JPH06281627A - Method and device for inspecting tubular body - Google Patents

Method and device for inspecting tubular body

Info

Publication number
JPH06281627A
JPH06281627A JP7132293A JP7132293A JPH06281627A JP H06281627 A JPH06281627 A JP H06281627A JP 7132293 A JP7132293 A JP 7132293A JP 7132293 A JP7132293 A JP 7132293A JP H06281627 A JPH06281627 A JP H06281627A
Authority
JP
Japan
Prior art keywords
lissajous
defect
signal
phase signal
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7132293A
Other languages
Japanese (ja)
Other versions
JP3283324B2 (en
Inventor
Takashi Kikuta
隆 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP07132293A priority Critical patent/JP3283324B2/en
Publication of JPH06281627A publication Critical patent/JPH06281627A/en
Application granted granted Critical
Publication of JP3283324B2 publication Critical patent/JP3283324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To presumably detect the opening diameter and depth of a detected flaw by finding a Lissajous' waveform between the transmitting and receiving signals of a detection probe and processing Lissajous' phase signals against a scanning location. CONSTITUTION:A storing means 16a stores a first relation index between the half band width of Lissajous' signals on a Lissajous' waveform found between the transmitting and receiving signals of a detection probe 2 as the probe 2 makes scanning and the opening diameter of a flaw in a tubular body and a second relation index between the peak value PPA of the Lissajous' phase signals using the opening diameter as a parameter and the depth of the defect. A flaw detecting signal processing means 16b detects the half width value PPD and the peak value PPA by obtaining the Lissajous' waveform from the transmitting and receiving signals detected in the axial direction of an actual tubular body 3 and the Lissajous' phase signals. A presuming means 16c presumes the opening diameter of the defect 4 based on the width PPD and first relation index and the depth of the flaw 4 from the opening diameter and detected peak value PPA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、管体の腐食状況の検査
診断技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for inspecting and diagnosing corrosion of pipes.

【0002】[0002]

【従来の技術】この種の管体の検査方法としては、長手
方向の異なった位置に送信コイルと受信コイルとを備え
た検知プローブを導電体の管体内で移動させ、送信コイ
ルにより、このコイルの周部に磁界を発生させ、管体内
に発生する渦電流により管体内に存在する欠陥の状況を
把握する方法が知られている。即ち、欠陥により乱れる
渦電流の状態を、欠陥周りに形成される磁界の変化とし
て前述の受信コイルにより検出して、欠陥の状況を把握
する。そして、このような管体の検査方法を採用する装
置としては、前述の検知プローブ、その管内導入装置、
さらには電源、検出装置等を備えた管体の検査装置があ
った。
2. Description of the Related Art As a method of inspecting a tube of this type, a detection probe having a transmitting coil and a receiving coil at different positions in the longitudinal direction is moved in the tube of a conductor, and the coil is made to move by the transmitting coil. A method is known in which a magnetic field is generated in the peripheral portion of the tube and the state of defects existing in the tube is grasped by the eddy current generated in the tube. That is, the state of the defect is grasped by detecting the state of the eddy current disturbed by the defect as the change of the magnetic field formed around the defect by the receiving coil. And, as a device adopting such a method for inspecting a pipe, the above-mentioned detection probe, the pipe introducing device,
Further, there is a pipe inspection device equipped with a power supply, a detection device, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし上記従来技術に
おいては、欠陥信号強度が欠陥の深さ及び開口径に依存
するため、この情報のみからは欠陥の深さを正しく推定
することはできず、欠陥の有無、その位置の確認を主な
目的とするものであった。一方、このような管体の検査
の目的は、管体自体に存在する欠陥の程度(特に欠陥深
さの状況)により、この管体に対する保守作業が必要で
あるかどうかの判断をできるようにすることにある。し
かしながら、従来のような欠陥を検知する方法及び装置
では、この目的を達成することはできなかった。さら
に、発明者は、特願平4−60796において、上述の
方法から得られる欠陥信号を利用して、その位相の変化
状態(欠陥信号幅と欠陥信号強度幅)から、欠陥の開口
径とその深さを推定する方法を提案している。しかしな
がら、この方法のように欠陥信号の位相のみを判断材料
とする場合は、欠陥の深さが同じでも、欠陥の開口径に
より欠陥信号が変化する場合もあるため、位相のみから
欠陥の深さを推定することが難しい場合もある。
However, in the above-mentioned prior art, since the defect signal intensity depends on the depth of the defect and the opening diameter, the depth of the defect cannot be correctly estimated from only this information. The main purpose was to confirm the presence or absence of defects and their positions. On the other hand, the purpose of such a pipe inspection is to determine whether or not maintenance work is required for this pipe depending on the degree of defects existing in the pipe itself (especially the condition of the defect depth). To do. However, the conventional method and apparatus for detecting a defect cannot achieve this object. Further, the inventors of the present invention, in Japanese Patent Application No. 4-60796, utilize the defect signal obtained by the above-mentioned method, and determine the aperture diameter of the defect and the defect opening diameter from the phase change state (defect signal width and defect signal intensity width). A method of estimating the depth is proposed. However, when only the phase of the defect signal is used as the judgment material as in this method, the defect signal may change depending on the aperture diameter of the defect even if the defect depth is the same. Can be difficult to estimate.

【0004】そこで本発明の目的は、欠陥の有無、位置
を検出することが可能であるとともに、さらに、検出さ
れる欠陥の開口径及びその欠陥深さを推定して、検知す
ることが可能な管体の検査方法及びその装置を得ること
にある。
Therefore, it is an object of the present invention to detect the presence or absence of a defect and the position thereof, and further to estimate and detect the aperture diameter and the defect depth of the detected defect. It is to obtain an inspection method of a pipe body and its device.

【0005】[0005]

【課題を解決するための手段】この目的を達成する本発
明による管体の検査方法の特徴手段は、検知プローブの
走査に従って、送信コイルより送信される送信信号と受
信コイルによって検出される受信信号との間でリサージ
ュ波形を得るとともに、走査位置に対するリサージュ波
形のリサージュ位相信号より、リサージュ位相信号のピ
ーク値PPAと信号半値幅PPDとを検出し、リサージ
ュ位相信号の信号半値幅PPDより欠陥の開口径を推定
するとともに、予め、欠陥の開口径をパラメータとした
リサージュ位相信号のピーク値PPAと欠陥深さの関係
指標を求めておき、関係指標を参照して、推定された開
口径と検出されたリサージュ位相信号のピーク値PPA
とより欠陥深さを推定することにある。
Means for Solving the Problems A feature of the pipe inspection method according to the present invention that achieves this object is that a transmission signal transmitted from a transmission coil and a reception signal detected by a reception coil according to scanning of a detection probe. And a Lissajous waveform between the scanning position and the Lissajous phase signal of the Lissajous waveform with respect to the scanning position, the peak value PPA of the Lissajous phase signal and the signal half-width PPD are detected, and a defect is detected from the signal half-width PPD of the Lissajous phase signal. Along with estimating the aperture, a relational index between the peak value PPA of the Lissajous phase signal and the defect depth with the aperture size of the defect as a parameter is obtained in advance, and the estimated aperture size is detected by referring to the relational index. Peak value PPA of Lissajous phase signal
And more to estimate the defect depth.

【0006】さらに、管体の検査装置の特徴構成は、検
知プローブの走査に従って、送信コイルより送信される
送信信号と受信コイルによって検出される受信信号との
間で求まるリサージュ波形において、欠陥の開口径をパ
ラメータとしたリサージュ位相信号のピーク値PPAと
欠陥深さの関係指標を予め求めるとともに、関係指標を
記憶した記憶手段を備え、走査位置に対するリサージュ
波形のリサージュ位相信号より、リサージュ位相信号の
ピーク値PPAと信号半値幅PPDとを検出する探傷信
号処理手段と、リサージュ信号の信号半値幅PPDより
欠陥の開口径を推定するとともに、関係指標を参照し
て、推定された開口径と検出されたリサージュ位相信号
のピーク値PPAとより欠陥深さを推定する推定手段と
を備えたことにあり、それらの作用・効果は次に通りで
ある。
Further, the tube inspection apparatus is characterized in that a defect is detected in the Lissajous waveform obtained between the transmission signal transmitted from the transmission coil and the reception signal detected by the reception coil in accordance with the scanning of the detection probe. The peak value PPA of the Lissajous phase signal using the aperture as a parameter and the relationship index between the defect depth are obtained in advance, and a storage means for storing the relationship index is provided. From the Lissajous phase signal of the Lissajous waveform with respect to the scanning position, the peak of the Lissajous phase signal is obtained. The flaw detection signal processing means for detecting the value PPA and the signal half-value width PPD and the signal half-value width PPD of the Lissajous signal are used to estimate the opening diameter of the defect, and the relation index is referred to detect the estimated opening diameter. It is provided with a peak value PPA of the Lissajous phase signal and an estimation means for further estimating the defect depth. Their action and effect is next street.

【0007】[0007]

【作用】上記のような技術において得られる探傷信号
は、その固有の特性として、管軸方向でのリサージュ波
形のリサージュ位相信号の半値幅PPDがほぼ欠陥の開
口径にのみ関係する情報であり、リサージュ位相信号の
ピーク値PPAがほぼ欠陥の開口径と欠陥深さに関係す
る情報である。従って、本願においてはこの特性を積極
的に利用して、管体の保守・管理に非常に重要な情報で
ある欠陥深さを精度良く検知しようとする。即ち、本願
の管体の検査方法においては、先ず、検知プローブの走
査に従って、送信コイルより送信される送信信号と受信
コイルによって検出される受信信号との間でリサージュ
波形を描く。そして、このリサージュ波形より走査位置
に対するリサージュ位相信号を得て、リサージュ位相信
号のピーク値PPAと信号半値幅PPDとが検出され
る。求められたリサージュ位相信号の信号半値幅PPD
により欠陥の開口径が推定され、その後、この推定値
と、リサージュ位相信号のピーク値PPAに基づき別途
求められている欠陥の開口径をパラメータとしたリサー
ジュ位相信号のピーク値PPAと欠陥深さの関係指標よ
り、欠陥深さの推定値が求められる。さらに、この方法
を実行するため、管体の検査装置には、記憶手段と、探
傷信号処理手段及び推定手段が備えられる。
The flaw detection signal obtained by the above-mentioned technique is, as its unique characteristic, information in which the half width PPD of the Lissajous phase signal of the Lissajous waveform in the tube axis direction is related only to the aperture diameter of the defect. The peak value PPA of the Lissajous phase signal is information related to the defect opening diameter and the defect depth. Therefore, in the present application, this characteristic is positively utilized to accurately detect the defect depth, which is very important information for maintenance and management of the pipe body. That is, in the tube inspection method of the present application, first, a Lissajous waveform is drawn between the transmission signal transmitted from the transmission coil and the reception signal detected by the reception coil in accordance with the scanning of the detection probe. Then, a Lissajous phase signal for the scanning position is obtained from this Lissajous waveform, and the peak value PPA and the signal half-width PPD of the Lissajous phase signal are detected. Signal half-width PPD of the obtained Lissajous phase signal
The opening diameter of the defect is estimated by using the estimated value and the peak value PPA of the Lissajous phase signal and the defect depth, which are obtained separately based on the peak value PPA of the Lissajous phase signal, as parameters. An estimated value of the defect depth can be obtained from the related index. Further, in order to execute this method, the pipe inspection device is provided with a storage unit, a flaw detection signal processing unit, and an estimation unit.

【0008】[0008]

【発明の効果】従って、欠陥の有無、位置を検出するこ
とが可能であるとともに、検出される欠陥の開口径及び
その欠陥深さを的確に推定して、この情報を得ることが
可能な管体の検査方法及びその装置が得られ、本発明に
より欠陥の開口径の情報要素が除かれた欠陥深さに関す
る情報を、探傷信号から精度良く推定できるようになっ
た。
Therefore, it is possible to detect the presence or absence and the position of a defect, and to accurately estimate the aperture diameter and the defect depth of the detected defect to obtain this information. A body inspection method and an apparatus therefor are obtained, and according to the present invention, it is possible to accurately estimate information on a defect depth from which a defect aperture information element is removed from a flaw detection signal.

【0009】[0009]

【実施例】本願の実施例を図面に基づいて説明する。こ
の管体の検査は、検査装置1に備えられている検知プロ
ーブ2を管体3内に挿入するとともに、これを移動させ
て管体3の外周部にある欠陥4の状況を検出しようとす
るものである。検査方法の原理について説明すると、図
1に示されるように、検知プローブ2の長手方向で異な
った位置に配設される送信コイル5及び受信コイル6を
利用して、欠陥4の検査がおこなわれるのであるが、検
査においては、送信コイル5に35Hz前後の交流が流
され、管体3に渦電流7が発生される。そして、欠陥4
の存在により乱れる渦電流7により発生する間接磁場8
が、受信コイル6でとらえられて、磁界の位相変化から
管外面の欠陥4が把握される。ここで、図示する実施例
においては、送信コイル5の軸芯と管体3の軸芯とが平
行に配設され、受信コイル6の軸芯も、管体3の軸芯に
平行に配設されている。
Embodiments of the present application will be described with reference to the drawings. In the inspection of the pipe body, the detection probe 2 provided in the inspection device 1 is inserted into the pipe body 3 and is moved to detect the state of the defect 4 on the outer peripheral portion of the pipe body 3. It is a thing. Explaining the principle of the inspection method, as shown in FIG. 1, the defect 4 is inspected by using the transmitting coil 5 and the receiving coil 6 arranged at different positions in the longitudinal direction of the detection probe 2. However, in the inspection, an alternating current of about 35 Hz is applied to the transmission coil 5, and an eddy current 7 is generated in the tube body 3. And defect 4
Indirect magnetic field 8 generated by eddy current 7 disturbed by the presence of
However, the defect 4 on the outer surface of the tube is grasped by the receiving coil 6 and the phase change of the magnetic field is grasped. Here, in the illustrated embodiment, the axis of the transmitting coil 5 and the axis of the tube 3 are arranged in parallel, and the axis of the receiving coil 6 is also arranged in parallel with the axis of the tube 3. Has been done.

【0010】本願の管体の検査方法を説明する前に、こ
の装置1全体の概略構成を図2に基づいて説明する。管
体の検査装置1は、前述の検知プローブ2と、この検知
プローブ2を先端に備えたケーブル9、このケーブル9
用のケーブルドラム10を備え、さらにケーブル送り出
し用のケーブル自動送り装置11を備えるともに、この
送り装置11に走行指令を出す走行装置コントローラ1
2を備えている。また、装置1には検知プローブ2に備
えられる送信コイル5、受信コイル6の制御をおこなう
とともに、検出情報を得る欠陥検査装置13が備えら
れ、これらの走行装置コントローラ12、欠陥検査装置
13からの管体内位置情報、検出出力情報等の情報を処
理する処理装置14が備えられ、検出情報は、これに送
られて処理され、出力装置15により出力される。
Before explaining the tube inspection method of the present application, a schematic configuration of the entire apparatus 1 will be described with reference to FIG. The tube inspection device 1 includes the above-described detection probe 2, a cable 9 provided with the detection probe 2 at the tip, and the cable 9.
And a cable automatic feeding device 11 for feeding a cable, and a traveling device controller 1 for issuing a traveling command to the feeding device 11.
Equipped with 2. Further, the device 1 is provided with a defect inspection device 13 that controls the transmission coil 5 and the reception coil 6 provided in the detection probe 2 and obtains detection information. A processing device 14 for processing information such as in-tube position information and detection output information is provided, and the detection information is sent to the processing device, processed, and output by the output device 15.

【0011】以上が、管体の検査装置1の概略構成であ
るが、以下に本願の管体3の検査方法を採用する欠陥の
開口径、欠陥深さの推定方法及びその処理手段16の構
成について説明する。ここで、この処理手段16は前述
の処理装置14に内蔵されるものである。
The above is the schematic structure of the pipe body inspection apparatus 1. The following is a structure of the defect opening diameter and defect depth estimation method and its processing means 16 which employ the pipe body 3 inspection method of the present application. Will be described. Here, the processing means 16 is built in the processing device 14 described above.

【0012】即ち処理手段16は、検知プローブの走査
に従って、送信コイルより送信される送信信号と受信コ
イルによって検出される受信信号との間で求まるリサー
ジュ波形において、リサージュ位相信号の信号半値幅P
PDと欠陥の開口径の関係を記憶した第一関係指標(実
際は図4に示すような関係グラフ又はテーブル)と、欠
陥の開口径をパラメータとしたリサージュ位相信号のピ
ーク値PPAと欠陥深さの第二関係指標(実際は図5に
示すような関係グラフ又はテーブル)を記憶した記憶手
段16aを備えている。実際の様々な欠陥(管体の外周
部に形成されるほぼ円錐形状の腐食欠陥等)において、
欠陥の開口径をパラメータとしたリサージュ位相信号の
ピーク値PPAとの関係を求めると、欠陥深さの変化に
係わらず開口径の変化に対して一意的に両者の関係は図
4に示されるように、一関係線上に乗る。一方、リサー
ジュ位相信号のピーク値PPAと欠陥深さとは、深さの
減少に伴って一本の関係線(図5の最も上部に位置する
線)に漸近するようになるが、深さの増加に伴って、関
係線は位置的に図面上下部に位置するようになり、開口
径をパラメータとして始めて表すことができる。ここ
で、これらの情報は検査前に予め複数の欠陥に於ける信
号の状況を分析して得られているものである。一方、実
際の検出に当たって、管体3の管軸方向に沿って検出さ
れた信号において、送信コイルより送信される送信信号
と受信コイルによって検出される受信信号とで図6で示
すようなリサージュ波形を得るとともに、これより図7
に示すようなリサージュ位相信号を得る。図7の横軸は
プローブの位置であり、縦軸は位相である。そして、こ
のリサージュ位相信号より、そのリサージュ位相信号の
信号半値幅PPD(図7においてPPDで示す)とリサ
ージュ位相信号のピーク値PPA(図7においてPPA
で示す)とが検出される。これらの処理を探傷信号処理
手段16bが受け持つ。さらに、前述の第一関係指標に
基づいてリサージュ位相信号の信号半値幅PPDより欠
陥の開口径を推定するとともに、第二関係指標に基づい
て、推定された欠陥の開口径と検出されたリサージュ位
相信号のピーク値PPAとより欠陥深さを推定する推定
手段16cを備えて構成されている。
That is, the processing means 16 has a signal half-width P of the Lissajous phase signal in the Lissajous waveform obtained between the transmission signal transmitted from the transmission coil and the reception signal detected by the reception coil in accordance with the scanning of the detection probe.
A first relation index (actually a relation graph or table as shown in FIG. 4) that stores the relation between the PD and the defect opening diameter, and the peak value PPA of the Lissajous phase signal with the defect opening diameter as a parameter and the defect depth. The storage means 16a stores a second relation index (actually, a relation graph or table as shown in FIG. 5). In various actual defects (corrosion defects of approximately conical shape formed on the outer periphery of the tube),
When the relationship with the peak value PPA of the Lissajous phase signal with the opening diameter of the defect as a parameter is obtained, the relationship between the two is uniquely shown with respect to the change of the opening diameter regardless of the change of the defect depth, as shown in FIG. Then, get on the one relation line. On the other hand, the peak value PPA of the Lissajous phase signal and the defect depth become asymptotic to one relational line (the line located at the top of FIG. 5) as the depth decreases, but the depth increases. As a result, the relational lines are positioned in the upper and lower parts of the drawing in terms of position, and can be expressed for the first time using the opening diameter as a parameter. Here, these pieces of information are obtained by analyzing the signal states of a plurality of defects in advance before the inspection. On the other hand, in the actual detection, in the signal detected along the tube axis direction of the tube body 3, the Lissajous waveform as shown in FIG. 6 is obtained by the transmission signal transmitted from the transmission coil and the reception signal detected by the reception coil. And from this,
A Lissajous phase signal as shown in is obtained. The horizontal axis of FIG. 7 is the position of the probe, and the vertical axis is the phase. From this Lissajous phase signal, the signal half-width PPD of the Lissajous phase signal (indicated by PPD in FIG. 7) and the peak value PPA of the Lissajous phase signal (PPA in FIG. 7) are obtained.
And) are detected. The flaw detection signal processing means 16b is responsible for these processes. Further, the aperture diameter of the defect is estimated from the signal full width at half maximum PPD of the Lissajous phase signal based on the above-mentioned first relation index, and the estimated aperture diameter of the defect and the detected Lissajous phase based on the second relation index. The estimation unit 16c is configured to estimate the defect depth from the peak value PPA of the signal.

【0013】ここで、このような送信、受信コイルを伴
った磁気による探傷方法においては、前述の管軸方向で
のリサージュ位相信号の信号半値幅PPDがほぼ欠陥の
開口径にのみ関係する情報であり、リサージュ位相信号
のピーク値PPAがほぼ欠陥の開口径と欠陥深さに関係
する情報であることが有効に利用される。従って、本願
に開示する方法は、この特徴を積極的に利用して、管体
の保守・管理に非常に重要な情報である欠陥深さを精度
良く検知しようとするものである。以下、図3、図4、
図5、図6、図7に基づいて本願の管体検査方法の手順
について説明する。ここで、図3には欠陥状況の推定手
順フローが、図4にはリサージュ位相信号の信号半値幅
PPDと欠陥の開口径の関係が、さらに図5には、欠陥
の開口径をパラメータとしたリサージュ位相信号のピー
ク値PPAと欠陥深さの関係が示されている。
Here, in such a flaw detection method using magnetism with the transmitting and receiving coils, the signal full width at half maximum PPD of the Lissajous phase signal in the tube axis direction is information related only to the aperture diameter of the defect. Therefore, it is effectively used that the peak value PPA of the Lissajous phase signal is information that is substantially related to the opening diameter and the defect depth of the defect. Therefore, the method disclosed in the present application positively utilizes this feature to accurately detect the defect depth, which is very important information for maintenance and management of the pipe body. Hereinafter, FIG. 3, FIG.
The procedure of the tubular body inspection method of the present application will be described with reference to FIGS. 5, 6, and 7. Here, FIG. 3 shows a defect state estimation procedure flow, FIG. 4 shows the relationship between the signal half-width PPD of the Lissajous phase signal and the defect opening diameter, and FIG. 5 uses the defect opening diameter as a parameter. The relationship between the peak value PPA of the Lissajous phase signal and the defect depth is shown.

【0014】処理手順を箇条書きする。 〈欠陥深さの推定フロー〉 (イ)探傷信号(送信信号及び受信信号よりなる)の入
力 (ロ)探傷信号処理手段16bによりリサージュ波形が
求められるとともに、前記リサージュ波形のリサージュ
位相信号よりリサージュ位相信号の信号半値幅PPDと
ピーク値PPAを得る。図7に示すように、リサージュ
位相信号のピーク値PPAとは、位相の最大値と位相0
との差をいい、信号半値幅PPDとは、前述のピーク値
PPAの半分の値をとる一対の位置に於ける距離をい
う。 (ハ)推定手段16cによるリサージュ位相信号の信号
半値幅PPDよりの図4に示す第一関係指標に基づく欠
陥の開口径を推定する(図4に鎖線の矢印で示す)。 (ニ)推定手段16cによるリサージュ位相信号のピー
ク値PPAよりの図5に示す第二関係指標に基づく欠陥
深さの推定する(図5に鎖線の矢印で示す)。この推定
過程においては、(ハ)の工程で求められた欠陥の開口
径が利用される。例えば リサージュ位相信号の信号半値幅PPD 1.48c
m リサージュ位相信号のピーク値PPA 57 度 の場合は、 欠陥の開口径 1.5 cm 欠陥深さ 0.35cm と推定される。ここで、第一関係指標、第二関係指標
は、コイルの配置構成、欠陥の一般的な形状、渦電流の
発生状況等により一義的に決まるものであり、この関係
があることは、今般始めて発明者により実験的且つシミ
ュレーション的に確認された。
The processing procedure is itemized. <Flow of Defect Depth Estimation> (a) Input of flaw detection signal (consisting of transmission signal and reception signal) (b) Lissajous waveform is obtained by flaw detection signal processing means 16b, and Lissajous phase is obtained from the Lissajous phase signal of the Lissajous waveform. The signal half-width PPD and peak value PPA of the signal are obtained. As shown in FIG. 7, the peak value PPA of the Lissajous phase signal is the maximum value of the phase and the phase 0.
The signal full width at half maximum PPD is a distance at a pair of positions which is half the peak value PPA. (C) The aperture diameter of the defect is estimated based on the first relationship index shown in FIG. 4 from the signal half-width PPD of the Lissajous phase signal by the estimation means 16c (shown by a chain line arrow in FIG. 4). (D) The defect depth is estimated by the estimating means 16c based on the peak value PPA of the Lissajous phase signal based on the second relation index shown in FIG. 5 (shown by a chained arrow in FIG. 5). In this estimation process, the opening diameter of the defect obtained in the step (c) is used. For example, the full width at half maximum of the Lissajous phase signal PPD 1.48c
When the peak value PPA of the m Lissajous phase signal is 57 degrees, it is estimated that the defect opening diameter is 1.5 cm and the defect depth is 0.35 cm. Here, the first relation index and the second relation index are uniquely determined by the coil arrangement configuration, the general shape of the defect, the generation state of the eddy current, and the like. It was confirmed experimentally and by simulation by the inventor.

【0015】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】検査原理の原理図[Figure 1] Principle diagram of inspection principle

【図2】検査装置の構成を示す図FIG. 2 is a diagram showing a configuration of an inspection device.

【図3】欠陥状況の推定手順フロー[Fig. 3] Defect state estimation procedure flow

【図4】リサージュ位相信号の信号半値幅PPDと欠陥
の開口径の関係を示す図
FIG. 4 is a diagram showing a relationship between a signal half-width PPD of a Lissajous phase signal and a defect opening diameter.

【図5】リサージュ位相信号のピーク値PPAと欠陥深
さの関係を示す図
FIG. 5 is a diagram showing a relationship between a peak value PPA of a Lissajous phase signal and a defect depth.

【図6】リサージュ波形を示す図FIG. 6 is a diagram showing a Lissajous waveform.

【図7】リサージュ位相信号を示す図FIG. 7 is a diagram showing a Lissajous phase signal.

【符号の説明】[Explanation of symbols]

2 検知プローブ 3 管体 4 欠陥 5 送信コイル 6 受信コイル 16a 記憶手段 16b 探傷信号処理手段 16c 推定手段 PPA ピーク値 PPD 信号半値幅 2 Detection probe 3 Tubular body 4 Defect 5 Transmission coil 6 Reception coil 16a Storage means 16b Flaw detection signal processing means 16c Estimating means PPA Peak value PPD Signal half width

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長手方向の異なった位置に送信コイル
(5)と受信コイル(6)とを備えた検知プローブ
(2)を導電体の管体(3)内で移動させ、前記送信コ
イル(5)の周部に磁界を発生させるとともに、前記受
信コイル(6)に対する管体部に形成される磁界を前記
受信コイル(6)により検出して、前記管体部に存在す
る欠陥(4)の状況を検出する管体の検査方法であっ
て、 前記検知プローブの走査に従って、前記送信コイルより
送信される送信信号と前記受信コイルによって検出され
る受信信号との間で、リサージュ波形を得るとともに、
前記走査の位置に対する前記リサージュ波形のリサージ
ュ位相信号より、リサージュ位相信号のピーク値PPA
と信号半値幅PPDとを検出し、 前記リサージュ位相
信号の信号半値幅PPDより前記欠陥の開口径を推定す
るとともに、予め、欠陥の開口径をパラメータとしたリ
サージュ位相信号のピーク値PPAと欠陥深さとの関係
指標を求めておき、前記関係指標を参照して、前記推定
された開口径と検出された前記リサージュ位相信号のピ
ーク値PPAより欠陥深さを推定する管体の検査方法。
1. A detection probe (2) equipped with a transmission coil (5) and a reception coil (6) at different positions in the longitudinal direction is moved within a conductor tube (3), and the transmission coil (3) is moved. A magnetic field is generated in the peripheral part of 5), and the magnetic field formed in the tubular part with respect to the receiving coil (6) is detected by the receiving coil (6) to detect a defect (4) existing in the tubular part. A method for inspecting a tubular body for detecting the situation of, wherein a Lissajous waveform is obtained between a transmission signal transmitted from the transmission coil and a reception signal detected by the reception coil in accordance with the scanning of the detection probe. ,
From the Lissajous phase signal of the Lissajous waveform for the scanning position, the peak value PPA of the Lissajous phase signal is obtained.
And the signal half-value width PPD are detected, the opening diameter of the defect is estimated from the signal half-value width PPD of the Lissajous phase signal, and the peak value PPA of the Lissajous phase signal and the defect depth are set in advance using the opening diameter of the defect as a parameter. A method for inspecting a tubular body, wherein a relationship index between the defect diameter is estimated and a defect depth is estimated from the estimated opening diameter and the detected peak value PPA of the Lissajous phase signal with reference to the relationship index.
【請求項2】 長手方向の異なった位置に送信コイル
(5)と受信コイル(6)とを有する検知プローブ
(2)を備え、導電体の管体(3)内を移動されるとと
もに、前記送信コイル(5)に磁界を発生させ、前記受
信コイル(6)に対する管体部に形成される磁界を前記
受信コイル(6)により検出して、前記管体部に存在す
る欠陥(4)の状況を検出する管体の検査装置であっ
て、 前記検知プローブ(2)の走査に伴って、前記送信コイ
ルより送信される送信信号と前記受信コイルによって検
出される受信信号との間で求まるリサージュ波形におい
て、欠陥の開口径をパラメータとしたリサージュ位相信
号のピーク値PPAと欠陥深さの関係指標を予め記憶し
た記憶手段(16a)を備え、 前記走査位置に対するリサージュ位相信号より、リサー
ジュ位相信号のピーク値PPAと信号半値幅PPDとを
検出する探傷信号処理手段(16b)と、 前記リサージュ位相信号の信号半値幅PPDより前記欠
陥の開口径を推定するとともに、前記関係指標を参照し
て、前記推定された開口径と前記検出されたリサージュ
位相信号のピーク値PPAとより欠陥深さを推定する推
定手段(16c)とを備えた管体の検査装置。
2. A detection probe (2) having a transmission coil (5) and a reception coil (6) at different positions in the longitudinal direction is provided, and the detection probe (2) is moved in a tubular body (3) of a conductor and at the same time. A magnetic field is generated in the transmitting coil (5), and the magnetic field formed in the tubular portion with respect to the receiving coil (6) is detected by the receiving coil (6) to detect defects (4) present in the tubular portion. A device for inspecting a tube body for detecting a condition, wherein a Lissajous is obtained between a transmission signal transmitted from the transmission coil and a reception signal detected by the reception coil with the scanning of the detection probe (2). The waveform includes a storage unit (16a) that stores in advance a relational index between the peak value PPA of the Lissajous phase signal with the aperture diameter of the defect as a parameter and the defect depth. The flaw detection signal processing means (16b) for detecting the peak value PPA of the Lissajous phase signal and the signal half-value width PPD, and estimating the opening diameter of the defect from the signal half-value width PPD of the Lissajous phase signal, and refer to the relation index. Then, the tubular body inspection apparatus comprising the estimated opening diameter, the peak value PPA of the detected Lissajous phase signal, and the estimation means (16c) for estimating the defect depth.
JP07132293A 1993-03-30 1993-03-30 Tube inspection method and apparatus Expired - Fee Related JP3283324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07132293A JP3283324B2 (en) 1993-03-30 1993-03-30 Tube inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07132293A JP3283324B2 (en) 1993-03-30 1993-03-30 Tube inspection method and apparatus

Publications (2)

Publication Number Publication Date
JPH06281627A true JPH06281627A (en) 1994-10-07
JP3283324B2 JP3283324B2 (en) 2002-05-20

Family

ID=13457219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07132293A Expired - Fee Related JP3283324B2 (en) 1993-03-30 1993-03-30 Tube inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3283324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208312A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring internal defect
JP2010054292A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Method of measuring internal defect
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208312A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for measuring internal defect
JP2010054292A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Method of measuring internal defect
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe

Also Published As

Publication number Publication date
JP3283324B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP4829883B2 (en) Method and apparatus for non-destructive inspection of tubes
US6127823A (en) Electromagnetic method for non-destructive testing of prestressed concrete pipes for broken prestressing wires
EP0705430B1 (en) Magnetic and transient electromagnetic diffusion inspection method and apparatus
KR0169089B1 (en) Transient Electromagnetic Inspection Method and Device Using Moving Sensor
WO2017008621A1 (en) Micro-magnetic detection method and device
US20050104584A1 (en) Method and System for Torsional Wave Inspection of Heat Exchanger Tubes
JPS63133054A (en) Flux leakage probe used for nondestructive inspection
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
JP2009252644A (en) Inspection method for battery can and inspection device for the battery can
JP3283324B2 (en) Tube inspection method and apparatus
KR101746072B1 (en) Nondestructive inspection apparatus for ferromagnetic steam generator tubes and method thereof
CN105044201A (en) Saddle-shaped open vortex detection device and vortex detection method
JPH05264512A (en) Method and device for inspecting piping
US6281678B1 (en) Tri-tip probe
CN117092207B (en) A cable seal eddy current detection system and method with magnetic field focusing function
CN105866240A (en) Device and method for distinguishing magnetic flux leakage testing signal of outer wall in steel tube in use
CN210221902U (en) A Magnetic Field Focusing Transient Electromagnetic Pipeline Defect Scanning Device
GB1591814A (en) Method and apparatus for continuous manufacture and non-destruction testing of tubes
JP2001272379A (en) Method and device for non destructive test for tube
JPH03140861A (en) Remote field type probe for eddy-current flaw detection
JPH05126803A (en) Automatic ultrasonic flaw detecting apparatus
CN106896152B (en) Crack defect region determination method and apparatus
JPH10318987A (en) Eddy current flaw detector
CN110308210B (en) Sensitivity calibration sample tube for detecting tube bundle defects of nonferromagnetic heat exchanger by far-field eddy current and acoustic pulse
JPH03105245A (en) Remote field type probe for eddy current flaw detection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees