JPH06280706A - Control device for fuel supply pump of internal combustion engine - Google Patents

Control device for fuel supply pump of internal combustion engine

Info

Publication number
JPH06280706A
JPH06280706A JP7148293A JP7148293A JPH06280706A JP H06280706 A JPH06280706 A JP H06280706A JP 7148293 A JP7148293 A JP 7148293A JP 7148293 A JP7148293 A JP 7148293A JP H06280706 A JPH06280706 A JP H06280706A
Authority
JP
Japan
Prior art keywords
fuel
supply pump
fuel supply
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7148293A
Other languages
Japanese (ja)
Inventor
Hirohiko Yamagata
弘彦 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP7148293A priority Critical patent/JPH06280706A/en
Publication of JPH06280706A publication Critical patent/JPH06280706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve running performance without causing increase of vaporized fuel and fluctuation of air-fuel ratio according to a rise of fuel temperature by controlling drive voltage of a fuel pump for supplying fuel to a fuel injection valve so as to decrease in accordance with increasing the fuel temperature. CONSTITUTION:In an internal combustion engine 10, fuel in a fuel tank 21 is supplied to a fuel injection valve 20 through a fuel supply passage 23 by a fuel pump 22 and injected to each cylinder. On the other hand, vaporized fuel generated in the fuel tank 21, after collected to a canister 27, is supplied to an intake system through a vaporized fuel passage 26 from a purge valve 28. In an ECU18, based on each detection signal from an 02 sensor 19 and a fuel temperature sensor 25, by controlling the fuel pump 22, fuel is controlled to also feedback control air-fuel ratio. Here is controlled drive voltage of the fuel pump 22 so as to decrease in accordance with increasing a fuel temperature. In this way, increase of vaporized fuel and fluctuation of air-fuel ratio according to a rise of the fuel temperature are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、内燃機関等に燃料を
供給する燃料供給ポンプの制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply pump control device for supplying fuel to an internal combustion engine or the like.

【0002】[0002]

【従来の技術】従来、蒸発燃料を内燃機関の吸気系に供
給するものにおいて、空燃比を制御する場合のパージバ
ルブオン時、つまり蒸発燃料の吸気系への供給時に内燃
機関への燃料供給量を減量側に制限するものがある(特
開平4ー284150号公報参照)。この場合、燃料供
給ポンプの電圧は、一定電圧あるいは内燃機関の負荷状
態に応じた燃料流量によってのみ制御されている。これ
は、燃料噴射弁から燃料を内燃機関の吸気系に供給する
場合、燃料には燃料供給ポンプにより一定の圧力が掛け
られており、この一定圧力下で燃料噴射弁の開弁時間を
制御することで燃料噴射弁からの燃料噴射量を制御して
いるためである。
2. Description of the Related Art Conventionally, in the case of supplying evaporated fuel to the intake system of an internal combustion engine, the fuel supply amount to the internal combustion engine is controlled when the purge valve is turned on when controlling the air-fuel ratio, that is, when the evaporated fuel is supplied to the intake system. There is a limiter on the weight reduction side (see JP-A-4-284150). In this case, the voltage of the fuel supply pump is controlled only by the constant voltage or the fuel flow rate according to the load state of the internal combustion engine. This is because when fuel is supplied from the fuel injection valve to the intake system of the internal combustion engine, a constant pressure is applied to the fuel by the fuel supply pump, and the valve opening time of the fuel injection valve is controlled under this constant pressure. This is because the fuel injection amount from the fuel injection valve is controlled.

【0003】[0003]

【発明が解決しようとする課題】このとき、噴射されず
に残った燃料は燃料タンク内にリターン燃料として戻っ
てくる。この場合、従来のように燃料供給ポンプを制御
すると燃料タンク内に流入してくるリターン燃料の量が
多く、燃料温度が低いときには、燃料タンク内に流入し
てくるリターン燃料が多くても蒸発燃料の量はリターン
燃料のない場合に比べてほとんど変化がないが、燃料温
度が高くなると、このリターン燃料による燃料タンク内
の燃料のかき混ぜ効果によって燃料タンク内の蒸発燃料
の量が大幅に増大する。
At this time, the fuel left uninjected returns to the fuel tank as return fuel. In this case, if the fuel supply pump is controlled as in the conventional case, the amount of return fuel flowing into the fuel tank is large, and when the fuel temperature is low, even if the amount of return fuel flowing into the fuel tank is large, the evaporated fuel However, when the fuel temperature rises, the amount of evaporated fuel in the fuel tank increases significantly due to the stirring effect of the fuel in the fuel tank by this return fuel.

【0004】このかき混ぜ効果による蒸発燃料の増大
で、蒸発燃料供給手段内に蓄積される蒸発燃料の量が燃
料温度の高低によって大きく異なる。そのため、例え
ば、燃料温度が低い時にパージバルブ開度、つまり蒸発
燃料供給量を設定した場合、燃料温度が高い時にパージ
バルブを開くと、蒸発燃料供給手段内から供給される蒸
発燃料供給量が多く、パージ過多となり、これによる空
燃比の急激な変動によって走行性不良の原因となる。
Due to this increase in the evaporated fuel due to the stirring effect, the amount of the evaporated fuel accumulated in the evaporated fuel supply means greatly differs depending on the level of the fuel temperature. Therefore, for example, when the purge valve opening, that is, the evaporated fuel supply amount is set when the fuel temperature is low, and when the purge valve is opened when the fuel temperature is high, the evaporated fuel supply amount supplied from the evaporated fuel supply means is large, Excessive amount causes a drastic change in the air-fuel ratio, which causes poor runnability.

【0005】本発明は、上記課題を解決するために鑑み
なされたものであり、燃料温度の上昇にともなう蒸発燃
料量の急激な増加を招くことなく、また、これに伴う蒸
発燃料供給時の空燃比の急激な変動を招くことなく走行
性を改善することを目的とする。
The present invention has been made in view of the above problems, and does not cause a rapid increase in the amount of evaporated fuel due to a rise in the fuel temperature, and the empty space at the time of supplying the evaporated fuel is also increased. The purpose is to improve the running property without causing a sudden change in the fuel ratio.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明は以下の様になる。
In order to achieve the above object, the present invention is as follows.

【0007】請求項1の記載によれば、燃料タンク内に
発生する蒸発燃料を内燃機関の吸気系に供給する蒸発燃
料供給手段と、該内燃機関の空燃比を所定の空燃比にフ
ィードバック補正する空燃比制御手段と、燃料噴射弁に
燃料を供給する電動の燃料供給ポンプと、該燃料供給ポ
ンプの駆動電圧を制御することにより燃料噴射弁に供給
する燃料を制御する制御手段とを備える内燃機関におい
て、該燃料供給ポンプの駆動電圧を燃料温度が高い程低
く制御する制御手段を設けるている。請求項2の記載に
よれば、前記請求項1において、前記燃料供給ポンプの
駆動電圧に下限値を設けている。請求項3の記載によれ
ば、前記請求項2において、下限値を回転及び負荷が高
い程高く設定している。
According to the first aspect of the present invention, the evaporated fuel supply means for supplying the evaporated fuel generated in the fuel tank to the intake system of the internal combustion engine and the air-fuel ratio of the internal combustion engine are feedback-corrected to a predetermined air-fuel ratio. Internal combustion engine including air-fuel ratio control means, electric fuel supply pump for supplying fuel to the fuel injection valve, and control means for controlling fuel supplied to the fuel injection valve by controlling drive voltage of the fuel supply pump In the above, there is provided control means for controlling the drive voltage of the fuel supply pump to be lower as the fuel temperature is higher. According to the second aspect, in the first aspect, the drive voltage of the fuel supply pump has a lower limit value. According to the third aspect, in the second aspect, the lower limit value is set higher as the rotation and the load are higher.

【0008】請求項4の記載によれば、前記請求項1及
び2及び3において、蒸発燃料供給時の前記空燃比制御
手段の制御値を学習するとともに該学習値を前記空燃比
制御手段の次回のフィードバック補正時に用いる学習制
御手段を設けている。
According to the fourth aspect, in the first, second and third aspects, the control value of the air-fuel ratio control means at the time of supplying the evaporated fuel is learned, and the learned value is next learned by the air-fuel ratio control means. The learning control means used at the time of feedback correction is provided.

【0009】[0009]

【作用・効果】請求項1の記載の発明によれば、燃料供
給ポンプの駆動電圧を燃料温度が高い程低くしたこと
で、燃料温度が高くてもリターン燃料のかき混ぜ効果に
よる蒸発燃料の増大が防止でき、蒸発燃料供給手段内に
蓄積される蒸発燃料の量が燃料の温度によって大きく異
ならず、燃料温度の上昇にともなう蒸発燃料量の急激な
増加を招くことなく、またこれに伴う蒸発燃料供給時の
空燃比の急激な変動を招くことなく走行性を改善するこ
とができる。また、燃料温度が低い時にパージバルブ開
度、つまり蒸発燃料供給量を設定した場合でも、燃料温
度が高い時にパージ過多とならずに走行性を改善するこ
とができる。請求項2の記載によれば、燃料供給ポンプ
の駆動電圧に下限値を設けていることで、燃料供給ポン
プは燃料を安定的に燃料噴射弁に供給することができ
る。
According to the first aspect of the present invention, the driving voltage of the fuel supply pump is set lower as the fuel temperature is higher. Therefore, even if the fuel temperature is higher, the evaporated fuel is increased due to the stirring effect of the return fuel. The amount of vaporized fuel accumulated in the vaporized fuel supply means does not vary greatly depending on the temperature of the fuel, and the vaporized fuel amount does not increase sharply as the fuel temperature rises. The runnability can be improved without causing a sudden change in the air-fuel ratio. Further, even when the purge valve opening, that is, the evaporated fuel supply amount is set when the fuel temperature is low, the traveling performance can be improved without excessive purging when the fuel temperature is high. According to the second aspect, by providing the lower limit value for the drive voltage of the fuel supply pump, the fuel supply pump can stably supply the fuel to the fuel injection valve.

【0010】請求項3の記載によれば、前記燃料供給ポ
ンプの駆動電圧の下限値を、回転及び負荷が高い程高く
設定することにより、燃料供給ポンプは燃料を内燃機関
の運転状態に応じて安定的に燃料噴射弁に供給すること
ができる。
According to the third aspect of the present invention, the lower limit value of the drive voltage of the fuel supply pump is set to be higher as the rotation speed and the load are higher, so that the fuel supply pump supplies the fuel according to the operating state of the internal combustion engine. The fuel can be stably supplied to the fuel injection valve.

【0011】請求項4の記載によれば、蒸発燃料供給手
段内に蓄積される蒸発燃料の量が燃料の温度によって大
きく異ならないため、蒸発燃料供給時の前記空燃比制御
手段の制御値を学習するとともに該学習値を前記空燃比
制御手段の次回のフィードバック補正時に用いる学習制
御手段を設けていることにより、蒸発燃料の吸気系への
供給が安定的に行え、空燃比の急激な変化による走行性
の悪化を防止できる。
According to the fourth aspect of the present invention, the amount of the evaporated fuel accumulated in the evaporated fuel supply means does not largely change depending on the temperature of the fuel, so the control value of the air-fuel ratio control means at the time of supplying the evaporated fuel is learned. In addition, by providing the learning control means for using the learned value at the time of the next feedback correction of the air-fuel ratio control means, the evaporated fuel can be stably supplied to the intake system, and the traveling due to the sudden change of the air-fuel ratio. The deterioration of sex can be prevented.

【0012】[0012]

【実施例】以下、本発明の実施例について図面に沿って
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】図1は本発明の構成を示す平面図、図2
は、従来の燃料供給ポンプ制御時の蒸発燃料の発生量と
燃料温度との関係を示した図、図3は、本発明の燃料供
給ポンプ制御時の蒸発燃料の発生量と燃料温度との関係
を示した図、図4は、本発明の燃料供給ポンプ制御電圧
と燃料温度との関係の一例を示した図、図5は最終下限
電圧の内燃機関の回転数と負荷状態との関係の一例を示
した図、図6は、燃料供給ポンプ制御電圧を決定するフ
ローチャート、図7は、内燃機関の燃料供給制御の基本
フローチャートである。
FIG. 1 is a plan view showing the structure of the present invention, and FIG.
FIG. 3 is a diagram showing the relationship between the amount of evaporated fuel generated and fuel temperature during conventional fuel supply pump control, and FIG. 3 is the relationship between the amount of evaporated fuel generated and fuel temperature during fuel supply pump control according to the present invention. FIG. 4 is a diagram showing an example of the relationship between the fuel supply pump control voltage and the fuel temperature of the present invention, and FIG. 5 is an example of the relationship between the rotational speed of the internal combustion engine at the final lower limit voltage and the load state. FIG. 6 is a flowchart for determining the fuel supply pump control voltage, and FIG. 7 is a basic flowchart for fuel supply control of the internal combustion engine.

【0014】図1において、10は蒸発燃料供給装置を
備えた内燃機関本体であり、吸気はエアクリーナ11を
介して外部より導入される。その後、吸気はエアフロメ
ータ12、スロットルチャンバ13、過給器14を経て
各気筒に供給される。吸気はスロットルチャンバ13内
に設けられているスロットル弁15によって吸気量を制
御されている。スロットル弁15は、アクセルペダル
(図示せず)に連動して操作され減速走行状態及びアイ
ドル運転状態においては最小開度に維持される。そして
最小開度状態ではアイドルスイッチがONになる。ま
た、過給器14をバイパスするエアバイパス通路16が
設けられており、エアバイパス通路16にはアイドル時
及び低負荷時における内燃機関制御のための吸気量調整
手段となるエアバイパスバルブ17が設けられている。
また、内燃機関運転時の空燃比は、エンジンコントロー
ルユニット18(以下ECUと略称する)における電子
燃料噴射制御装置側の空燃比制御システムにおいて、例
えばエアフロメータ12等の出力値と内燃機関回転数検
出センサー29より検出される内燃機関の回転数検出信
号とに基づいて、まず基本燃料噴射量を決定する。さら
に排気通路中に排気ガス中の酸素濃度を検出するための
2 センサー19を設け、O2 センサー19より未燃焼
酸素の濃度を検出することで実際の内燃機関の空燃比を
検出し、検出値と設定された目標空燃比との偏差におい
て基本燃料噴射量をフィードバック補正することによっ
て常に設定空燃比に維持するようなシステムが採用され
ている。したがって、空燃比のコントロールシステムに
おける最終燃料噴射量の一般的な算出システムは図7に
示されるように、まず、ステップS2-1 で内燃機関の冷
却水水温、吸気量、吸気温、大気圧、内燃機関の回転数
検出信号等を読み込む。そして次にステップS2-2 で、
上記吸気量と内燃機関の回転数検出信号とにも基づいて
基本となる基本燃料噴射量を演算する。その後ステップ
S2-3 〜ステップS2-7 で、吸気温補正、大気圧補正、
暖気増量、加減速補正、高負荷増量等の運転状態に対応
した個別の燃料補正を行った後、さらにステップS2-8
で上述したO2センサー19出力に基づく空燃比のフィ
ードバック補正を、またその後ステップS2-9 で同空燃
比制御の補正値に基づき学習制御を行う。このとき、蒸
発燃料供給時と蒸発燃料非供給時とで各々学習制御を行
う。そして、その後ステップS2-10,S2-11で燃料噴射
のための無効噴射時間、燃料カット気筒を各々設定し
て、ステップS2-12最終燃料噴射量を設定する。そして
設定された最終燃料噴射量に対応した駆動パルスで燃料
噴射弁20を駆動して内燃機関に燃料を噴射する。燃料
噴射弁20に供給される燃料は燃料タンク21内に設け
られた燃料供給ポンプ22により燃料タンク21から燃
料供給通路23を通じて内燃機関側に供給され、燃料噴
射弁20より各気筒ごとに噴射されるようになってい
る。また、24は該燃料噴射弁20から噴射されなかっ
た燃料を燃料タンク21内に戻すリターン燃料通路であ
る。さらに、該燃料タンク21内には燃料温度を検出す
る燃料温度検出センサー25が設けられており、燃料温
度検出センサー25からの信号はECU18に入力され
る。また、燃料タンク21内に発生する蒸発燃料は蒸発
燃料通路を通りキャニスタ27に捕集される。このキャ
ニスタ27は、例えばその内部にチャコールフィルタ
(図示せず)を備えており、燃料タンク21内の蒸発燃
料を、蒸発燃料通路26を通りフィルター部(図示せ
ず)に導入し吸着させることによって補修する。そして
キャニスタ27内部の蒸発燃料はパージバルブ28が開
かれたときに蒸発燃料供給通路を介して内燃機関の吸気
通路内に供給される。パージバルブ28の開閉状態の制
御は、空燃比制御手段の制御を学習するとともに、該学
習値を前記空燃比制御手段の次回のフィードバック補正
時に用いる学習制御手段により制御されている。また、
燃料噴射弁20に燃料を送る燃料供給ポンプ22は過給
器下流の吸気圧力を検出する過給圧センサー30よりの
過給圧検出信号、内燃機関の回転数検出信号、スロット
ル開度等によって基本燃料供給ポンプ制御電圧を決定す
る。基本燃料供給ポンプ制御電圧に燃料温度を係数とし
て乗じたものを最終燃料供給ポンプ制御電圧とする。ま
た、燃料供給ポンプ制御電圧の基本下限電圧に内燃機関
の回転数検出信号、スロットル開度、過給圧検出信号等
を係数として用いたものを最終下限電圧と決定する(図
5参照)。最終下限電圧は、内燃機関に燃料噴射弁20
から燃料を供給する際に燃料圧力の不足から燃料噴射弁
20より噴射される燃料の量が充分ではなく空燃比の急
激な変動を招くというようなことがないように決定され
る。そして、最終燃料供給ポンプ制御電圧と最終下限電
圧と比較し、最終燃料供給ポンプ制御電圧が最終下限電
圧よりも低い場合には最終燃料供給ポンプ制御電圧を無
視し最終下限電圧で燃料供給ポンプ22を駆動し、最終
燃料供給ポンプ制御電圧が該最終下限電圧よりも高い場
合には最終燃料供給ポンプ制御電圧で燃料供給ポンプ2
2を駆動する。したがって、燃料供給ポンプのコントロ
ールシステムにおける最終燃料供給ポンプ駆動電圧の一
般的な算出システムは図6に示されるように、まず、ス
テップS1-1 で回転数検出信号、過給圧検出信号、スロ
ットル開度検出信号等を読み込む。そして次にステップ
S1-2 で上記回転数検出信号、過給圧検出信号、スロッ
トル開度検出信号等に基づいて基本燃料供給ポンプ制御
電圧を決定する。その後、ステップS1-3 で燃料温度を
読み込み、ステップS1-4 で該燃料温度をもとに燃料温
度補正係数を決定する。そして、ステップS1-5 で基本
燃料供給ポンプ制御電圧に燃料温度補正係数を乗じたも
のを最終燃料供給ポンプ制御電圧とする。そしてステッ
プS1-6 〜ステップS1-8 にかけて、この最終燃料供給
ポンプ制御電圧と、燃料供給ポンプ制御電圧の基本下限
電圧に内燃機関の回転数検出信号、スロットル開度、過
給圧検出信号等を係数として用い決定された最終下限電
圧とを比較し、最終燃料供給ポンプ制御電圧が最終下限
電圧よりも低い場合には最終燃料供給ポンプ制御電圧を
無視し最終下限電圧で燃料供給ポンプ22を駆動し、最
終燃料供給ポンプ制御電圧が該最終下限電圧よりも高い
場合には最終燃料供給ポンプ制御電圧で燃料供給ポンプ
22を駆動する。なお、上記では基本燃料供給ポンプ制
御電圧に燃料温度を係数として乗じたものを最終燃料供
給ポンプ制御電圧としているが、燃料温度のほかに外気
温、リターン燃料量、燃料タンク内の圧力等を係数とし
て用いてもよい。
In FIG. 1, reference numeral 10 denotes an internal combustion engine body having an evaporated fuel supply device, and intake air is introduced from the outside through an air cleaner 11. Then, the intake air is supplied to each cylinder through the air flow meter 12, the throttle chamber 13, and the supercharger 14. The amount of intake air is controlled by a throttle valve 15 provided in the throttle chamber 13. The throttle valve 15 is operated in conjunction with an accelerator pedal (not shown) and is maintained at the minimum opening degree in the decelerating traveling state and the idle operating state. The idle switch is turned on in the minimum opening state. Further, an air bypass passage 16 that bypasses the supercharger 14 is provided, and an air bypass valve 17 that serves as an intake air amount adjusting means for controlling the internal combustion engine at the time of idling and at the time of low load is provided in the air bypass passage 16. Has been.
Further, the air-fuel ratio during operation of the internal combustion engine is detected by, for example, the output value of the air flow meter 12 and the internal combustion engine speed detection in the air-fuel ratio control system on the electronic fuel injection control device side in the engine control unit 18 (hereinafter abbreviated as ECU). First, the basic fuel injection amount is determined based on the rotation speed detection signal of the internal combustion engine detected by the sensor 29. Further, an O 2 sensor 19 for detecting the oxygen concentration in the exhaust gas is provided in the exhaust passage, and the actual combustion air-fuel ratio of the internal combustion engine is detected by detecting the concentration of unburned oxygen from the O 2 sensor 19. A system is employed in which the basic air fuel injection amount is feedback-corrected in the deviation between the value and the set target air-fuel ratio to maintain the set air-fuel ratio at all times. Therefore, as shown in FIG. 7, the general calculation system of the final fuel injection amount in the air-fuel ratio control system is as follows. First, in step S2-1, the cooling water temperature of the internal combustion engine, the intake amount, the intake temperature, the atmospheric pressure, The internal combustion engine speed detection signal and the like are read. Then, in step S2-2,
Based on the intake air amount and the internal combustion engine rotation speed detection signal, a basic fuel injection amount as a basic is calculated. After that, in steps S2-3 to S2-7, intake air temperature correction, atmospheric pressure correction,
After performing individual fuel corrections corresponding to operating conditions such as warm air increase, acceleration / deceleration correction, and high load increase, further step S2-8
In step S2-9, learning control is performed based on the correction value of the air-fuel ratio control based on the output of the O 2 sensor 19 described above. At this time, the learning control is performed when the evaporated fuel is supplied and when the evaporated fuel is not supplied. Then, after that, in steps S2-10 and S2-11, the invalid injection time for fuel injection and the fuel cut cylinder are set respectively, and the final fuel injection amount is set in step S2-12. Then, the fuel injection valve 20 is driven by the drive pulse corresponding to the set final fuel injection amount, and the fuel is injected into the internal combustion engine. The fuel supplied to the fuel injection valve 20 is supplied to the internal combustion engine side from the fuel tank 21 through the fuel supply passage 23 by the fuel supply pump 22 provided in the fuel tank 21, and is injected from the fuel injection valve 20 for each cylinder. It has become so. Further, reference numeral 24 is a return fuel passage for returning the fuel not injected from the fuel injection valve 20 into the fuel tank 21. Further, a fuel temperature detection sensor 25 that detects the fuel temperature is provided in the fuel tank 21, and a signal from the fuel temperature detection sensor 25 is input to the ECU 18. The evaporated fuel generated in the fuel tank 21 passes through the evaporated fuel passage and is collected by the canister 27. The canister 27 is provided with, for example, a charcoal filter (not shown) therein, and the evaporated fuel in the fuel tank 21 is introduced into the filter portion (not shown) through the evaporated fuel passage 26 to be adsorbed. Repair. Then, the evaporated fuel inside the canister 27 is supplied into the intake passage of the internal combustion engine through the evaporated fuel supply passage when the purge valve 28 is opened. The control of the open / closed state of the purge valve 28 is controlled by the learning control means which learns the control of the air-fuel ratio control means and uses the learned value at the next feedback correction of the air-fuel ratio control means. Also,
A fuel supply pump 22 that sends fuel to the fuel injection valve 20 is basically based on a supercharging pressure detection signal from a supercharging pressure sensor 30 that detects an intake pressure downstream of a supercharger, a rotation speed detection signal of an internal combustion engine, a throttle opening degree, and the like. Determine fuel supply pump control voltage. The final fuel supply pump control voltage is obtained by multiplying the basic fuel supply pump control voltage by the fuel temperature as a coefficient. Further, the final lower limit voltage is determined by using the basic lower limit voltage of the fuel supply pump control voltage with the internal combustion engine rotation speed detection signal, throttle opening, boost pressure detection signal, etc. as a coefficient (see FIG. 5). The final lower limit voltage of the internal combustion engine is the fuel injection valve 20.
Is determined such that the amount of fuel injected from the fuel injection valve 20 is not sufficient and the air-fuel ratio is abruptly changed due to insufficient fuel pressure. Then, the final fuel supply pump control voltage is compared with the final lower limit voltage, and when the final fuel supply pump control voltage is lower than the final lower limit voltage, the final fuel supply pump control voltage is ignored and the fuel supply pump 22 is operated at the final lower limit voltage. If the final fuel supply pump control voltage is higher than the final lower limit voltage, the fuel supply pump 2 is driven at the final fuel supply pump control voltage.
Drive 2 Therefore, as shown in FIG. 6, the general calculation system of the final fuel supply pump drive voltage in the control system of the fuel supply pump is as follows. First, in step S1-1, the rotation speed detection signal, the boost pressure detection signal, and the throttle opening signal are detected. Read the degree detection signal. Then, in step S1-2, the basic fuel supply pump control voltage is determined based on the rotation speed detection signal, the boost pressure detection signal, the throttle opening detection signal, and the like. Thereafter, the fuel temperature is read in step S1-3, and the fuel temperature correction coefficient is determined based on the fuel temperature in step S1-4. Then, in step S1-5, the final fuel supply pump control voltage is obtained by multiplying the basic fuel supply pump control voltage by the fuel temperature correction coefficient. Then, in steps S1-6 to S1-8, the final fuel supply pump control voltage and the basic lower limit voltage of the fuel supply pump control voltage are supplied with the engine speed detection signal, throttle opening, boost pressure detection signal, etc. When the final fuel supply pump control voltage is lower than the final lower limit voltage, the final fuel supply pump control voltage is ignored, and the fuel supply pump 22 is driven at the final lower limit voltage. If the final fuel supply pump control voltage is higher than the final lower limit voltage, the fuel supply pump 22 is driven with the final fuel supply pump control voltage. In the above, the final fuel supply pump control voltage is obtained by multiplying the basic fuel supply pump control voltage by the fuel temperature as a coefficient.However, in addition to the fuel temperature, the outside air temperature, the amount of return fuel, the pressure in the fuel tank, etc. You may use as.

【0015】また、図2は本願発明の燃料供給ポンプ2
2の駆動電圧の制御を用いていない場合の蒸発燃料の発
生量と燃料温度との関係を示した図であるが、明らかに
55゜C付近で蒸発燃料の発生量の変曲点が存在し、5
5゜C付近以上では燃料温度の上昇に伴い発生する蒸発
燃料の量も上昇している。それに比べ図3は燃料供給ポ
ンプ22の駆動電圧の本願発明の制御を用いた場合の蒸
発燃料の発生量と燃料温度との関係を示した図である
が、図2に比べ蒸発燃料の発生量の変曲点らしきものは
存在せず、55゜C付近以上でも燃料温度上昇に伴う図
2に見られるような急激な蒸発燃料の発生量の変化は見
られない。
FIG. 2 shows the fuel supply pump 2 of the present invention.
2 is a diagram showing the relationship between the amount of evaporated fuel generated and the fuel temperature when the control of the driving voltage of No. 2 is not used. Obviously, there is an inflection point of the amount of evaporated fuel generated around 55 ° C. 5,
Above 5 ° C, the amount of vaporized fuel generated increases as the fuel temperature rises. In comparison, FIG. 3 is a diagram showing the relationship between the amount of evaporated fuel generated and the fuel temperature when the control of the drive voltage of the fuel supply pump 22 according to the present invention is used, but compared with FIG. No inflection point appears, and even at around 55 ° C. or above, there is no sudden change in the amount of vaporized fuel generated as shown in FIG.

【0016】以上のように制御される燃料供給ポンプ2
2により、燃料温度が高くてもリターン燃料の量が少な
いためかき混ぜ効果による蒸発燃料の増大が防止でき
る。また、燃料供給ポンプ22の駆動電圧に下限電圧を
内燃機関の運転状態に応じて設けたことにより、燃料を
内燃機関の運転状態に応じて安定的に燃料噴射弁20に
供給することができる。また、蒸発燃料供給手段内に蓄
積される蒸発燃料の量が燃料の温度によって大きく異な
らないため、蒸発燃料供給時の上記学習制御による該学
習値を次回の蒸発燃料供給時の空燃比フィードバック時
に用いる手段を備えることにより、空燃比が急激に変化
することがなく、走行性の悪化を招くことはない。
The fuel supply pump 2 controlled as described above
According to 2, since the amount of return fuel is small even if the fuel temperature is high, it is possible to prevent an increase in evaporated fuel due to the stirring effect. Further, by providing the lower limit voltage to the drive voltage of the fuel supply pump 22 according to the operating state of the internal combustion engine, fuel can be stably supplied to the fuel injection valve 20 according to the operating state of the internal combustion engine. Further, since the amount of the evaporated fuel accumulated in the evaporated fuel supply means does not largely vary depending on the temperature of the fuel, the learned value obtained by the learning control when the evaporated fuel is supplied is used when the air-fuel ratio is fed back when the evaporated fuel is supplied next time. By providing the means, the air-fuel ratio does not suddenly change, and the runnability is not deteriorated.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の構成を示す平面図である。FIG. 1 is a plan view showing a configuration of the present invention.

【図2】図2は、従来の燃料供給ポンプ制御時の蒸発燃
料の発生量と燃料温度との関係を示した図である。
FIG. 2 is a diagram showing the relationship between the amount of evaporated fuel generated and the fuel temperature during conventional fuel supply pump control.

【図3】図3は、本発明の燃料供給ポンプ制御時の蒸発
燃料の発生量と燃料温度との関係を示した図である。
FIG. 3 is a diagram showing the relationship between the amount of evaporated fuel generated and the fuel temperature during control of the fuel supply pump of the present invention.

【図4】図4は、本発明の燃料供給ポンプ制御電圧と燃
料温度との関係を示した図である。
FIG. 4 is a diagram showing a relationship between a fuel supply pump control voltage and a fuel temperature according to the present invention.

【図5】図5は最終下限電圧の内燃機関の回転数と負荷
状態との関係の一例を示した図である。
FIG. 5 is a diagram showing an example of the relationship between the rotational speed of the internal combustion engine at the final lower limit voltage and the load state.

【図6】図6は燃料供給ポンプ制御電圧を決定するフロ
ーチャートである。
FIG. 6 is a flowchart for determining a fuel supply pump control voltage.

【図7】図7は、内燃機関の燃料供給制御の基本フロー
チャートである。
FIG. 7 is a basic flowchart of fuel supply control of an internal combustion engine.

【符号の説明】[Explanation of symbols]

10は内燃機関本体、11はエアクリーナ、12はエア
フロメータ、13はスロットルチャンバ、14は過給
器、15はスロットル弁、16はエアバイパス通路、1
7はエアバイパスバルブ、18はECU、19はO2
ンサー、20は燃料噴射弁、21は燃料タンク、22は
燃料供給ポンプ、23は燃料供給通路、24はリターン
燃料通路、25は燃料温度検出センサー、26は蒸発燃
料通路、27はキャニスタ、28はパージバルブ、29
は内燃機関回転数検出センサー、30は過給圧センサー
である。
10 is an internal combustion engine body, 11 is an air cleaner, 12 is an air flow meter, 13 is a throttle chamber, 14 is a supercharger, 15 is a throttle valve, 16 is an air bypass passage, 1
7 is an air bypass valve, 18 is an ECU, 19 is an O 2 sensor, 20 is a fuel injection valve, 21 is a fuel tank, 22 is a fuel supply pump, 23 is a fuel supply passage, 24 is a return fuel passage, and 25 is a fuel temperature detection. Sensor, 26 evaporative fuel passage, 27 canister, 28 purge valve, 29
Is an internal combustion engine speed detection sensor, and 30 is a supercharging pressure sensor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02M 25/08 301 J 7314−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02M 25/08 301 J 7314-3G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃料タンク内に発生する蒸発燃料を内燃機
関の吸気系に供給する蒸発燃料供給手段と、該内燃機関
の空燃比を所定の空燃比にフィードバック補正する空燃
比制御手段と、燃料噴射弁に燃料を供給する電動の燃料
供給ポンプと、該燃料供給ポンプの駆動電圧を制御する
ことにより燃料噴射弁に供給する燃料を制御する制御手
段とを備える内燃機関において、該燃料供給ポンプの駆
動電圧を燃料温度が高い程低く制御する制御手段を設け
ることを特徴とする内燃機関の燃料供給ポンプの制御装
置。
1. Evaporative fuel supply means for supplying evaporated fuel generated in a fuel tank to an intake system of an internal combustion engine; air-fuel ratio control means for feedback-correcting the air-fuel ratio of the internal combustion engine to a predetermined air-fuel ratio; In an internal combustion engine including an electric fuel supply pump for supplying fuel to the injection valve and a control means for controlling fuel supplied to the fuel injection valve by controlling a drive voltage of the fuel supply pump, A control device for a fuel supply pump of an internal combustion engine, comprising control means for controlling the drive voltage to be lower as the fuel temperature is higher.
【請求項2】前記請求項1において、前記燃料供給ポン
プの駆動電圧に下限値を設けることを特徴とする内燃機
関の燃料供給ポンプの制御装置。
2. The control device for a fuel supply pump for an internal combustion engine according to claim 1, wherein a lower limit value is set for the drive voltage of the fuel supply pump.
【請求項3】前記請求項2においての下限値を、回転及
び負荷が高い程高く設定することを特徴とする内燃機関
の燃料供給ポンプの制御装置。
3. A control device for a fuel supply pump of an internal combustion engine, wherein the lower limit value in claim 2 is set higher as the rotation speed and the load are higher.
【請求項4】前記請求項1及び2及び3において、蒸発
燃料供給時に前記空燃比制御手段の制御値を学習すると
ともに該学習値を前記空燃比制御手段の次回のフィード
バック補正時に用いる学習制御手段を設けることを特徴
とする内燃機関の燃料供給ポンプの制御装置。
4. The learning control means according to claim 1, 2 and 3, wherein the control value of the air-fuel ratio control means is learned when the evaporated fuel is supplied, and the learned value is used in the next feedback correction of the air-fuel ratio control means. A control device for a fuel supply pump of an internal combustion engine, comprising:
JP7148293A 1993-03-30 1993-03-30 Control device for fuel supply pump of internal combustion engine Pending JPH06280706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7148293A JPH06280706A (en) 1993-03-30 1993-03-30 Control device for fuel supply pump of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7148293A JPH06280706A (en) 1993-03-30 1993-03-30 Control device for fuel supply pump of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06280706A true JPH06280706A (en) 1994-10-04

Family

ID=13461911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7148293A Pending JPH06280706A (en) 1993-03-30 1993-03-30 Control device for fuel supply pump of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06280706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102405A3 (en) * 2002-05-29 2004-04-08 Nartron Corp Vehicle fuel management system
JP2013231373A (en) * 2012-04-27 2013-11-14 Toyota Motor Corp Fuel pressure control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102405A3 (en) * 2002-05-29 2004-04-08 Nartron Corp Vehicle fuel management system
US6877488B2 (en) 2002-05-29 2005-04-12 Nartron Corporation Vehicle fuel management system
US7055505B2 (en) 2002-05-29 2006-06-06 Nartron Corporation Vehicle fuel management system
US7377253B2 (en) 2002-05-29 2008-05-27 Nartron Corporation Vehicle fuel management system
JP2013231373A (en) * 2012-04-27 2013-11-14 Toyota Motor Corp Fuel pressure control device

Similar Documents

Publication Publication Date Title
JP2615285B2 (en) Evaporative fuel control system for internal combustion engine
US4841940A (en) Air-fuel ratio control device of an internal combustion engine
US7161258B2 (en) Control apparatus for internal combustion engine
JPH07151020A (en) Canister purge controller and control method thereof
JPH06146948A (en) Air/fuel ratio control device of internal combustion engine provided with evaporated fuel processing device
JPH06280706A (en) Control device for fuel supply pump of internal combustion engine
JPH109008A (en) Control device of engine
JP3061277B2 (en) Air-fuel ratio learning control method and device
JP3620210B2 (en) Control device for internal combustion engine
JP2592432B2 (en) Evaporative fuel control system for internal combustion engine
JP3337410B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3470421B2 (en) Evaporative fuel treatment system for internal combustion engine
JP2889418B2 (en) Air-fuel ratio learning control method
JPH08200119A (en) Fuel injection amount controller of internal combustion engine
JP2767345B2 (en) Fuel supply control device for internal combustion engine
JP2913835B2 (en) Fuel evaporative emission control system
JPH07259630A (en) Intake air quantity calculating device by intake pipe pressure
JPH09317532A (en) Evaporating fuel controller for internal combustion engine
JPH07109941A (en) Fuel controller of engine
JP3269400B2 (en) Air-fuel ratio control device for internal combustion engine
JPH029948A (en) Fuel injection device for engine
JP2856062B2 (en) Air-fuel ratio control device for internal combustion engine
JP3092075B2 (en) Evaporative fuel control system for internal combustion engine
JPH07293357A (en) Vapor fuel treatment device for internal combustion engine
JPH06193521A (en) Fuel control device for engine