JPH06280822A - Fluid pressure motor - Google Patents

Fluid pressure motor

Info

Publication number
JPH06280822A
JPH06280822A JP5088092A JP8809293A JPH06280822A JP H06280822 A JPH06280822 A JP H06280822A JP 5088092 A JP5088092 A JP 5088092A JP 8809293 A JP8809293 A JP 8809293A JP H06280822 A JPH06280822 A JP H06280822A
Authority
JP
Japan
Prior art keywords
fluid pressure
rotor
hydraulic
pressure
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5088092A
Other languages
Japanese (ja)
Inventor
Toshio Okamura
俊雄 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aioi Seiki Inc
Original Assignee
Aioi Seiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aioi Seiki Inc filed Critical Aioi Seiki Inc
Priority to JP5088092A priority Critical patent/JPH06280822A/en
Publication of JPH06280822A publication Critical patent/JPH06280822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Actuator (AREA)

Abstract

PURPOSE:To simplify the structure of a fluid pressure motor by forming many orifices in a rotor part between the wall faces adjacent in a circumferential direction of a pair of fluid pressure working chambers, and making a pair of the fluid pressure working chambers communicate with each other, and providing the fluid pressure working chamber with fluid passages for severally supply-discharging the fluid pressure. CONSTITUTION:A pair of fluid pressure working chambers 40, 41 is formed at positions being different in the circumferential directions of a rotor 20. Many orifices 50 are formed in a rotor part 20 between wall faces adjacent in a circumferencial direction of the working chambers 40, 41 to make the working chambers 40, 41 communicate with each other, and the fluid pressure can be severally supplied and discharged through a fluid passing means. When the fluid pressure is supplied to the working chamber 40 and discharged from the working chamber 41, since a pressure receiving area of a pressure receiving wall face where the orifice is not opened of two pressure receiving wall faces crossing the circumferential direction of the working chamber 40 at right angles is wider as much as the total passage area than the pressure receiving area of the pressure receiving wall face where the orifice 50 is opened, torque is generated by a difference between the above pressure receiving area, and the rotor 20 rotates so that the pressure receiving wall face where the orifice 50 is not opened may turn toward a leading direction. Thus the fluid pressure motor becomes simple in constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体圧モータに関し、
特に、モータケース内のロータに流体圧を作用させてロ
ータを回転させる形式の流体圧モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid pressure motor,
In particular, the present invention relates to a fluid pressure motor of a type in which fluid pressure is applied to a rotor in a motor case to rotate the rotor.

【0002】[0002]

【従来の技術】従来、モータケース内で回転するロータ
を備え、このロータに油圧を作用させてロータを回転さ
せるように構成した油圧モータにおいて、油圧モータの
ロータに油圧作動室を形成し、その油圧作動室に油圧を
充填するだけでは、ロータに正回転方向の油圧力と逆回
転方向の油圧力とが作用し、ロータを回転させるトルク
を発生させることはできない。そこで、ロータに油圧を
作用させてトルクを発生させる為には、ベーン型油圧モ
ータのように、ロータに複数のベーンを設け、これらベ
ーンの片側に油圧を作用させる必要があり、また、油圧
モータの回転方向を切り換える為には、複数のベーンの
姿勢切り換えが必要である。
2. Description of the Related Art Conventionally, in a hydraulic motor which is provided with a rotor rotating in a motor case and hydraulically acts on the rotor to rotate the rotor, a hydraulic working chamber is formed in the rotor of the hydraulic motor. Simply by filling the hydraulic working chamber with the hydraulic pressure, the oil pressure in the forward rotation direction and the oil pressure in the reverse rotation direction act on the rotor, and the torque for rotating the rotor cannot be generated. Therefore, in order to apply the hydraulic pressure to the rotor to generate the torque, it is necessary to provide a plurality of vanes on the rotor and apply the hydraulic pressure to one side of these vanes like the vane type hydraulic motor. It is necessary to switch the attitude of a plurality of vanes in order to switch the rotation direction of.

【0003】[0003]

【発明が解決しようとする課題】従来のベーン型油圧モ
ータでは、複数のベーンやベーンをケース側へ付勢する
付勢機構等の為の部品数も多く、これらの部品に加えて
複雑な油圧回路等により構造も複雑化し、容量の割りに
大型化し、製作コストが高価になるという問題がある。
従来、油圧モータのロータに又はロータとモータケース
とに油圧作動室を形成し、この油圧作動室の一方の壁面
の受圧面積と他方の壁面の受圧面積とを異ならせること
により、トルクを発生させる技術は未知であり、その原
理を活用した油圧モータやエアモータは、未だ実用化さ
れていない。本発明の目的は、流体圧作動室の一方の壁
面の受圧面積と他方の壁面の受圧面積とを異ならせてト
ルクを発生させる原理を活用した簡単な構成の流体圧モ
ータを提供することである。
In the conventional vane type hydraulic motor, there are many parts such as a plurality of vanes and an urging mechanism for urging the vanes toward the case side. In addition to these parts, complicated hydraulic pressure is required. There is a problem that the structure becomes complicated by the circuit and the like, the size becomes large for the capacity, and the manufacturing cost becomes high.
Conventionally, a hydraulic working chamber is formed in a rotor of a hydraulic motor or in a rotor and a motor case, and torque is generated by making a pressure receiving area of one wall surface of the hydraulic working chamber different from a pressure receiving area of the other wall surface. The technology is unknown, and hydraulic motors and air motors that utilize this principle have not yet been put to practical use. An object of the present invention is to provide a fluid pressure motor having a simple configuration that utilizes the principle of generating torque by making the pressure receiving area of one wall surface of the fluid pressure working chamber different from the pressure receiving area of the other wall surface. .

【0004】[0004]

【課題を解決するための手段】請求項1の流体圧モータ
は、回転体を収容可能なモータケースと、前記モータケ
ース内に回転自在に装着されたロータと、前記ロータに
固定されモータケース外へ延びる出力軸と、前記ロータ
の円周方向に異なる位置に形成した1対の流体圧作動室
と、前記1対の流体圧作動室の円周方向に隣接する壁面
間のロータ部分に形成された多数のオリフィスであっ
て、1対の流体圧作動室を連通させる多数のオリフィス
と、前記1対の流体圧作動室に流体圧を夫々給排する為
の流体通路手段とを備えたものである。
A fluid pressure motor according to claim 1 is a motor case capable of accommodating a rotating body, a rotor rotatably mounted in the motor case, and a motor case fixed outside the motor case. Is formed in the rotor portion between the output shaft extending to, the pair of fluid pressure working chambers formed at different positions in the circumferential direction of the rotor, and the wall surfaces adjacent to each other in the circumferential direction of the pair of fluid pressure working chambers. A plurality of orifices, which are provided with a large number of orifices for communicating a pair of fluid pressure working chambers, and a fluid passage means for supplying and discharging a fluid pressure to and from the pair of fluid pressure working chambers, respectively. is there.

【0005】請求項2の流体圧モータは、請求項1のモ
ータにおいて、前記ロータが、出力軸と一体の軸部材
と、この軸部材からモータケースの内面まで延びる板状
の第1仕切り部材と、前記軸部材に対して仕切り部材と
反対側において軸部材からモータケースの内面まで延び
る第2仕切り部材であって多数のオリフィスを形成した
第2仕切り部材とを備え、前記1対の流体圧作動室が、
第1仕切り部材と第2仕切り部材間に形成されたもので
ある。請求項3の流体圧モータは、請求項1のモータに
おいて、前記ロータ部分が、多数の小径の球体で構成さ
れ、前記多数のオリフィスが、多数の小径の球体間の隙
間通路で構成されたものである。
A fluid pressure motor according to a second aspect of the present invention is the motor of the first aspect, wherein the rotor includes a shaft member integral with the output shaft, and a plate-shaped first partition member extending from the shaft member to the inner surface of the motor case. A second partition member extending from the shaft member to the inner surface of the motor case on the side opposite to the partition member with respect to the shaft member, the second partition member having a large number of orifices, and the pair of fluid pressure actuations. Room
It is formed between the first partition member and the second partition member. A fluid pressure motor according to a third aspect of the present invention is the motor of the first aspect, wherein the rotor portion is composed of a large number of small-diameter spheres, and the large number of orifices is composed of gap passages between a large number of small-diameter spheres. Is.

【0006】[0006]

【発明の作用及び効果】請求項1の流体圧モータにおい
ては、ロータは、回転体を収容可能なモータケースモー
タケース内に回転自在に装着され、出力軸は、ロータに
固定されてモータケース外へ延び、1対の流体圧作動室
は、ロータの円周方向に異なる位置に形成されている。
1対の流体圧作動室の円周方向に隣接する壁面間のロー
タ部分には、多数のオリフィスが形成され、これら多数
のオリフィスにより、1対の流体圧作動室が連通され、
1対の流体圧作動室には、流体通路手段により、流体圧
が夫々給排可能である。
In the fluid pressure motor according to the present invention, the rotor is rotatably mounted in the motor case motor case capable of accommodating the rotating body, and the output shaft is fixed to the rotor and outside the motor case. And a pair of fluid pressure working chambers are formed at different positions in the circumferential direction of the rotor.
A large number of orifices are formed in the rotor portion between the wall surfaces adjacent to each other in the circumferential direction of the pair of fluid pressure working chambers, and the plurality of orifices communicate the pair of fluid pressure working chambers with each other.
Fluid pressure can be supplied to and discharged from the pair of fluid pressure working chambers by the fluid passage means.

【0007】前記一方の流体圧作動室に流体圧を供給
し、他方の流体圧作動室から流体圧を排出させると、一
方の流体圧作動室の円周方向に直交する2つの受圧壁面
のうち、オリフィスが開口しない方の受圧壁面の受圧面
積は、オリフィスが開口する方の受圧壁面の受圧面積よ
りも、オリフィスの合計通路面積だけ大きいことから、
その受圧面積の差により、ロータを回転させるトルクが
発生し、ロータは、オリフィスが開口しない方の受圧壁
面がリーディング方向となるように回転する。ここで、
多数のオリフィスの合計通路面積をΔA、多数のオリフ
ィスにおける平均の圧力降下をΔP、ロータの軸心から
の多数のオリフィスまでの平均半径をRm、発生するト
ルクをTとすると、概略的にトルクTは、次式のように
なる。 T=ΔP×ΔA×Rm 尚、このトルク発生原理については、実施例の説明を参
照のこと。
When the fluid pressure is supplied to one of the fluid pressure operating chambers and the fluid pressure is discharged from the other fluid pressure operating chamber, one of the two pressure receiving wall surfaces orthogonal to the circumferential direction of the one fluid pressure operating chamber. Since the pressure receiving surface of the pressure receiving wall on the side where the orifice does not open is larger than the pressure receiving surface of the pressure receiving wall on the side where the orifice opens, by the total passage area of the orifice,
Due to the difference in the pressure receiving area, torque for rotating the rotor is generated, and the rotor rotates such that the pressure receiving wall surface where the orifice is not opened is in the leading direction. here,
When the total passage area of the multiple orifices is ΔA, the average pressure drop across the multiple orifices is ΔP, the average radius from the rotor shaft center to the multiple orifices is Rm, and the generated torque is T, the torque T is roughly Is as follows: T = ΔP × ΔA × Rm For the torque generation principle, see the description of the embodiment.

【0008】このように、本発明の流体圧モータでは、
モータケース、ロータ、出力軸、1対の流体圧作動室、
ロータに形成した多数のオリフィス、1対の流体通路手
段、等からなる簡単な構成の流体圧モータが得られる。
請求項3の流体圧モータでは、多数のオリフィスが、多
数の小径の球体間の隙間通路で構成されているため、オ
リフィスの構造が簡単化し、製作コストを低減できる。
As described above, in the fluid pressure motor of the present invention,
Motor case, rotor, output shaft, a pair of fluid pressure working chambers,
It is possible to obtain a fluid pressure motor having a simple structure including a large number of orifices formed in the rotor, a pair of fluid passage means, and the like.
In the fluid pressure motor according to the third aspect, since the large number of orifices are formed by the gap passages between the large number of small-diameter spherical bodies, the structure of the orifices can be simplified and the manufacturing cost can be reduced.

【0009】[0009]

【実施例】以下、本発明の実施例について説明する。本
実施例は、油圧モータに本発明を適用した場合の例であ
り、図1、図2に示すように、この油圧モータ1は、モ
ータケース10と、ロータ20と、出力軸70と、モー
タケース10内においてロータ20の円周方向に異なる
2個所に形成された1対の油圧作動室40,41と、ロ
ータ20に円周方向に向けて形成された多数のオリフィ
ス50、1対の油圧作動室40,41に油圧を給排する
為の油圧通路機構60等で構成されている。
EXAMPLES Examples of the present invention will be described below. This embodiment is an example in which the present invention is applied to a hydraulic motor. As shown in FIGS. 1 and 2, the hydraulic motor 1 includes a motor case 10, a rotor 20, an output shaft 70, and a motor. A pair of hydraulic working chambers 40 and 41 formed at two different positions in the circumferential direction of the rotor 20 in the case 10, and a large number of orifices 50 and a pair of hydraulic pressure formed in the rotor 20 in the circumferential direction. The working chambers 40 and 41 are constituted by a hydraulic passage mechanism 60 for supplying and discharging hydraulic pressure.

【0010】前記モータケース10について説明する
と、このモータケース10は、シリンダ状のケース本体
11と、その左端部を塞ぐ端壁部材12と、ケース本体
11の右端部を塞ぐ端壁部材13とを有し、4本の通し
ボルト14により、ケース本体11に両端壁部材12,
13を固定してある。前記ロータ20について説明する
と、出力軸70と同軸一体の軸部材21と、軸部材21
からケース本体11の内面まで延びる第1仕切り部材2
2と、軸部材21からケース本体11の内面まで延びる
第2仕切り部材23を備えている。
Explaining the motor case 10, the motor case 10 includes a cylindrical case body 11, an end wall member 12 that closes the left end portion thereof, and an end wall member 13 that closes the right end portion of the case body 11. With the four through bolts 14, the case body 11 is provided with both end wall members 12,
13 is fixed. The rotor 20 will be described. The shaft member 21 coaxial with the output shaft 70 and the shaft member 21.
Partition member 2 extending from the inside to the inner surface of the case body 11
2 and a second partition member 23 extending from the shaft member 21 to the inner surface of the case body 11.

【0011】第1仕切り部材22は、軸部材21とモー
タケース10間の空間を仕切る矩形板状の部材で、軸部
材21に対して半径方向に向けて配置され、その内端は
軸部材21に溶接にて固着され、また、その外端は、ケ
ース本体11の内面にシール部材24を介して油密摺動
自在に摺接している。第2仕切り部材23は、軸部材2
1とモータケース10間の空間を仕切る断面扇形の部材
であって、第2仕切り部材23は、軸部材21に対して
第1仕切り部材22と反対側に配設され、その内端は軸
部材21に溶接にて固着され、その外端はケース本体1
1の内面に摺動自在に摺接している。前記モータケース
10内において、軸部材21と第1仕切り部材22と第
2仕切り部材23の片方側には、断面扇形の油圧作動室
40が形成され、また、軸部材21と第1仕切り部材2
2と第2仕切り部材23の他方側には、断面扇形の油圧
作動室41が形成されている。
The first partition member 22 is a rectangular plate-shaped member that partitions the space between the shaft member 21 and the motor case 10. The first partition member 22 is arranged in the radial direction with respect to the shaft member 21, and its inner end is the shaft member 21. Is fixed to the inner surface of the case body 11 via a seal member 24 so as to be slidable in an oil-tight manner. The second partition member 23 is the shaft member 2
1 is a fan-shaped member for partitioning the space between the motor case 10 and the motor case 10. The second partition member 23 is disposed on the opposite side of the shaft member 21 from the first partition member 22, and the inner end thereof is the shaft member. 21 is welded and fixed to the case body 1 at its outer end.
It is slidably in contact with the inner surface of 1. In the motor case 10, a hydraulic operating chamber 40 having a fan-shaped cross section is formed on one side of the shaft member 21, the first partition member 22, and the second partition member 23, and the shaft member 21 and the first partition member 2 are formed.
On the other side of the second partition member 23 and the second partition member 23, a hydraulic operating chamber 41 having a fan-shaped cross section is formed.

【0012】前記軸部材21の左端部は、端壁部材12
の枢支孔に軸受け25を介して回転自在に枢支され、軸
部材21の左端には、端壁部材12の外側においてナッ
ト部材26が螺合されている。前記軸部材21の右端部
は、端壁部材13の枢支孔に軸受け27を介して回転自
在に枢支され、出力軸70の鍔部71と、ナット部材2
6とで軸部材21と出力軸70とは、軸方向に位置規制
されている。前記第2仕切り部材23には、両油圧作動
室40,41を連通する多数の小径の円弧状のオリフィ
ス50が形成されている。
The left end of the shaft member 21 is the end wall member 12
Is rotatably supported by a shaft support hole via a bearing 25, and a nut member 26 is screwed to the left end of the shaft member 21 outside the end wall member 12. The right end portion of the shaft member 21 is rotatably supported in a pivot hole of the end wall member 13 via a bearing 27, and has a flange portion 71 of the output shaft 70 and a nut member 2.
The position of the shaft member 21 and the output shaft 70 is restricted by 6 in the axial direction. The second partition member 23 is formed with a large number of small-diameter arc-shaped orifices 50 that connect the hydraulic working chambers 40 and 41 with each other.

【0013】前記1対の油圧作動室40,41に油圧を
給排する為の油圧通路機構60について説明する。モー
タケース10内において、端壁部材113内面に摺接す
る環状板部材61が、軸部材21に外嵌され、その内周
部が軸部材21に溶接にて固着され、また、その外周端
が、シール部材62を介してケース本体11の内面に油
密摺動自在に摺接している。更に、環状板部材61は、
第1仕切り部材22と第2仕切り部材23にも溶接接合
されている。
The hydraulic passage mechanism 60 for supplying and discharging hydraulic pressure to and from the pair of hydraulic working chambers 40 and 41 will be described. In the motor case 10, an annular plate member 61 slidably contacting the inner surface of the end wall member 113 is externally fitted to the shaft member 21, the inner peripheral portion thereof is fixed to the shaft member 21 by welding, and the outer peripheral end thereof is It is in sliding contact with the inner surface of the case body 11 via the seal member 62 so as to be slidable in an oil-tight manner. Further, the annular plate member 61 is
The first partition member 22 and the second partition member 23 are also welded and joined.

【0014】端壁部材13の内面には、内外1対の環状
溝63,64が形成され、環状板部材61には、内側の
環状溝63を油圧作動室40に連通させる円弧孔65
と、外側の環状溝64を油圧作動室41に連通させる円
弧孔66とが形成されている。前記端壁部材13には、
第1油圧ポート67と第2油圧ポート68とが形成さ
れ、第1油圧ポート67は内側の環状溝63に連通さ
れ、また、第2油圧ポート68は外側の環状溝64に連
通され、第1及び第2油圧ポート67,68は、油圧ホ
ース69a,69bにより油圧供給装置80に夫々接続
されている。
A pair of inner and outer annular grooves 63, 64 are formed on the inner surface of the end wall member 13, and the annular plate member 61 has an arc hole 65 for communicating the inner annular groove 63 with the hydraulic working chamber 40.
And an arc hole 66 that connects the outer annular groove 64 to the hydraulic working chamber 41. The end wall member 13 includes
A first hydraulic port 67 and a second hydraulic port 68 are formed, the first hydraulic port 67 communicates with the inner annular groove 63, and the second hydraulic port 68 communicates with the outer annular groove 64. The second hydraulic ports 67 and 68 are connected to the hydraulic pressure supply device 80 by hydraulic hoses 69a and 69b, respectively.

【0015】前記油圧供給装置80は、油圧ポンプ81
と、方向切換弁82と、操作盤兼制御装置83とを備
え、図示の状態では、油圧作動室40に油圧が供給さ
れ、また、油圧作動室41から油圧が排出されるが、方
向切換弁82を切り換えると、油圧作動室41に油圧が
供給され、また、油圧作動室40から油圧が排出され
る。
The hydraulic pressure supply device 80 includes a hydraulic pump 81.
In the state shown in the drawing, the hydraulic pressure is supplied to the hydraulic operating chamber 40 and the hydraulic pressure is discharged from the hydraulic operating chamber 41, but the directional switching valve 82 is provided. When 82 is switched, the hydraulic pressure is supplied to the hydraulic operating chamber 41, and the hydraulic pressure is discharged from the hydraulic operating chamber 40.

【0016】次に、以上説明した油圧モータ1の作用に
ついて説明する。油圧作動室40に所定の圧力の油圧を
供給し、また、油圧作動室41から油圧を排出させる
と、ロータ20を図示矢印X方向へ回転させるトルクが
作用してロータ20は矢印X方向へ回転し、また、油圧
作動室41に油圧を供給し、油圧作動室40から油圧を
排出させると、ロータ20を図示矢印Xと反対方向へ回
転させるトルクが作用してロータ20は矢印Xと反対方
向へ回転する。
Next, the operation of the hydraulic motor 1 described above will be described. When the hydraulic pressure of a predetermined pressure is supplied to the hydraulic pressure chamber 40 and the hydraulic pressure is discharged from the hydraulic pressure chamber 41, a torque for rotating the rotor 20 in the arrow X direction in the drawing acts and the rotor 20 rotates in the arrow X direction. When hydraulic pressure is supplied to the hydraulic operating chamber 41 and discharged from the hydraulic operating chamber 40, a torque for rotating the rotor 20 in the direction opposite to the arrow X in the drawing acts and the rotor 20 moves in the direction opposite to the arrow X. Rotate to.

【0017】ここで、そのトルク発生原理について説明
する。油圧作動室40に供給する油圧をP、油圧作動室
41の油圧(ドレン圧)をP0、第1仕切り部材22の
円周方向に直交する受圧面の受圧面積をA、第2仕切り
部材23の多数のオリフィス50の合計通路面積をΔ
A、多数のオリフィス50における平均的圧力降下をΔ
P、軸部材21の軸心から多数のオリフィス50までの
平均半径(これは、受圧面の平均半径に等しいものとす
る)をRm、ロータ20に作用するトルクをTとする
と、次式が成立する。 T=〔P×A−P(A−ΔA)+P0(A−ΔA)−P
0×A〕×Rm=ΔA(P−P0)×Rm=ΔA×ΔP
×Rm
The principle of torque generation will be described below. The hydraulic pressure supplied to the hydraulic operating chamber 40 is P, the hydraulic pressure (drain pressure) in the hydraulic operating chamber 41 is P0, the pressure receiving area of the pressure receiving surface orthogonal to the circumferential direction of the first partition member 22 is A, and the second partition member 23 is The total passage area of a large number of orifices 50 is Δ
A, average pressure drop across multiple orifices 50
Let Pm be the average radius from the shaft center of the shaft member 21 to the large number of orifices 50 (which is equal to the average radius of the pressure receiving surface) be Rm, and the torque acting on the rotor 20 be T, the following equation holds. To do. T = [P × A−P (A−ΔA) + P0 (A−ΔA) −P
0 × A] × Rm = ΔA (P−P0) × Rm = ΔA × ΔP
× Rm

【0018】ここで、ΔAもΔPもプラスであるため、
トルクTもプラスとなり、ロータ20を矢印Xの方へ回
転駆動するトルクTが発生し、ロータ20は矢印Xの方
へ回転することになる。前記の式より明らかなように、
オリフィス50の合計通路面積ΔAを大きくする程、ま
た、オリフィス50での圧力降下ΔPを大きくする程、
トルクTが大きくなる。前記オリフィスの合計通路面積
ΔAを大きくする為には、(a)オリフィスの数を多く
する、(b)オリフィスの通路面積を大きくする、前記
オリフィスでの圧力降下ΔPを大きくする為には、
(c)オリフィスの長さを大きくする、(d)オリフィ
スの通路面積を小さくする、
Since both ΔA and ΔP are positive,
The torque T also becomes positive, a torque T that rotationally drives the rotor 20 in the direction of arrow X is generated, and the rotor 20 rotates in the direction of arrow X. As is clear from the above equation,
The larger the total passage area ΔA of the orifice 50, and the larger the pressure drop ΔP at the orifice 50,
The torque T increases. To increase the total passage area ΔA of the orifices, (a) increase the number of orifices, (b) increase the passage area of the orifices, and increase the pressure drop ΔP at the orifices,
(C) increase the length of the orifice, (d) decrease the passage area of the orifice,

【0019】しかし、前記(b)の条件と(d)の条件
とは、相矛盾するので、実際的には、オリフィスの数を
増し、オリフィスの長さを大きくし、オリフィスの通路
面積を、オリフィスの長さとの関連において適当な大き
さに設定することになる。以上の説明は、一方の流体圧
作動室40に流体圧を供給し、他方の流体圧作動室41
から流体圧を排出する場合を例として説明したが、他方
の流体圧作動室41に流体圧を供給し、一方の流体圧作
動室40から流体圧を排出する場合には、前記とは反対
方向のトルクTがロータ20に作用し、ロータ20は、
矢印Xとは反対方向へ回転することになる。
However, since the condition (b) and the condition (d) are contradictory to each other, in practice, the number of orifices is increased, the length of the orifice is increased, and the passage area of the orifice is It will be set to an appropriate size in relation to the length of the orifice. In the above description, the fluid pressure is supplied to one fluid pressure operating chamber 40 and the other fluid pressure operating chamber 41 is supplied.
The case where the fluid pressure is discharged from the above is described as an example, but when the fluid pressure is supplied to the other fluid pressure operating chamber 41 and the fluid pressure is discharged from the one fluid pressure operating chamber 40, the opposite direction to the above is applied. Of torque T acts on the rotor 20,
It will rotate in the direction opposite to the arrow X.

【0020】更に、前記油圧通路機構60に代えて、軸
部材21の左端部から軸部材21に2つの油孔を形成
し、その一方の油孔を一方の油圧作動室40に連通さ
せ、また他方の油孔を他方の油圧作動室41に連通させ
る構成も採用可能であるが、この場合、モータケース1
0の外側において軸部材21の左端部に油路接続の為の
ロータリ継手が必要となる。
Further, instead of the hydraulic passage mechanism 60, two oil holes are formed in the shaft member 21 from the left end portion of the shaft member 21, and one of the oil holes is made to communicate with one hydraulic working chamber 40, and A configuration in which the other oil hole communicates with the other hydraulic working chamber 41 can be adopted, but in this case, the motor case 1
A rotary joint for connecting an oil passage is required at the left end of the shaft member 21 outside 0.

【0021】次に、前記実施例の一部を変更した第1別
実施例について、図3、図4に基いて説明する。この油
圧モータ1Aのモータケース10、油圧通路機構60の
構成は、前記実施例と同様であり、ロータ20A、油圧
作動室40,41、オリフィス50の構成が変更されて
いる。尚、油圧作動室40,41は、連通孔65A,6
6Aにより内外の環状溝63,64に連通されている。
この油圧モータ1Aのロータ20Aは、軸部材21A
と、断面略扇形の第1仕切り部材22Aと、断面半円形
の第2仕切り部材23Aとで構成されている。前記第2
仕切り部材23Aは、軸部材21Aに接合された矩形板
42と、ケース本体11の内面に摺接する断面180度
円弧状の湾曲板43と、左右1対の端板44,45とを
溶接接合し、その内部に多数の小径の球体46を充填し
た構造であり、油圧作動室40と油圧作動室41とを連
通する多数のオリフィス50は、矩形板42に形成され
た多数の小孔47と、多数の小径の球体46間の隙間通
路48とで構成されている。この構造の場合、オリフィ
ス50の構造が簡単化し、製作コストを低減することが
できる。尚、内周側のオリフィス抵抗と外周側のオリフ
ィス抵抗とを極力等しくする為に、内周側の球体46
を、外周側の球体46よりも小径に構成したり、球体4
6の径を、内周側にいく程小径化するように構成したり
することもできる。そして、この油圧モータ1Aの作用
については、前記実施例の油圧モータ1の作用と同様で
あるので、その説明は省略する。
Next, a first alternative embodiment in which a part of the above embodiment is modified will be described with reference to FIGS. 3 and 4. The configurations of the motor case 10 and the hydraulic passage mechanism 60 of the hydraulic motor 1A are the same as those in the above-described embodiment, but the configurations of the rotor 20A, the hydraulic working chambers 40 and 41, and the orifice 50 are changed. The hydraulic working chambers 40 and 41 are connected to the communication holes 65A and 6A.
6A communicates with the inner and outer annular grooves 63, 64.
The rotor 20A of the hydraulic motor 1A has a shaft member 21A.
And a first partition member 22A having a substantially fan-shaped cross section and a second partition member 23A having a semicircular cross section. The second
The partition member 23A is formed by welding and joining a rectangular plate 42 joined to the shaft member 21A, a curved plate 43 having a 180 ° arc cross section in sliding contact with the inner surface of the case body 11, and a pair of left and right end plates 44, 45. , Is a structure in which a large number of small-diameter spheres 46 are filled therein, and a large number of orifices 50 that connect the hydraulic pressure operating chamber 40 and the hydraulic pressure operating chamber 41 to each other are provided with a large number of small holes 47 formed in the rectangular plate 42. It is composed of a plurality of small diameter spherical bodies 46 and gap passages 48. With this structure, the structure of the orifice 50 can be simplified and the manufacturing cost can be reduced. In order to make the orifice resistance on the inner peripheral side and the orifice resistance on the outer peripheral side as equal as possible, the spherical body 46 on the inner peripheral side is
To have a smaller diameter than the sphere 46 on the outer peripheral side, or the sphere 4
The diameter of 6 may be reduced toward the inner peripheral side. The operation of the hydraulic motor 1A is the same as that of the hydraulic motor 1 of the above-mentioned embodiment, and the description thereof will be omitted.

【0022】次に、前記実施例の一部を変更した第2別
実施例について、図5に基いて簡単に説明する。図5に
示すように、この油圧モータ1Bのロータ20Bは、軸
部材21Bと、この軸部材21Bに固着された1対の第
1仕切り部材22Bと、軸部材21Bに固着された1対
の第2仕切り部材23Bとで構成され、これらの部材に
より、4つの油圧作動室40A,40B,41A,41
Bが形成され、第2仕切り部材23Bには、多数の小径
のオリフィス50が形成され、軸部材21Bの両側に位
置して相対向する油圧作動室40A,40Bは、連通孔
65Bを介して内側の環状溝63に連通され、また、軸
部材21Bの両側に位置して相対向する油圧作動室41
A,41Bは、連通孔66Bを介して外側の環状溝64
に連通されている。
Next, a second alternative embodiment in which a part of the above embodiment is modified will be briefly described with reference to FIG. As shown in FIG. 5, a rotor 20B of the hydraulic motor 1B includes a shaft member 21B, a pair of first partition members 22B fixed to the shaft member 21B, and a pair of first partition members 22B fixed to the shaft member 21B. It is composed of two partition members 23B, and by these members, four hydraulic working chambers 40A, 40B, 41A, 41
B is formed, a large number of small-diameter orifices 50 are formed in the second partition member 23B, and the hydraulic working chambers 40A, 40B located on both sides of the shaft member 21B and facing each other are inwardly communicated via the communication hole 65B. Of the hydraulic working chambers 41 that are communicated with the annular groove 63 of the shaft member 21 and that are located on opposite sides of the shaft member 21B.
A and 41B are the outer annular grooves 64 through the communication holes 66B.
Is in communication with.

【0023】つまり、油圧作動室40A,40Bに油圧
が供給されるときには、油圧作動室41A,41Bから
油圧が排出され、また、油圧作動室41A,41Bに油
圧が供給されるときには、油圧作動室40A,40Bか
ら油圧が排出される。前記実施例の場合と諸元が同じで
あるとすると、この油圧モータ1Bにおける発生トルク
は、前記実施例の発生トルクTの2倍の大きさになる。
尚、本実施例と同様の思想に基いて、6つの油圧作動室
を形成して、発生トルクを3倍にすることも可能であ
り、更に多くの油圧作動室を形成して発生トルクを更に
大きくすることも可能である。
That is, when the hydraulic pressure is supplied to the hydraulic operating chambers 40A and 40B, the hydraulic pressure is discharged from the hydraulic operating chambers 41A and 41B, and when the hydraulic pressure is supplied to the hydraulic operating chambers 41A and 41B. The hydraulic pressure is discharged from 40A and 40B. Assuming that the specifications are the same as those in the above embodiment, the generated torque in this hydraulic motor 1B is twice as large as the generated torque T in the above embodiment.
It is also possible to form six hydraulic working chambers to triple the generated torque based on the same idea as in the present embodiment, and to generate more hydraulic working chambers to further increase the generated torque. It can also be made larger.

【0024】以上説明したように、本発明の油圧モータ
によれば、油圧作動室の一方の壁面の全域で油圧を受圧
し、油圧作動室の他方の壁面には多数のオリフィス50
を開口させてそれらオリフィス50の合計開口面積分だ
け受圧面積を少なくすることで、ロータを回転駆動する
トルクを発生させることができる。しかも、この油圧モ
ータでは、ロータが唯一の可動部材で、その他の可動部
材を設ける必要がなく、油圧通路の構造もたいして複雑
でないので、油圧モータの構造が全体的に単純で、部品
数も少ないため、安価に製作可能であるし、摩耗部品も
殆どないので耐久性に優れる。
As described above, according to the hydraulic motor of the present invention, the hydraulic pressure is received over the entire wall surface of one of the hydraulic working chambers, and the large number of orifices 50 are provided on the other wall surface of the hydraulic working chamber.
Are opened to reduce the pressure receiving area by the total opening area of the orifices 50, whereby torque for rotationally driving the rotor can be generated. Moreover, in this hydraulic motor, the rotor is the only movable member, and it is not necessary to provide any other movable member, and the structure of the hydraulic passage is not so complicated. Therefore, the structure of the hydraulic motor is simple and the number of parts is small. Therefore, it can be manufactured at low cost, and it has excellent durability because it has few wear parts.

【0025】尚、オリフィス及びオリフィスを形成する
ロータの部分の構造に関して、多数の小径の線材を束状
に積層させた構造とし、これら多数の小径の線材間の隙
間でもってオリフィスを形成したり、多数の小径のパイ
プ材を束状に積層させた構造とし、これら多数の小径の
パイプ材の内部の通路とパイプ材間の隙間でもってオリ
フィスを形成したり、多孔質の焼結金属材料における多
孔質の連通孔でもってオリフィスを形成したり、種々の
態様に構成することが可能である。
Regarding the structure of the orifice and the portion of the rotor that forms the orifice, a structure in which a large number of small-diameter wire rods are stacked in a bundle is used, and the orifice is formed with a gap between the large number of small-diameter wire rods. It has a structure in which a large number of small-diameter pipe materials are stacked in a bundle, and an orifice is formed by the gap between the pipe materials inside the passages of these large-diameter pipe materials, or a porous metal in a porous sintered metal material is used. It is possible to form the orifice with a quality communication hole or to configure in various ways.

【0026】前記実施例は、本発明を油圧モータに適用
した場合の例について説明したが、エアモータに対して
も本発明を同様に適用可能であり、その場合、加圧エア
の圧力が油圧に比較して低いので、個々のオリフィスの
通路面積を大きくしたり、オリフィスの通路長さを小さ
くする等により、オリフィスの通路抵抗を小さく構成す
ることが必要である。
In the above embodiment, an example in which the present invention is applied to a hydraulic motor has been described. However, the present invention can be similarly applied to an air motor, in which case the pressure of the pressurized air is changed to hydraulic pressure. Since it is relatively low, it is necessary to make the passage resistance of the orifice small by increasing the passage area of each orifice or reducing the passage length of the orifice.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る油圧モータの断面図である。FIG. 1 is a cross-sectional view of a hydraulic motor according to an embodiment.

【図2】図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】別実施例に係る油圧モータの図2相当図であ
る。
FIG. 3 is a view corresponding to FIG. 2 of a hydraulic motor according to another embodiment.

【図4】図3の油圧モータの断面図である。4 is a cross-sectional view of the hydraulic motor of FIG.

【図5】別実施例に係る油圧モータの図1相当図であ
る。
FIG. 5 is a view corresponding to FIG. 1 of a hydraulic motor according to another embodiment.

【符号の説明】[Explanation of symbols]

1,1A,1B 油圧モータ 10 モータケース 20,20A,20B ロータ 21 軸部材 22,22A,22B 第1仕切り部材 23,23A,23B 第2仕切り部材 40,40A,40B 油圧作動室 41,41A,41B 油圧作動室 46 球体 50 オリフィス 60 油圧通路機構 70 出力軸 1, 1A, 1B Hydraulic motor 10 Motor case 20, 20A, 20B Rotor 21 Shaft member 22, 22A, 22B First partition member 23, 23A, 23B Second partition member 40, 40A, 40B Hydraulic working chamber 41, 41A, 41B Hydraulic working chamber 46 Sphere 50 Orifice 60 Hydraulic passage mechanism 70 Output shaft

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転体を収容可能なモータケースと、 前記モータケース内に回転自在に装着されたロータと、 前記ロータに固定されモータケース外へ延びる出力軸
と、 前記ロータの円周方向に異なる位置に形成した1対の流
体圧作動室と、 前記1対の流体圧作動室の円周方向に隣接する壁面間の
ロータ部分に形成された多数のオリフィスであって、1
対の流体圧作動室を連通させる多数のオリフィスと、 前記1対の流体圧作動室に流体圧を夫々給排する為の流
体通路手段と、 を備えたことを特徴とする流体圧モータ。
1. A motor case capable of accommodating a rotating body, a rotor rotatably mounted in the motor case, an output shaft fixed to the rotor and extending to the outside of the motor case, and a circumferential direction of the rotor. A pair of fluid pressure working chambers formed at different positions, and a plurality of orifices formed in a rotor portion between wall surfaces adjacent to each other in the circumferential direction of the pair of fluid pressure working chambers,
A fluid pressure motor comprising: a plurality of orifices for communicating a pair of fluid pressure operation chambers; and a fluid passage means for supplying / discharging a fluid pressure to / from the pair of fluid pressure operation chambers, respectively.
【請求項2】 前記ロータが、出力軸と一体の軸部材
と、この軸部材からモータケースの内面まで延びる板状
の第1仕切り部材と、前記軸部材に対して仕切り部材と
反対側において軸部材からモータケースの内面まで延び
る第2仕切り部材であって多数のオリフィスを形成した
第2仕切り部材とを備え、 前記1対の流体圧作動室が、第1仕切り部材と第2仕切
り部材間に形成されたことを特徴とする請求項1に記載
の流体圧モータ。
2. The rotor includes a shaft member integrated with an output shaft, a plate-shaped first partition member extending from the shaft member to an inner surface of a motor case, and a shaft on a side opposite to the partition member with respect to the shaft member. A second partition member extending from the member to the inner surface of the motor case, the second partition member having a large number of orifices formed therein, wherein the pair of fluid pressure working chambers are provided between the first partition member and the second partition member. The fluid pressure motor according to claim 1, wherein the fluid pressure motor is formed.
【請求項3】 前記ロータ部分が、多数の小径の球体で
構成され、 前記多数のオリフィスが、多数の小径の球体間の隙間通
路で構成されたことを特徴とする請求項1に記載の流体
圧モータ。
3. The fluid according to claim 1, wherein the rotor portion is composed of a large number of small-diameter spherical bodies, and the large number of orifices is composed of a clearance passage between a large number of small-diameter spherical bodies. Pressure motor.
JP5088092A 1993-03-22 1993-03-22 Fluid pressure motor Pending JPH06280822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5088092A JPH06280822A (en) 1993-03-22 1993-03-22 Fluid pressure motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088092A JPH06280822A (en) 1993-03-22 1993-03-22 Fluid pressure motor

Publications (1)

Publication Number Publication Date
JPH06280822A true JPH06280822A (en) 1994-10-07

Family

ID=13933232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088092A Pending JPH06280822A (en) 1993-03-22 1993-03-22 Fluid pressure motor

Country Status (1)

Country Link
JP (1) JPH06280822A (en)

Similar Documents

Publication Publication Date Title
JP6495648B2 (en) Rotary actuator
JPH06264903A (en) Rotary-actuator
JPS6358269B2 (en)
US4219313A (en) Commutator valve construction
KR100398846B1 (en) Continuously Variable Hydrostatic Transmission
US6394775B1 (en) Hydraulic motor seal
US6698199B2 (en) Swash plate type hydraulic drive transmission and hydrostatic type continuously variable transmission
US5137438A (en) Multiple speed fluid motor
EP0102884A1 (en) Direct drive servo valve
JPH06280822A (en) Fluid pressure motor
JP2832796B2 (en) Gerotor type hydraulic device having fluid passages composed of multilayer plates
US20050142018A1 (en) Increased capacity valving plates for a hydraulic motor
JP3881309B2 (en) Hydraulic rotary actuator
HU217275B (en) Reverser closing slide-valve pump mainly for circulating of lubricant of driving devices
JPH1082359A (en) Rotating fluid pressure device
US4655695A (en) Rotating fluid driven rotary actuator
JPH1054405A (en) Rotary actuator
JP2881435B2 (en) Closed center fluid device
US5018432A (en) Hydrostatic steering device with a radially free floating valve member
JPH0751938B2 (en) Rotary fluid pressure device
JP3473982B2 (en) Rotary valve for vibration generation and vibration generator
US6086344A (en) Hydraulic motor lubrication path
JPH11159561A (en) Rotary damper
JP2001021088A (en) Rotary joint
US20230220919A1 (en) Planetary fluid control valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees