路16
aを適宜連通する連通路16b及び第1,第2油路部1
6c,16dとを備え、上流側には三方型電磁弁18
が、下流側にはスプール弁19aと電磁アクチュエータ
19bからなる油圧切替機構19が夫々設けられてい
る。The movable member 22 is located at a substantially middle position of the pressure chamber 15 by stepped annular stoppers 23 and 24 provided on an inner periphery of a substantially front end of the cylindrical main body 5 and an outer periphery of a substantially center side of the sleeve 9, respectively. Further backward movement is restricted, and the front end face 22a is moved to the maximum rightward movement position.
Are always in contact with the outer end face 30c of the head of the connecting pin 30. The hydraulic circuit 16 includes an oil supply passage 16 formed in the axial direction of the cylinder head 25, the cam bearing 26 and the bolt 8, the pressure receiving chambers 15 a and 15 b, and the oil supply passage 16.
a and the first and second oil passage portions 1 that appropriately communicate
6c, 16d, and a three-way solenoid valve 18 on the upstream side.
However, a hydraulic pressure switching mechanism 19 including a spool valve 19a and an electromagnetic actuator 19b is provided on the downstream side, respectively.
【0022】そして、機関運転状態の変化に応じて、前
述のように、コントローラ20によって電磁弁18がO
N−OFF制御されて各受圧室15a,15bへの油圧
の給排作用及び圧縮スプリング17のばね力に基づいて
筒状歯車3を左右軸方向に移動させる。ここで、機関運
転状態が例えば低負荷域から中負荷域に移行し、電磁弁
18にON信号が出力されて、オイルポンプ21からの
圧油が第1受圧室15aに導入されると、該第1受圧室
15aの内圧の上昇に伴い可動部材22がストッパ部2
3,24に突き当たるまで後方向(図中右方向)に移動
する。したがって、該可動部材22は、前端面22aで
連結ピン30の頭部外端面30cを押圧し、この押圧力
が通孔11cを介して後側歯車構成部12に直接伝達さ
れる。このため、後側歯車構成部12が図中右方向に移
動すると、前側歯車構成部11は、コイルスプリング1
4のばね力に抗して図中左方向(可動部材22側)に付
勢されながら、連結ピン30により引っ張られる。即
ち、、両歯車構成部11,12は、斯かる右方向への移
動中には各歯11a,11b,7,10間の摺動摩擦に
より互いに離間する方向に力が作用する。したがって、
インナ歯7に対する各外歯11b,12bの挾持力及び
アウタ歯10に対する各内歯11a,12aの挾持力が
夫々低下して、各歯側面間の摺動摩擦抵抗が低下し、筒
状歯車3全体の右方向へのスムーズな移動性が得られ
る。この結果、従動スプロケット1とカムシャフト2と
の一方向への相対回動の位相変換速度が上昇してバルブ
タイミングの制御応答性が向上する。The solenoid valve 18 is turned on by the controller 20 according to the change in the engine operating state, as described above.
N-OFF control is performed to move the cylindrical gear 3 in the left-right axis direction based on the supply / discharge action of hydraulic pressure to and from the pressure receiving chambers 15a and 15b and the spring force of the compression spring 17. Here, when the engine operating state shifts from, for example, a low-load region to a medium-load region, an ON signal is output to the solenoid valve 18 and the pressure oil from the oil pump 21 is introduced into the first pressure receiving chamber 15a. As the internal pressure of the first pressure receiving chamber 15a increases, the movable member 22
It moves backward (rightward in the figure) until it hits 3, 24. Therefore, the movable member 22 presses the outer end face 30c of the head of the connecting pin 30 with the front end face 22a, and this pressing force is directly transmitted to the rear gear component 12 through the through hole 11c. Therefore, when the rear gear component 12 moves rightward in the drawing, the front gear component 11
4 is pulled by the connecting pin 30 while being urged leftward in the drawing (toward the movable member 22) against the spring force of FIG. That is, during the rightward movement of the two gear components 11, 12, a force acts in a direction separating from each other due to sliding friction between the teeth 11a, 11b, 7, 10. Therefore,
The clamping force of each of the external teeth 11b and 12b with respect to the inner teeth 7 and the clamping force of each of the internal teeth 11a and 12a with respect to the outer teeth 10 decrease, and the sliding friction resistance between the tooth side surfaces decreases. Smooth movement to the right. As a result, the phase conversion speed of the relative rotation of the driven sprocket 1 and the camshaft 2 in one direction is increased, and the control response of the valve timing is improved.
【0023】本考案は、前記実施例に限定されるもので
はなく、例えば連結ピン30を逆に配置すると共に、コ
イルスプリング14を後側歯車構成部12の凹溝内に設
けて、圧縮スプリング17のばね力を直接前側歯車構成
部11に伝達させることも可能である。また、夫々を組
み合わせて圧力室15の油圧を後側歯車構成部12に、
圧縮スプリング17のばね力を前側歯車構成部11に夫
々直接伝達させることも可能である。尚、本装置を、排
気バルブ側あるいは吸気バルブ側と排気バルブ側の両方
に適用することも可能である。The present invention is not limited to the above-described embodiment. For example, the connecting pin 30 is disposed in the reverse direction, the coil spring 14 is provided in the concave groove of the rear gear component 12, and the compression spring 17 is provided. Can also be transmitted directly to the front-side gear component 11. Also, by combining each of them, the hydraulic pressure of the pressure chamber
It is also possible to directly transmit the spring force of the compression springs 17 to the front gear component 11, respectively. The present apparatus can be applied to the exhaust valve side or both the intake valve side and the exhaust valve side.
【0024】[0024]
【考案の効果】以上の説明で明らかなように、本発明に
係る内燃機関のバルブタイミング制御装置によれば、筒
状歯車の各歯車構成部を連結手段により接近する方向へ
弾性的に連結することにより、カムシャフトの回転トル
ク変動による各歯のバックラッシュに起因した打音の発
生を十分に抑制できることは勿論のこと、一方側の歯車
構成部側から作用する駆動機構の押圧力を、連結手段の
連結ピンを介して他方側の歯車構成部に直接伝達させる
ようにしたため、移動中においての各歯車構成部が互い
に離間する方向に力が作用する。したがって、回転体,
カムシャフト及び筒状歯車の各歯間の摺動摩擦抵抗が低
下し、該筒状歯車のスムーズな移動性が得られる。この
結果、回転体とカムシャフトとの相対回動位相変換速度
が上昇し、バルブタイミングの制御応答性が向上する。As is apparent from the above description, according to the valve timing control apparatus for an internal combustion engine according to the present invention, the respective gear components of the cylindrical gear are elastically connected in the approaching direction by the connecting means. As a result, it is possible to sufficiently suppress the generation of a tapping sound due to the backlash of each tooth due to the fluctuation of the rotational torque of the camshaft, and to connect the pressing force of the drive mechanism acting from one of the gear components. means of
Since the gear components are directly transmitted to the other gear components via the connecting pins , a force acts in a direction in which the respective gear components move away from each other during movement. Therefore, the rotating body,
The sliding friction resistance between the teeth of the camshaft and the cylindrical gear is reduced, and smooth movement of the cylindrical gear is obtained. As a result, the relative rotation phase conversion speed between the rotating body and the camshaft is increased, and the control response of the valve timing is improved.
【図1】本考案の一実施例を示す縦断面図。FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention.
【図2】先願に係るバルブタイミング制御装置を示す縦
断面図。FIG. 2 is a longitudinal sectional view showing a valve timing control device according to the prior application.
【図3】該従来の一部を展開して示す図。FIG. 3 is an expanded view of the conventional part.
1…従動スプロケット(回転体)、2…カムシャフト、
3…筒状歯車、4…駆動機構、11…前側歯車構成部、
12…後側歯車構成部、13,30…連結ピン(連結手
段)、14…コイルスプリング(連結手段)、15…圧
力室、17…圧縮スプリング。1 ... driven sprocket (rotating body), 2 ... camshaft,
3 ... cylindrical gear, 4 ... drive mechanism, 11 ... front gear component,
12: rear gear component, 13, 30: connecting pin (connecting means), 14: coil spring (connecting means), 15: pressure chamber, 17: compression spring.
Claims (1)
体から回転力が伝達されるカムシャフトとの間に、軸方
向に分割されかつ内外周に少なくとも一方がはす歯に形
成された筒状歯車を噛合させ、該筒状歯車を前記カムシ
ャフトの軸方向に駆動機構を介して移動させることによ
り、前記回転体とカムシャフトの相対回動位相を変換さ
せるバルブタイミング制御装置において、 前記筒状歯車の分割された各歯車構成部を連結ピンとば
ね部材によって構成される連結手段により接近する方向
へ弾性的に連結すると共に、一方側の歯車構成部内を遊
挿しかつ他方側の歯車構成部に固定された前記連結ピン
と前記駆動機構とを直接連係させ、一方側の歯車構成部
側から作用する前記駆動機構の押圧力を、前記連結ピン
を介して他方側の歯車構成部に直接伝達したことを特徴
とする内燃機関のバルブタイミング制御装置。1. A rotator driven by an engine and a camshaft to which a rotational force is transmitted from the rotator are axially divided and at least one of the inner and outer circumferences is formed as a helical tooth. A valve timing control device that meshes a cylindrical gear and moves the cylindrical gear in the axial direction of the camshaft via a driving mechanism, thereby converting a relative rotation phase between the rotating body and the camshaft. Each divided gear component of the cylindrical gear is called a connecting pin.
It is elastically connected in the approaching direction by a connecting means constituted by a spring member, and the inside of the gear component on one side is loosened.
The connecting pin inserted and fixed to the other gear component
And the drive mechanism are directly linked to each other, and the pressing force of the drive mechanism acting from one of the gear components is applied to the connection pin.
A valve timing control device for an internal combustion engine, wherein the valve timing control device is directly transmitted to a gear component on the other side via a gear .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991097574U JP2581585Y2 (en) | 1991-11-28 | 1991-11-28 | Valve timing control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991097574U JP2581585Y2 (en) | 1991-11-28 | 1991-11-28 | Valve timing control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0547308U JPH0547308U (en) | 1993-06-22 |
JP2581585Y2 true JP2581585Y2 (en) | 1998-09-21 |
Family
ID=14196014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1991097574U Expired - Fee Related JP2581585Y2 (en) | 1991-11-28 | 1991-11-28 | Valve timing control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2581585Y2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2781195B2 (en) * | 1989-02-28 | 1998-07-30 | 株式会社ユニシアジェックス | Valve timing control device for internal combustion engine |
-
1991
- 1991-11-28 JP JP1991097574U patent/JP2581585Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0547308U (en) | 1993-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2570766Y2 (en) | Valve timing control device for internal combustion engine | |
JPH0547309U (en) | Valve timing control device for internal combustion engine | |
JP2571417Y2 (en) | Valve timing control device for internal combustion engine | |
JPH0533614A (en) | Valve timing controller for internal combustion engine | |
JPH04191406A (en) | Valve timing control device for internal combustion engine | |
JPH03286104A (en) | Valve opening/closing timing control device | |
JPH0868305A (en) | Valve timing control device for internal combustion engine | |
JP2581585Y2 (en) | Valve timing control device for internal combustion engine | |
JPH04171205A (en) | Valve timing control device for internal combustion engine | |
JP2758890B2 (en) | Valve timing control device for internal combustion engine | |
JP2573344Y2 (en) | Valve timing control device for internal combustion engine | |
JP2551823Y2 (en) | Valve timing control device for internal combustion engine | |
JP2812775B2 (en) | Valve timing control device for internal combustion engine | |
JPH0628203U (en) | Valve timing control device for internal combustion engine | |
JPH07229408A (en) | Valve timing control device of internal combustion engine | |
JP2889586B2 (en) | Valve timing control device for internal combustion engine | |
JPH0744725Y2 (en) | Valve timing control device for internal combustion engine | |
JPH0547307U (en) | Valve timing control device for internal combustion engine | |
JPH11141312A (en) | Valve timing control device for internal combustion engine | |
JP3326281B2 (en) | Valve timing control device for internal combustion engine | |
JPH0874529A (en) | Valve timing controller of internal combustion engine | |
JPH08334006A (en) | Valve timing control device of internal combustion engine | |
JPH0614405U (en) | Valve timing control device for internal combustion engine | |
JPH0683907U (en) | Valve timing control device for internal combustion engine | |
JPH0726914A (en) | Valve timing control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |