JPH07109941A - Fuel controller of engine - Google Patents

Fuel controller of engine

Info

Publication number
JPH07109941A
JPH07109941A JP25730693A JP25730693A JPH07109941A JP H07109941 A JPH07109941 A JP H07109941A JP 25730693 A JP25730693 A JP 25730693A JP 25730693 A JP25730693 A JP 25730693A JP H07109941 A JPH07109941 A JP H07109941A
Authority
JP
Japan
Prior art keywords
fuel
engine
amount
intake
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25730693A
Other languages
Japanese (ja)
Inventor
Kazuhide Togai
一英 栂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP25730693A priority Critical patent/JPH07109941A/en
Publication of JPH07109941A publication Critical patent/JPH07109941A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide the fuel controller of an engine capable of preventing shift of an air-fuel ratio caused by purge fuel by surely detecting a purge fuel quantity. CONSTITUTION:A fuel control means for controlling a fuel injection quantity Tinj based on the output of a throttle opening sensor 11, an engine rotational sensor 36, etc., a canister 20 adsorbing a fuel steam gas from a fuel tank 19, a HC concentration sensor 25 provided in a canister fluid passage 16, and intake differential pressure detection means 24, 18 provided in the fluid passage 16, for detecting differential pressure (Pc-Pa) between an intake system 3 of the engine and an adhesive means are provided. Consequently, a steam fuel quantity calculation means for calculating a purge fuel quantity fPN sucked into the intake passage 3 of the engine through the fluid passage 16 based on the differential pressure (Pc-Pa) and the HC concentration Vc, and the fuel correction means for correcting the fuel injection quantity Tinj by the fuel control means based of the calculated result are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料タンクよりの燃料蒸
発ガスの大気放出を防止する装置を備えたエンジンの燃
料制御装置、特に、燃料タンクよりの燃料蒸発ガスを吸
着手段に吸着した上で、同吸着手段の燃料蒸発ガスを適
時にエンジン吸気系に燃料として流入させるエンジンの
燃料制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel control device for an engine equipped with a device for preventing atmospheric release of fuel evaporative emission from a fuel tank, and more particularly to adsorbing fuel evaporative emission from a fuel tank onto an adsorbing means. The present invention relates to a fuel control device for an engine, which causes the fuel evaporative gas of the adsorption means to flow into the engine intake system as fuel in a timely manner.

【0002】[0002]

【従来の技術】従来、燃料タンクよりの燃料蒸発ガス
(HC)の大気放出を防止すべく燃料蒸発ガスの大気放
出防止装置が多用されている。この装置は、燃料タンク
よりの燃料蒸発ガスをキャニスタのような吸着手段に吸
着保持しておき、エンジンの高負荷運転時に吸着手段と
エンジンの吸気系を連通する流路を通し、キャニスタの
燃料蒸発ガスを吸気系に流入させて、燃料として有効に
利用するようにしている。ところで、エンジンは本来、
所定の空燃比を保持するように燃料量を制御されてお
り、そのエンジンの吸気系より燃焼室にキャニスタに吸
着されていた燃料蒸発ガスを流入させると、燃焼室での
燃焼雰囲気はリッチ化することと成る。そこで、キャニ
スタに吸着されていた燃料蒸発ガスを燃焼室に流入させ
る時期、即ちパージ時期は、通常、リッチ化運転が行わ
れている高負荷運転域に設定されることが多く、これに
よって、エンジン運転性能に違和感無くパージ処理が成
されている。
2. Description of the Related Art Conventionally, a device for preventing atmospheric release of fuel evaporative emission (HC) from a fuel tank has been widely used. In this device, the fuel evaporative gas from the fuel tank is adsorbed and held by an adsorbing means such as a canister, and the fuel evaporating of the canister is passed through a passage connecting the adsorbing means and the intake system of the engine during high load operation of the engine. The gas is made to flow into the intake system so that it can be effectively used as fuel. By the way, the engine originally
The amount of fuel is controlled so as to maintain a predetermined air-fuel ratio, and when the fuel evaporative gas adsorbed in the canister is introduced into the combustion chamber from the intake system of the engine, the combustion atmosphere in the combustion chamber becomes rich. It will be. Therefore, the time when the fuel evaporative gas adsorbed in the canister is caused to flow into the combustion chamber, that is, the purge time is usually set to the high load operation range where the enrichment operation is performed. The purging process is performed without any discomfort in the driving performance.

【0003】これに対して、エンジンが低中負荷運転時
においては、エンジン運転性能や燃費、あるいは排ガス
対策上よりストイキオあるいはリーン運転を図ることが
望ましく、この運転域でパージ処理、即ちリッチ化され
た空燃比で運転することは問題が多く、この運転域では
燃料蒸発ガスをキャニスタに吸着させることとしてい
る。ところで、パージ運転中に空燃比がリッチ化し、空
燃比が過度にずれることはドライバビリティーが低下
し、排ガスの悪化を招きやすいことより、このパージ処
理される燃料蒸発ガスの量を求めて、燃料供給量を補正
することが知られている。例えば、特開平2−2454
41号公報に開示されているように、空燃比センサの出
力に基づき基本燃料噴射量を算出し、パージ燃料量検出
手段がパージ燃料量を検出し、燃料噴射量補正手段が基
本燃料噴射量よりパージ燃料量を減算して、その結果に
応じて、燃料噴射制御手段が燃料噴射を行い、空燃比の
ずれを防止するようにしている。
On the other hand, when the engine is operating at low and medium loads, it is desirable to achieve stoichiometric or lean operation in view of engine operating performance, fuel economy, and exhaust gas measures. In this operating range, purging, that is, enrichment is performed. There are many problems in operating with the air-fuel ratio, and in this operating range, the fuel evaporative gas is adsorbed to the canister. By the way, during the purge operation, the air-fuel ratio becomes rich, and if the air-fuel ratio is excessively deviated, drivability deteriorates, and deterioration of exhaust gas is likely to occur.Thus, the amount of fuel evaporative gas to be purged is obtained, It is known to correct the fuel supply. For example, JP-A-2-2454
As disclosed in Japanese Patent Publication No. 41, the basic fuel injection amount is calculated based on the output of the air-fuel ratio sensor, the purge fuel amount detection means detects the purge fuel amount, and the fuel injection amount correction means calculates the basic fuel injection amount from the basic fuel injection amount. The purged fuel amount is subtracted, and the fuel injection control means performs fuel injection according to the result to prevent the deviation of the air-fuel ratio.

【0004】[0004]

【発明が解決しようとする課題】しかし、この従来装置
では、パージ燃料量検出手段がどのような構成を採りパ
ージ燃料量を検出するか、開示されない。しかも、ここ
では空燃比がストイキオ近傍であると、パージ補正係数
が修正されない制御方式を採り、これでは、リーン運転
中において空燃比がストイキオ近傍にずれた場合にはパ
ージ補正係数が修正されず、リッチ化し、問題を生じて
しまう。本発明の目的は、パージ燃料量を確実に検出し
てパージ燃料による空燃比のずれを防止出来るエンジン
の燃料制御装置を提供することにある。
However, in this conventional apparatus, it is not disclosed what structure the purge fuel amount detecting means adopts to detect the purge fuel amount. Moreover, here, when the air-fuel ratio is near stoichio, the purge correction coefficient is not modified, so that the purge correction coefficient is not modified when the air-fuel ratio shifts to near stoichio during lean operation, It becomes rich and causes problems. An object of the present invention is to provide a fuel control device for an engine that can reliably detect the amount of purged fuel and prevent the deviation of the air-fuel ratio due to the purged fuel.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに本発明は、エンジンの運転状態を検出する手段と、
上記検出手段の出力に基づき燃料噴射量を制御する燃料
制御手段と、燃料タンクから発生する燃料蒸発ガスを吸
着する吸着手段と、上記吸着手段と上記エンジンの吸気
系を連通する流路と、上記流路に設けられ上記吸着手段
から上記エンジンの吸気系に吸入される燃料蒸発ガスの
濃度を検出するHC濃度検出手段と、上記流路に設けら
れ上記エンジンの吸気系と上記吸着手段との差圧を検出
する吸気差圧検出手段と、上記HC濃度検出手段及び上
記吸気差圧検出手段の検出結果に基づき上記流路を経て
上記エンジンの吸気系に吸入される燃料蒸発ガスの燃料
量を算出する蒸発燃料量算出手段と、上記蒸発燃料量算
出手段の算出結果に基づき上記燃料制御手段による燃料
噴射量を補正する燃料補正手段とを備えてなることを特
徴とする。
In order to achieve the above object, the present invention comprises means for detecting the operating state of an engine,
Fuel control means for controlling the fuel injection amount based on the output of the detection means, adsorbing means for adsorbing the fuel evaporative gas generated from the fuel tank, a flow path communicating the adsorbing means with the intake system of the engine, HC concentration detecting means provided in the flow path for detecting the concentration of the fuel vaporized gas sucked into the intake system of the engine from the adsorbing means, and a difference between the intake system of the engine and the adsorbing means provided in the flow path. The intake differential pressure detecting means for detecting the pressure, and the fuel amount of the fuel evaporative gas sucked into the intake system of the engine through the flow path based on the detection results of the HC concentration detecting means and the intake differential pressure detecting means. And a fuel correction unit that corrects the fuel injection amount by the fuel control unit based on the calculation result of the evaporated fuel amount calculation unit.

【0006】第2の本発明は、エンジンの運転状態を検
出する手段と、上記検出手段の出力に基づき燃料噴射量
を制御する燃料制御手段と、燃料タンクから発生する燃
料蒸発ガスを吸着する吸着手段と、上記吸着手段と上記
エンジンの吸気系を連通する流路と、上記流路に設けら
れ上記吸着手段から上記エンジンの吸気系に吸入される
燃料蒸発ガスの濃度を検出するHC濃度検出手段と、上
記流路に設けられ上記エンジンの吸気系と上記吸着手段
との差圧を検出する吸気差圧検出手段と、上記HC濃度
検出手段及び上記吸気差圧検出手段の検出結果に基づき
上記流路を経て上記エンジンの吸気系に吸入される燃料
蒸発ガスの燃料量を算出する蒸発燃料量算出手段と、上
記流路が開口する吸気系の下流側に配設されたサージタ
ンクと、上記蒸発燃料量算出手段によって算出された燃
料量を当該燃料蒸発ガスが上記流路を経て上記エンジン
の燃焼室に吸入されるまでの遅れ時間に対応し補正して
算出する蒸発燃料量補正算出手段と、上記蒸発燃料量補
正算出手段の算出結果に基づき上記燃料制御手段による
燃料噴射量を補正する燃料補正手段とを備えてなること
を特徴とする。
A second aspect of the present invention is a means for detecting the operating state of the engine, a fuel control means for controlling the fuel injection amount based on the output of the detection means, and an adsorption means for adsorbing the fuel evaporative gas generated from the fuel tank. Means, a flow path communicating the adsorbing means with the intake system of the engine, and an HC concentration detecting means provided in the flow path for detecting the concentration of the fuel evaporative gas sucked into the intake system of the engine from the adsorbing means. And an intake differential pressure detection means for detecting a differential pressure between the intake system of the engine and the adsorption means provided in the flow path, and the flow based on the detection results of the HC concentration detection means and the intake differential pressure detection means. An evaporative fuel amount calculation means for calculating the fuel amount of the fuel evaporative gas sucked into the intake system of the engine through the passage, a surge tank arranged on the downstream side of the intake system with the passage open, and the evaporation Evaporative fuel amount correction calculation means for correcting and calculating the fuel amount calculated by the charge amount calculation means in accordance with a delay time until the fuel evaporative gas is sucked into the combustion chamber of the engine through the flow path, And a fuel correction unit that corrects the fuel injection amount by the fuel control unit based on the calculation result of the evaporated fuel amount correction calculation unit.

【0007】[0007]

【作用】本発明は、燃料蒸発ガスを吸着する吸着手段か
らエンジンの吸気系に吸入される燃料蒸発ガスの濃度を
HC濃度検出手段が検出し、エンジンの吸気系と吸着手
段との差圧を吸気差圧検出手段が検出し、HC濃度検出
手段及び吸気差圧検出手段の検出結果に基づき蒸発燃料
量算出手段がエンジンの吸気系に吸入される燃料蒸発ガ
スの燃料量を算出し、蒸発燃料量算出手段の算出結果に
基づき燃料補正手段が燃料制御手段による燃料噴射量を
補正するので、燃料蒸発ガスの燃料量を全運転域で確実
に算出できる。第2発明は、燃料蒸発ガスを吸着する吸
着手段から下流側にサージタンクが配設されたエンジン
の吸気系に吸入される燃料蒸発ガスの濃度をHC濃度検
出手段が検出し、エンジンの吸気系と吸着手段との差圧
を吸気差圧検出手段が検出し、HC濃度検出手段及び吸
気差圧検出手段の検出結果に基づき蒸発燃料量算出手段
がエンジンの吸気系に吸入される燃料蒸発ガスの燃料量
を算出し、蒸発燃料量算出手段によって算出された燃料
量を蒸発燃料量補正算出手段が当該燃料蒸発ガスが流路
を経てエンジンの燃焼室に吸入されるまでの遅れ時間に
対応し補正して算出し、蒸発燃料量補正算出手段の算出
結果に基づき燃料補正手段が燃料制御手段による燃料噴
射量を補正するので、燃料蒸発ガスの燃料量を全運転域
でより確実に算出できる。
According to the present invention, the HC concentration detecting means detects the concentration of the fuel evaporative gas sucked into the intake system of the engine from the adsorbing means for adsorbing the fuel evaporative gas, and determines the differential pressure between the intake system of the engine and the adsorbing means. The intake differential pressure detection means detects, and based on the detection results of the HC concentration detection means and the intake differential pressure detection means, the evaporated fuel amount calculation means calculates the fuel amount of the fuel evaporative gas sucked into the intake system of the engine, and the evaporated fuel Since the fuel correction unit corrects the fuel injection amount by the fuel control unit based on the calculation result of the amount calculation unit, the fuel amount of the fuel evaporative emission gas can be reliably calculated in the entire operation range. According to a second aspect of the present invention, the HC concentration detecting means detects the concentration of the fuel evaporative gas sucked into the intake system of the engine in which the surge tank is arranged on the downstream side from the adsorbing means for adsorbing the fuel evaporative gas, and the intake system of the engine is detected. The differential pressure between the adsorbing means and the adsorbing means is detected by the intake differential pressure detecting means, and based on the detection results of the HC concentration detecting means and the intake differential pressure detecting means, the evaporated fuel amount calculating means detects the amount of the fuel evaporated gas sucked into the intake system of the engine. The fuel amount is calculated, and the fuel amount calculated by the evaporated fuel amount calculation means is corrected by the evaporated fuel amount correction calculation means in accordance with the delay time until the fuel evaporated gas is sucked into the combustion chamber of the engine through the flow passage. Then, the fuel correction means corrects the fuel injection quantity by the fuel control means based on the calculation result of the evaporated fuel quantity correction calculation means, so that the fuel quantity of the fuel evaporated gas can be calculated more reliably in the entire operating range.

【0008】[0008]

【実施例】図1のエンジンの燃料制御装置は4サイクル
のガソリンエンジン(以後単にエンジンと記す)1に装
着される。ここで、エンジン1は、その本体内に複数の
シリンダ(図1には♯1気筒のみを示した)を直列状に
備える。エンジン1の本体上部のシリンダヘッド2から
延びる吸気路3は吸気多岐管4を介してサージタンク5
内で互いに他の気筒の吸気路と合流される。他方、シリ
ンダヘッド2から延びる排気路6は排気多岐管7及び図
示しない排気管を経て図示しないマフラーに達してい
る。吸気多岐管4の各気筒対向部には各気筒に燃料供給
する燃料噴射弁30(図1には♯1気筒の弁のみを示し
た)がそれぞれ配設され、各燃料噴射弁30は分岐燃料
管31を介し燃料管32に連通し、その開閉制御は後述
のエンジンコントロールユニット(以後単にECUと記
す)13によって実行される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The engine fuel control system of FIG. 1 is installed in a 4-cycle gasoline engine (hereinafter simply referred to as engine) 1. Here, the engine 1 is provided with a plurality of cylinders (only the # 1 cylinder is shown in FIG. 1) in series in its main body. The intake passage 3 extending from the cylinder head 2 at the upper part of the main body of the engine 1 is connected to a surge tank 5 via an intake manifold 4.
Inside, they are joined to the intake passages of other cylinders. On the other hand, the exhaust passage 6 extending from the cylinder head 2 reaches a muffler (not shown) via an exhaust manifold 7 and an exhaust pipe (not shown). A fuel injection valve 30 (only the valve of the # 1 cylinder is shown in FIG. 1) for supplying fuel to each cylinder is arranged at each cylinder facing portion of the intake manifold 4, and each fuel injection valve 30 has a branch fuel. The fuel pipe 32 is connected to the fuel pipe 32 via a pipe 31, and its opening / closing control is executed by an engine control unit (hereinafter simply referred to as ECU) 13 which will be described later.

【0009】燃料管32は燃料タンク19内の燃料ポン
プ33より延出し、燃料圧調整器34に達しており、燃
料圧調整器34から延びる低圧管35は燃料タンク19
に戻るように構成されている。ここで、燃料圧調整器3
4は、ブースト圧を受けて調圧作動し、ブースト圧が低
圧化すると燃料管32内の圧力を低下させ、ブースト圧
が大気圧に近づくと、燃料圧を高めるという調圧作動を
行う。なお、符号36は燃料フィルタを示す。吸気路3
側のサージタンク5はその上流開口部がスロットルボデ
ー8に連通し、同スロットルボデー8は吸気パイプを介
してエアクリーナ10に連通される。スロットルボデー
8はその内部にスロットル弁9を備え、同弁9にはスロ
ットル開度信号θsを出力するスロットル開度センサ1
1が設けられる。サージタンク5はその内壁内にエンジ
ンの運転状態の一つである吸気圧Paを検出する吸気圧
センサ18を装着する。
The fuel pipe 32 extends from the fuel pump 33 in the fuel tank 19 and reaches the fuel pressure regulator 34. The low pressure pipe 35 extending from the fuel pressure regulator 34 is connected to the fuel tank 19.
Is configured to return to. Here, the fuel pressure regulator 3
4 receives a boost pressure to perform a pressure adjusting operation, and when the boost pressure is reduced, the pressure in the fuel pipe 32 is reduced, and when the boost pressure approaches atmospheric pressure, the fuel pressure is increased. Reference numeral 36 indicates a fuel filter. Intake passage 3
The upstream side opening of the surge tank 5 on the side communicates with the throttle body 8, and the throttle body 8 communicates with the air cleaner 10 via an intake pipe. The throttle body 8 has a throttle valve 9 therein, and the throttle opening sensor 1 for outputting a throttle opening signal θs to the valve 9.
1 is provided. The surge tank 5 is equipped with an intake pressure sensor 18 for detecting an intake pressure Pa, which is one of the operating states of the engine, in its inner wall.

【0010】なお、スロットルボデー8には周知のファ
ーストアイドルエアバルブ12及びECU13に制御さ
れるISCバルブ14が設けられ、両バルブはスロット
ル弁9を迂回するバイパス路15のエア流量を調整し、
アイドル回転を制御するように構成される。しかも、ス
ロットルボデー8の吸気路3の内壁にはスロットル弁9
との対向位置にパージ流路16の流入口17が形成さ
れ、同流入口17より燃料蒸発ガスが吸気路3に流入す
るように構成される。パージ流路16は燃料タンク19
から発生する燃料蒸発ガスを吸着する吸着手段としての
キャニスタ20に連結される。キャニスタ20は燃料タ
ンク19の上部空間に開口するパージガス管21を通し
て燃料蒸発ガスを流入され、同燃料蒸発ガスを大気開放
口22側に向けて流入させる際に燃料吸着材201に燃
料分を吸着出来る。なお、符号23はチェックバルブで
あり、同バルブはパージガス管21内での燃料蒸発ガス
の逆流を阻止する。パージ流路16にはキャニスタ20
の内部圧Pcを出力出来る圧力センサ24と、同圧力セ
ンサの下流側に配備され燃料蒸発ガスの濃度信号を出力
するHC濃度検出手段を成すHC濃度センサ25及びパ
ージ流路16を開閉する電磁弁26とがこの順で設けら
れる。
The throttle body 8 is provided with a well-known fast idle air valve 12 and an ISC valve 14 controlled by the ECU 13, both valves adjusting the air flow rate of the bypass passage 15 bypassing the throttle valve 9,
It is configured to control idle rotation. Moreover, the throttle valve 9 is provided on the inner wall of the intake passage 3 of the throttle body 8.
An inflow port 17 of the purge flow path 16 is formed at a position opposite to, and the fuel evaporative gas is introduced from the inflow port 17 into the intake path 3. The purge channel 16 is a fuel tank 19
It is connected to a canister 20 as an adsorbing means for adsorbing the fuel evaporative gas generated from the. The canister 20 is supplied with the fuel evaporative gas through a purge gas pipe 21 opening in the upper space of the fuel tank 19, and can adsorb the fuel component to the fuel adsorbent 201 when the fuel evaporative gas is introduced toward the atmosphere opening port 22 side. . Reference numeral 23 is a check valve, and this valve blocks the reverse flow of the fuel evaporative gas in the purge gas pipe 21. The purge channel 16 has a canister 20.
A pressure sensor 24 capable of outputting the internal pressure Pc, an HC concentration sensor 25 serving as an HC concentration detecting means arranged downstream of the pressure sensor for outputting a concentration signal of the fuel evaporative emission gas, and a solenoid valve for opening and closing the purge passage 16. 26 and 26 are provided in this order.

【0011】HC濃度センサ25は図4に示すように、
センサ基板251の吸気路対向面252上に露呈された
第1抵抗r1とケース253に密閉された第2抵抗r2
とを備え、これら両抵抗は図5に示すような一対の固定
抵抗r3,r4と接続されてブリッジ回路26を構成す
る。このブリッジ回路26は第1抵抗r1及び固定抵抗
r3の接続点j1と、第2抵抗r2及び固定抵抗r4の
接続点j2との間に電源27を接続しておき、第1抵抗
r1及び第2抵抗r2の接続点j3と両固定抵抗r3,
r4の接続点j4との電圧Vsを出力する構成を採る。
ここで、パージ流路16に空気が流れる場合に対して燃
料蒸発ガスが流れた場合、その燃料蒸発ガスのHC濃度
が高いほど第1抵抗r1の冷却が促進され、抵抗値を高
める。これに対し、第2抵抗r2はパージ流路16の燃
料蒸発ガスに触れず、流路温度のみにより抵抗値を変化
させる。このため、第1第2抵抗r1,r2の分圧値の
変化量は温度変化を打ち消した上で燃料蒸発ガスのHC
濃度相当の値VHCとして見做せる。ここでブリッジ回路
26の出力するHC濃度信号Vsは図示しないA/D変
換器を経てECU13に出力され、HC濃度情報として
使用される。
The HC concentration sensor 25, as shown in FIG.
The first resistor r1 exposed on the air intake passage facing surface 252 of the sensor substrate 251 and the second resistor r2 sealed in the case 253.
Both of these resistors are connected to a pair of fixed resistors r3 and r4 as shown in FIG. 5 to form a bridge circuit 26. In this bridge circuit 26, a power source 27 is connected between a connection point j1 of the first resistor r1 and the fixed resistor r3 and a connection point j2 of the second resistor r2 and the fixed resistor r4, and the first resistor r1 and the second resistor r1 are connected. Connection point j3 of resistor r2 and both fixed resistors r3
A configuration is adopted in which the voltage Vs with respect to the connection point j4 of r4 is output.
Here, when the fuel evaporative gas flows compared with the case where air flows in the purge flow path 16, the higher the HC concentration of the fuel evaporative gas is, the more the cooling of the first resistor r1 is promoted, and the resistance value is increased. On the other hand, the second resistance r2 does not come into contact with the fuel evaporative gas in the purge channel 16 and changes the resistance value only by the channel temperature. Therefore, the amount of change in the partial pressure value of the first and second resistors r1 and r2 is the same as that of the fuel evaporative gas after canceling the temperature change.
It can be regarded as a value V HC corresponding to the concentration. Here, the HC concentration signal Vs output from the bridge circuit 26 is output to the ECU 13 via an A / D converter (not shown) and used as HC concentration information.

【0012】ECU13はその主要部がマイクロコンピ
ュータにより構成され、その図示しないROMには図1
0、図11に示すような制御プログラムや図6のエンジ
ン運転域判定マップ、図7の吸入効率補正値Ken算出
マップ、図8のパージ運転域マップや各データの値が記
憶処理される。ECU13の図示しないCPUは各制御
プログラムやマップに沿って各運転情報に応じた制御量
を算出し、同値により電磁弁26、燃料噴射弁30等を
駆動する。図示しない入出力回路には上述のようなスロ
ットル開度センサ11、吸気圧センサ18に加え、圧力
センサ24、HC濃度センサ25、水温WT情報を出力
する水温センサ29、吸気温度Ta情報を出力する吸気
温センサ37、エンジン回転数Ne信号となる単位クラ
ンク角信号Δθを出力するクランク角センサ36等が接
続され、これらより適時に各検出信号が取り込まれ、し
かも、電磁弁26、燃料噴射弁30に適時に駆動出力を
発するように構成される。
The main part of the ECU 13 is composed of a microcomputer, and the ROM (not shown) is provided with a microcomputer shown in FIG.
0, the control program as shown in FIG. 11, the engine operating range determination map of FIG. 6, the intake efficiency correction value Ken calculation map of FIG. 7, the purge operating range map of FIG. 8 and the values of each data are stored. A CPU (not shown) of the ECU 13 calculates a control amount according to each operation information according to each control program and a map, and drives the solenoid valve 26, the fuel injection valve 30 and the like by the same value. In addition to the throttle opening sensor 11 and the intake pressure sensor 18 as described above, an input / output circuit (not shown) outputs a pressure sensor 24, an HC concentration sensor 25, a water temperature sensor 29 that outputs water temperature WT information, and intake air temperature Ta information. An intake air temperature sensor 37, a crank angle sensor 36 that outputs a unit crank angle signal Δθ which is an engine speed Ne signal, and the like are connected, and each detection signal is taken in from these at a proper time. Moreover, the solenoid valve 26 and the fuel injection valve 30 are connected. Is configured to emit a drive output in a timely manner.

【0013】特にここでECU13は、図2に示すよう
に、運転情報である吸気圧センサ18による吸気管圧P
b、クランク角センサ36によるエンジン回転数Neの
各出力に基づき燃料噴射量Qを制御する燃料制御手段A
1と、HC濃度センサ25、吸気圧センサ18及び圧力
センサ24の検出結果に基づきパージ流路16を経て吸
気路3に吸入される燃料蒸発ガスの燃料量を算出する蒸
発燃料量算出手段A2と、蒸発燃料量算出手段A2によ
って算出された燃料量を当該燃料蒸発ガスがパージ流路
16を経てエンジン1の燃焼室に吸入されるまでの遅れ
時間に対応し補正して算出する蒸発燃料量補正算出手段
A3と、蒸発燃料量補正算出手段A3の算出結果に基づ
き燃料制御手段A1による燃料噴射量を補正する燃料補
正手段A4としての機能を備える。なお、ここでの燃料
供給制御では吸入空気量に基づく基本燃料パルス幅Tf
を算出し、これに空燃比その他の補正係数を掛けてイン
ジェクタ駆動時間を決定し、休筒時(後述のインジェク
タ停止指令)には休筒気筒♯1,♯4を除く常時運転気
筒♯2,♯3のみのインジェクタ25を駆動させ、全気
筒運転時には全気筒のインジェクタ25を駆動するとい
う周知のインジェクタ駆動制御処理をおこなう。図10
乃至図11は本発明の一実施例としてのエンジンの燃料
制御装置で用いるECU13の制御プログラムの各フロ
ーチャートを示す。
Particularly, here, the ECU 13 controls the intake pipe pressure P by the intake pressure sensor 18 which is operation information as shown in FIG.
b, fuel control means A for controlling the fuel injection amount Q based on each output of the engine speed Ne by the crank angle sensor 36
1, and evaporative fuel amount calculation means A2 for calculating the fuel amount of the fuel evaporative gas sucked into the intake passage 3 through the purge passage 16 based on the detection results of the HC concentration sensor 25, the intake pressure sensor 18, and the pressure sensor 24. Evaporative fuel amount correction in which the fuel amount calculated by the evaporated fuel amount calculating means A2 is corrected and calculated in accordance with the delay time until the fuel evaporated gas is sucked into the combustion chamber of the engine 1 through the purge passage 16. The calculation unit A3 and a function as a fuel correction unit A4 that corrects the fuel injection amount by the fuel control unit A1 based on the calculation result of the evaporated fuel amount correction calculation unit A3 are provided. In the fuel supply control here, the basic fuel pulse width Tf based on the intake air amount
Is calculated, and this is multiplied by an air-fuel ratio and other correction factors to determine the injector drive time, and during cylinder deactivation (injector stop command described below), cylinders # 2, which are always operating except cylinder deactivated cylinders # 1, # 4. A well-known injector drive control process of driving the injectors 25 of only # 3 and driving the injectors 25 of all the cylinders when all cylinders are in operation is performed. Figure 10
11 to 11 show respective flowcharts of the control program of the ECU 13 used in the fuel control apparatus for the engine as one embodiment of the present invention.

【0014】このECU13は図示しないメインスイッ
チのキーオンによりメインルーチンでの制御に入る。こ
こではまず、各センサ機能のチェック、初期値セット等
の初期機能セットが成された上でステップa1に達し、
スロットル開度センサ11、吸気圧センサ18、圧力セ
ンサ24、HC濃度センサ25、水温センサ29、吸気
温センサ37、クランク角センサ36等より、スロット
ル開度θs信号、吸気圧Pb信号、キャニスタ内部圧力
Pc、HC濃度VHC信号、水温WT信号、吸気温度Ta
信号、エンジン回転数Ne信号となる単位クランク角信
号Δθが取り込まれる。ステップa2では吸入空気の状
態方程式(P・V=N・R・Ta)に基づき吸入空気量A/N
を下記の式(1)で算出し、所定のエリアにストアす
る。なお、Pは下死点でのシリンダ内の圧力、Vはシリ
ンダ容積、Nは空気のモル数、Rはガス定数、Ta吸気
温度を示す。この内下死点での筒内圧Pは吸気管圧Pb
を吸入効率補正値Kenで補正してP(=Pb×Ke
n)を求める。この吸入効率補正値Kenは吸入効率補
正値Ken算出マップにより設定され、そのマップの一
例を図7に示した。
The ECU 13 enters control in a main routine by turning on a key of a main switch (not shown). Here, first, after checking each sensor function and setting an initial function set such as an initial value set, the process reaches step a1.
From the throttle opening sensor 11, the intake pressure sensor 18, the pressure sensor 24, the HC concentration sensor 25, the water temperature sensor 29, the intake temperature sensor 37, the crank angle sensor 36, etc., the throttle opening θs signal, the intake pressure Pb signal, the canister internal pressure Pc, HC concentration V HC signal, water temperature WT signal, intake air temperature Ta
The signal, the unit crank angle signal Δθ that becomes the engine speed Ne signal is taken in. In step a2, the intake air amount A / N is calculated based on the intake air state equation (P · V = N · R · Ta).
Is calculated by the following formula (1) and stored in a predetermined area. Note that P is the pressure in the cylinder at bottom dead center, V is the cylinder volume, N is the number of moles of air, R is the gas constant, and Ta intake air temperature. The cylinder pressure P at the inner bottom dead center is the intake pipe pressure Pb.
Is corrected by the inhalation efficiency correction value Ken, and P (= Pb × Ke
n) is calculated. The inhalation efficiency correction value Ken is set by the inhalation efficiency correction value Ken calculation map, and an example of the map is shown in FIG. 7.

【0015】 P×1/760×V→A/N・・・・・・・(1) この後、エンジン回転数Neと負荷情報としてのA/N
より運転域を算出する運転域マップ(図6にその一例を
示した)より燃料カットゾーンを判定し、燃料カット域
ではステップa4に進み、空燃比フィードバックFLG
をクリアし、燃料カットFLGを1としてステップa1
2に進む。他方、ステップa3で燃料カット域でないと
してステップa6に達すると燃料カットFLGをクリア
し、続いて空燃比フィードバック条件を満たしているか
否かをステップa7で判定する。ここで、パワー運転域
のような過渡運転域の時点や暖機完了前の時点ではステ
ップa8に進み、現運転情報(A/N,Ne)に応じた
空燃比補正係数KMAPを算出し、これらの値をアドレ
スKAFにストアし、ステップa12に進む。
P × 1/760 × V → A / N ... (1) After this, the engine speed Ne and A / N as load information
The fuel cut zone is determined from an operation range map (one example of which is shown in FIG. 6) for calculating the operation range. In the fuel cut range, the process proceeds to step a4, and the air-fuel ratio feedback FLG
Is cleared, the fuel cut FLG is set to 1, and step a1 is performed.
Go to 2. On the other hand, if it is determined that the fuel cut range is not reached in step a3 and the process reaches step a6, the fuel cut FLG is cleared, and subsequently it is determined in step a7 whether or not the air-fuel ratio feedback condition is satisfied. Here, at the time of a transitional operation range such as the power operation range or before the completion of warming up, the process proceeds to step a8 to calculate the air-fuel ratio correction coefficient KMAP according to the current operation information (A / N, Ne). Value is stored in the address K AF , and the process proceeds to step a12.

【0016】ステップa7より空燃比フィードバック条
件を満たしているとステップa9に進み、現運転情報
(A/N,Ne)に応じた目標空燃比A/Fを設定し、
同空燃比を達成できる燃料量補正係数KFBを算出する。
ステップa10ではアドレスKAFに燃料量補正係数KFB
をストアし、ステップa11に達する。ここでは、その
他の燃料噴射パルス幅補正係数KDTや、燃料噴射弁の
デッドタイムの補正値TDを水温WT信号、吸気温度T
a信号等の運転条件に応じて設定し、ステップa12に
進む。ステップa12に達すると、ここではエンジン回
転数Ne及び吸気量A/Nに基づき現運転域がパージ運
転域か否かをパージ運転域判定マップm3に沿って判定
し、パージ禁止域ではそのままリーンとし、この間、キ
ャニスタ20には燃料タンク19で生じた燃料蒸発ガス
がパージガス管21及びチェックバルブ23を通過して
流入し、吸着される。他方、パージ運転域ではステップ
a13に進む。なお、パージ運転域か否かの判断におい
て、前回がパージ運転域であると図8に示すように、判
定値をE1=f(Ne)とし、前回がパージ禁止域であると
判定値をE1より大きく設定されるE2=f'(Ne)とし
て領域切り換え時のハンチングを防止出来る。
When the air-fuel ratio feedback condition is satisfied from step a7, the routine proceeds to step a9, where the target air-fuel ratio A / F according to the current operation information (A / N, Ne) is set,
A fuel amount correction coefficient K FB that can achieve the same air-fuel ratio is calculated.
At step a10, the fuel amount correction coefficient K FB is added to the address K AF.
Is stored, and step a11 is reached. Here, the other fuel injection pulse width correction coefficient KDT and the correction value TD of the dead time of the fuel injection valve are used as the water temperature WT signal and the intake air temperature T.
It is set according to the operating conditions such as signal a, and the process proceeds to step a12. When step a12 is reached, it is determined here based on the engine speed Ne and the intake air amount A / N whether or not the current operation range is the purge operation range along the purge operation range determination map m3, and the purge prohibition range is left as it is. During this time, the fuel evaporative gas generated in the fuel tank 19 flows into the canister 20 through the purge gas pipe 21 and the check valve 23 and is adsorbed. On the other hand, in the purge operation area, the process proceeds to step a13. In the determination as to whether it is in the purge operation range, the determination value is E1 = f (Ne) as shown in FIG. 8 when the previous time is the purge operation range, and the determination value is E1 when the last time is the purge prohibition range. It is possible to prevent hunting at the time of area switching by setting E2 = f '(Ne) which is set larger.

【0017】ステップa13,a14ではパージ運転域
であるとして、パージ運転時間のカウントを開始すべく
パージ開始後タイマTIM1を更新し、パージ用の電磁
弁26を開作動させてリーンする。これによってキャニ
スタ20の吸収している燃料蒸発ガスが開放された電磁
弁26を通過し、流入口17より吸気路3に流入され、
パージ運転が開始される。メインルーチンの途中で所定
クランク角毎の割り込みが成され、図9の時点t1に示
すような第1シリンダのTDC信号の入力時に燃料噴射
制御ルーチンに入る。この燃料噴射制御ルーチンではス
テップs1で、HC濃度信号Vc、吸気圧Pa及びキャ
ニスタ内部圧Pcを取り込む。ステップs2に進むと、
ここではパージ開始後タイマTIM1のカウント値が予
め設定されている1回当たりのパージ時間Tαを経過し
たか否か判断し、経過前はステップs3に経過するとス
テップs11に進み、燃料補正量TPをゼロに設定し、
ステップs6に進む。
In steps a13 and a14, it is assumed that the purge operation range is set, the post-purge timer TIM1 is updated to start counting the purge operation time, and the purge solenoid valve 26 is opened to lean. As a result, the fuel evaporative gas absorbed by the canister 20 passes through the opened solenoid valve 26 and flows into the intake passage 3 from the inflow port 17,
The purge operation is started. An interrupt is made for each predetermined crank angle in the middle of the main routine, and the fuel injection control routine is started when the TDC signal of the first cylinder is input as shown at time t1 in FIG. In this fuel injection control routine, the HC concentration signal Vc, the intake pressure Pa, and the canister internal pressure Pc are fetched in step s1. Going to step s2,
Here, it is determined whether or not the count value of the timer TIM1 after the start of purging has passed the preset purge time Tα for one time. Before the lapse of time, when step s3 has passed, the process proceeds to step s11, and the fuel correction amount T P To zero,
Go to step s6.

【0018】ステップs3に達すると、パージ燃料量f
P(g/sec)を式(2),(3)によって算出す
る。
When step s3 is reached, the purge fuel amount f
P (g / sec) is calculated by the equations (2) and (3).

【0019】 Gp=K×A×√(Pc−Pm)・・・・・・・(2) fP=Gp×Cp・・・・・・・(3) ここで、Gpはガス流量(l/sec)、CpはHC濃
度センサ25のHC濃度信号VHCを用い、Aは配管の等
価的しぼり断面積、Pcは圧力センサ24のキャニスタ
内部圧を用い、PMはエンジンマニホールド圧で吸気圧
センサ18の吸気圧Paを用い、Kは定数である。この
ように算出されたパージ燃料量fpはステップs4に進
み、式(4)によって吸気系燃料蒸発ガスがパージ流路
16を経てエンジン1の燃焼室に吸入されるまでの遅れ
時間を考慮して1行程当たりパージ燃料量の算出を行
う。
Gp = K × A × √ (Pc−Pm) (2) f P = Gp × Cp (3) where Gp is the gas flow rate (l / Sec), Cp uses the HC concentration signal V HC of the HC concentration sensor 25, A is the equivalent squeeze cross-sectional area of the pipe, Pc is the canister internal pressure of the pressure sensor 24, and P M is the engine manifold pressure and intake pressure. The intake pressure Pa of the sensor 18 is used, and K is a constant. The purged fuel amount fp thus calculated proceeds to step s4, and the delay time until the intake system fuel vaporized gas is sucked into the combustion chamber of the engine 1 through the purge flow path 16 by the formula (4) is taken into consideration. The amount of purged fuel per stroke is calculated.

【0020】[0020]

【数1】 [Equation 1]

【0021】ここで、γは0<γ<1のフィルタリング
係数として適宜設定され、fP(i)は今回の、f
PN(i−1)は前回の各パージ燃料量を示し、Ncはエ
ンジン1のシリンダ数を示す。このように算出されたパ
ージ燃料量fPNはステップs5でインジェクタゲイン−
Iと乗算されてパージ燃料補正量TP(=−GI×
PN)が求められる。
Here, γ is appropriately set as a filtering coefficient of 0 <γ <1, and f P (i) is the current f
PN (i-1) shows the amount of each purge fuel of the last time, and Nc shows the number of cylinders of the engine 1. The purge fuel amount f PN thus calculated is the injector gain − in step s5.
Multiplied by G I and purged fuel correction amount T P (= −G I ×
f PN ) is required.

【0022】更にステップs6に達すると、ここでは燃
料カットか否かの情報を求め、カットではリターンし、
そうでないとステップs7,s8に進む。ここでは、式
(5)に沿って、吸入空気量A/Nより基本燃料パルス
幅Tfを算出し、その後、燃料パルス幅Tinjを式
(6)より求める。ここで、GIはインジェクタゲイ
ン、KAFはメインルーチン側より取り込んだ空燃比補正
係数、KDTは大気温及び大気圧補正係数、TDはイン
ジェクタ作動遅れ補正値TD等により算出する。 Tf=GI×A/N×KAF×1/14.7・・・・・・(5) Tinj=Tf×KDT+TP・・・・・・・・(6) この後、ステップs9では全気筒の燃料噴射弁30の図
示しない駆動用ドライバに目標燃料パルス幅Tinjを
セットする。そして、各ドライバをトリガし、リターン
する。
Further, when step s6 is reached, information on whether or not the fuel is cut is sought here, and when the fuel cut is returned,
Otherwise, the process proceeds to steps s7 and s8. Here, the basic fuel pulse width Tf is calculated from the intake air amount A / N according to the equation (5), and then the fuel pulse width Tinj is obtained from the equation (6). Here, G I is an injector gain, K AF is an air-fuel ratio correction coefficient taken from the main routine side, KDT is an atmospheric temperature and atmospheric pressure correction coefficient, and TD is an injector operation delay correction value TD. Tf = G I × A / N × K AF × 1 / 14.7 ······ (5) Tinj = Tf × KDT + T P ········ (6) Thereafter, in step s9 total The target fuel pulse width Tinj is set in a driver (not shown) for driving the fuel injection valve 30 of the cylinder. Then, each driver is triggered and the process returns.

【0023】この結果、各気筒の駆動用ドライバは単位
クランク角をカウントし、各噴射タイミングに該当する
クランク角に達すると(図9参照)各燃料噴射弁30を
順次駆動し、燃料噴射を行う。この時の燃料噴射量(T
injに相当する量)は基本燃料量(Tfに相当する
量)よりパージ燃料補正量TP(=−GI×fPN)を排除
して算出され、実際には、この噴射量に流入口17から
のパージ燃料量fPNが加わって各気筒に燃料供給が成さ
れる。このため、パージ燃料が吸気路3に流入しても、
目標空燃比(空燃比補正係数KAFによって調整される)
をずらすこと無く燃料供給が成され、ドライバビリティ
ーや燃費を低下させること無く、エンジンを駆動出来
る。上述のところにおいて、パージ燃料量fpの算出の
際に、式(4)を用い、これによって吸気系燃料蒸発ガ
スがパージ流路16を経てエンジン1の燃焼室に吸入さ
れるまでの遅れ時間を考慮して1行程当たりパージ燃料
量の算出を行ていたが、これに代えて、図3に示す構成
を採っても良い。
As a result, the driver for driving each cylinder counts the unit crank angle, and when the crank angle corresponding to each injection timing is reached (see FIG. 9), each fuel injection valve 30 is sequentially driven to perform fuel injection. . Fuel injection amount at this time (T
The amount corresponding to inj) is calculated by excluding the purge fuel correction amount T P (= −G I × f PN ) from the basic fuel amount (the amount corresponding to Tf). The purge fuel amount f PN from 17 is added to supply fuel to each cylinder. Therefore, even if the purge fuel flows into the intake passage 3,
Target air-fuel ratio (adjusted by air-fuel ratio correction coefficient K AF )
Fuel can be supplied without shifting the engine, and the engine can be driven without reducing drivability and fuel consumption. In the above description, when the purged fuel amount fp is calculated, the formula (4) is used to calculate the delay time until the intake system fuel vapor is sucked into the combustion chamber of the engine 1 through the purge passage 16. Although the amount of purged fuel per stroke is calculated in consideration, the configuration shown in FIG. 3 may be adopted instead.

【0024】この第2の実施例を図1の第1の実施例と
比較すると、図1の構成部材中でサージタンク5を排除
して吸気路3を短縮した点と、ECU13の機能が相違
する点で相違し、その他の構成は同様であり、ここで
は、重複説明を排する。図3に示すように、第2の実施
例でのECU13’は運転情報である吸気圧センサ18
による吸気管圧Pb、クランク角センサ36によるエン
ジン回転数Neの各出力に基づき燃料噴射量Qを制御す
る燃料制御手段A1と、HC濃度センサ25、吸気圧セ
ンサ18及び圧力センサ24の検出結果に基づきパージ
流路16を経て吸気路3に吸入される燃料蒸発ガスの燃
料量を算出する蒸発燃料量算出手段A2と、蒸発燃料量
算出手段A2の算出結果に基づき燃料制御手段A1によ
る燃料噴射量を補正する燃料補正手段A4としての機能
を備える。
When the second embodiment is compared with the first embodiment of FIG. 1, the function of the ECU 13 is different from that of the constituent member of FIG. 1 in that the surge tank 5 is eliminated and the intake passage 3 is shortened. The other configurations are the same, and the duplicate description will be omitted here. As shown in FIG. 3, the ECU 13 'in the second embodiment uses the intake pressure sensor 18 which is the operation information.
The fuel control means A1 for controlling the fuel injection amount Q based on the output of the intake pipe pressure Pb by the crank angle sensor 36 and the engine speed Ne by the crank angle sensor 36, and the detection results of the HC concentration sensor 25, the intake pressure sensor 18, and the pressure sensor 24. Based on the calculation result of the evaporated fuel amount calculation means A2 for calculating the fuel amount of the fuel evaporative gas sucked into the intake passage 3 through the purge flow path 16 and the fuel injection amount by the fuel control means A1 based on the calculation result of the evaporated fuel amount calculation means A2 It has a function as a fuel correction unit A4 for correcting.

【0025】この場合、サージタンクが無く、吸気路3
の流入口17とエンジンの燃焼室の間隔が比較的短く、
遅れ時間を考慮する必要が無い。このため、燃料噴射制
御ルーチンでは、そのステップs3より直接ステップs
5に進んで、式(2),(3)によって算出した、パー
ジ燃料量fpを用いパージ燃料補正量TP(=−GI×f
PN)を算出する。この場合、制御を簡略化出来る。
In this case, there is no surge tank, and the intake passage 3
The distance between the inlet 17 of the engine and the combustion chamber of the engine is relatively short,
There is no need to consider the delay time. Therefore, in the fuel injection control routine, directly from step s3 to step s
5, the purge fuel correction amount T P (= −G I × f) is calculated using the purge fuel amount fp calculated by the equations (2) and (3).
PN ) is calculated. In this case, the control can be simplified.

【0026】[0026]

【発明の効果】以上のように、本発明は、燃料蒸発ガス
の濃度とエンジンの吸気系と吸着手段との差圧を検出
し、これらの検出結果に基づき吸気系に吸入される燃料
蒸発ガスの燃料量を算出し、その算出結果に基づき燃料
噴射量を補正するので、燃料蒸発ガスの燃料量を全運転
域で確実に算出でき、目標空燃比をずらすこと無く燃料
供給が成され、ドライバビリティーや燃費を低下させる
こと無く、エンジンを駆動できる。第2発明は、特に、
エンジンの吸気系に吸入される燃料蒸発ガスの燃料量を
算出する際に、当該燃料蒸発ガスが流路を経てエンジン
の燃焼室に吸入されるまでの遅れ時間に対応した補正を
して算出し、その算出結果に基づき燃料噴射量を補正す
るので、燃料蒸発ガスの燃料量を全運転域でより確実に
算出でき、目標空燃比をずらすこと無く燃料供給が成さ
れ、ドライバビリティーや燃費を低下させること無く、
エンジンを駆動できる。
As described above, the present invention detects the concentration of fuel evaporative gas and the differential pressure between the intake system of the engine and the adsorbing means, and based on these detection results, the fuel evaporative gas drawn into the intake system is detected. The fuel injection amount is calculated based on the calculated fuel amount and the fuel injection amount is corrected based on the calculated result. Therefore, the fuel amount of the fuel evaporative gas can be reliably calculated in the entire operating range, and the fuel is supplied without shifting the target air-fuel ratio The engine can be driven without deteriorating the ability and fuel efficiency. The second invention is
When calculating the fuel amount of the fuel evaporative gas sucked into the intake system of the engine, it is calculated by correcting the delay time until the fuel evaporative gas is sucked into the combustion chamber of the engine through the flow path. Since the fuel injection amount is corrected based on the calculation result, it is possible to more reliably calculate the fuel amount of the fuel evaporative gas over the entire operating range, and the fuel is supplied without shifting the target air-fuel ratio, which improves drivability and fuel efficiency. Without lowering
Can drive the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としてのエンジンの燃料制御
装置の全体構成図である。
FIG. 1 is an overall configuration diagram of a fuel control device for an engine as an embodiment of the present invention.

【図2】図1の燃料制御装置の機能ブロック図である。FIG. 2 is a functional block diagram of the fuel control device of FIG.

【図3】本発明の他の実施例としてのエンジンの燃料制
御装置の機能ブロック図である。
FIG. 3 is a functional block diagram of a fuel control device for an engine as another embodiment of the present invention.

【図4】図1の燃料制御装置に用いられるHC濃度セン
サの概略斜視図である。
FIG. 4 is a schematic perspective view of an HC concentration sensor used in the fuel control device of FIG.

【図5】図4のHC濃度センサの接続される回路図であ
る。
5 is a circuit diagram to which the HC concentration sensor of FIG. 4 is connected.

【図6】図1の燃料制御装置に用いられる運転域判定マ
ップの特性線図である。
FIG. 6 is a characteristic diagram of an operating range determination map used in the fuel control device of FIG.

【図7】図1の燃料制御装置に用いられる吸入効率補正
値算出マップの特性線図である。
FIG. 7 is a characteristic diagram of an intake efficiency correction value calculation map used in the fuel control device of FIG.

【図8】図1の燃料制御装置に用いられるパージ運転域
判定マップの特性線図である。
8 is a characteristic diagram of a purge operation range determination map used in the fuel control system of FIG.

【図9】図1の燃料制御装置が装着されたエンジンの燃
料噴射タイミング説明図である。
9 is an explanatory view of fuel injection timing of an engine equipped with the fuel control device of FIG.

【図10】図1の燃料制御装置のECUが行なうメイン
ルーチンのフローチャートである。
FIG. 10 is a flowchart of a main routine executed by the ECU of the fuel control device in FIG.

【図11】図1の燃料制御装置のECUが行なう燃料噴
射制御ルーチンのフローチャートである。
11 is a flowchart of a fuel injection control routine executed by an ECU of the fuel control device in FIG.

【符号の説明】[Explanation of symbols]

1 エンジン 3 吸気路 5 サージタンク 9 スロットル弁 11 スロットル開度センサ 13 ECU 16 キャニスタ流路 17 流入口 18 吸気圧センサ 19 燃料タンク 20 キャニスタ 24 圧力センサ 25 HC濃度センサ 36 エンジン回転センサ Tinj 燃料噴射量 A1 燃料制御手段 A2 蒸発燃料量算出手段 A3 蒸発燃料量補正算出手段 A4 燃料補正手段 Pc キャニスタ内部圧 Pa 吸気圧 fPN パージ燃料量 θs スロットル開度信号 Ne エンジン回転数信号1 Engine 3 Intake Path 5 Surge Tank 9 Throttle Valve 11 Throttle Opening Sensor 13 ECU 16 Canister Flow Path 17 Inlet 18 Intake Pressure Sensor 19 Fuel Tank 20 Canister 24 Pressure Sensor 25 HC Concentration Sensor 36 Engine Rotation Sensor Tinj Fuel Injection A1 Fuel control means A2 Evaporated fuel amount calculation means A3 Evaporated fuel amount correction calculation means A4 Fuel correction means Pc Canister internal pressure Pa Intake pressure f PN Purge fuel amount θs Throttle opening signal Ne Engine speed signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エンジンの運転状態を検出する手段と、上
記検出手段の出力に基づき燃料噴射量を制御する燃料制
御手段と、燃料タンクから発生する燃料蒸発ガスを吸着
する吸着手段と、上記吸着手段と上記エンジンの吸気系
を連通する流路と、上記流路に設けられ上記吸着手段か
ら上記エンジンの吸気系に吸入される燃料蒸発ガスの濃
度を検出するHC濃度検出手段と、上記流路に設けられ
上記エンジンの吸気系と上記吸着手段との差圧を検出す
る吸気差圧検出手段と、上記HC濃度検出手段及び上記
吸気差圧検出手段の検出結果に基づき上記流路を経て上
記エンジンの吸気系に吸入される燃料蒸発ガスの燃料量
を算出する蒸発燃料量算出手段と、上記蒸発燃料量算出
手段の算出結果に基づき上記燃料制御手段による燃料噴
射量を補正する燃料補正手段とを備えてなることを特徴
とするエンジンの燃料制御装置。
1. A means for detecting an operating state of an engine, a fuel control means for controlling a fuel injection amount based on an output of the detecting means, an adsorbing means for adsorbing a fuel evaporative gas generated from a fuel tank, and the adsorbing means. Means for communicating the means with the intake system of the engine, an HC concentration detecting means provided in the passage for detecting the concentration of the fuel evaporative gas sucked into the intake system of the engine from the adsorption means, and the passage. The intake air differential pressure detecting means for detecting the differential pressure between the intake system of the engine and the adsorbing means, and the engine through the flow path based on the detection results of the HC concentration detecting means and the intake differential pressure detecting means. Fuel vapor amount calculation means for calculating the fuel amount of the fuel vaporized gas sucked into the intake system, and a fuel amount correction means for correcting the fuel injection amount by the fuel control means based on the calculation result of the vaporized fuel amount calculation means. Fuel control apparatus for an engine, characterized by comprising a correction means.
【請求項2】エンジンの運転状態を検出する手段と、上
記検出手段の出力に基づき燃料噴射量を制御する燃料制
御手段と、燃料タンクから発生する燃料蒸発ガスを吸着
する吸着手段と、上記吸着手段と上記エンジンの吸気系
を連通する流路と、上記流路に設けられ上記吸着手段か
ら上記エンジンの吸気系に吸入される燃料蒸発ガスの濃
度を検出するHC濃度検出手段と、上記流路に設けられ
上記エンジンの吸気系と上記吸着手段との差圧を検出す
る吸気差圧検出手段と、上記HC濃度検出手段及び上記
吸気差圧検出手段の検出結果に基づき上記流路を経て上
記エンジンの吸気系に吸入される燃料蒸発ガスの燃料量
を算出する蒸発燃料量算出手段と、上記流路が開口する
吸気系の下流側に配設されたサージタンクと、上記蒸発
燃料量算出手段によって算出された燃料量を当該燃料蒸
発ガスが上記流路を経て上記エンジンの燃焼室に吸入さ
れるまでの遅れ時間に対応し補正して算出する蒸発燃料
量補正算出手段と、上記蒸発燃料量補正算出手段の算出
結果に基づき上記燃料制御手段による燃料噴射量を補正
する燃料補正手段とを備えてなることを特徴とするエン
ジンの燃料制御装置。
2. A means for detecting an operating state of an engine, a fuel control means for controlling a fuel injection amount based on an output of the detection means, an adsorbing means for adsorbing a fuel evaporative gas generated from a fuel tank, and the adsorbing means. Means for communicating the means with the intake system of the engine, an HC concentration detecting means provided in the passage for detecting the concentration of the fuel evaporative gas sucked into the intake system of the engine from the adsorption means, and the passage. The intake air differential pressure detecting means for detecting the differential pressure between the intake system of the engine and the adsorbing means, and the engine through the flow path based on the detection results of the HC concentration detecting means and the intake differential pressure detecting means. The fuel vapor amount calculation means for calculating the fuel amount of the fuel vaporized gas sucked into the intake system, the surge tank arranged on the downstream side of the intake system where the flow path opens, and the fuel vapor amount calculation means An evaporated fuel amount correction calculation means for correcting the calculated fuel amount in accordance with a delay time until the fuel evaporated gas is sucked into the combustion chamber of the engine through the flow path, and the evaporated fuel. A fuel control device for an engine, comprising: a fuel correction unit that corrects a fuel injection amount by the fuel control unit based on a calculation result of the amount correction calculation unit.
JP25730693A 1993-10-14 1993-10-14 Fuel controller of engine Withdrawn JPH07109941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25730693A JPH07109941A (en) 1993-10-14 1993-10-14 Fuel controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25730693A JPH07109941A (en) 1993-10-14 1993-10-14 Fuel controller of engine

Publications (1)

Publication Number Publication Date
JPH07109941A true JPH07109941A (en) 1995-04-25

Family

ID=17304530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25730693A Withdrawn JPH07109941A (en) 1993-10-14 1993-10-14 Fuel controller of engine

Country Status (1)

Country Link
JP (1) JPH07109941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412669B1 (en) * 2001-07-11 2003-12-31 현대자동차주식회사 Method for controlling fuel compensation for vehicles
US7516730B2 (en) 2004-01-09 2009-04-14 Honda Motor Co., Ltd. Fuel pump control system for cylinder cut-off internal combustion engine
JP2018066349A (en) * 2016-10-21 2018-04-26 マツダ株式会社 Engine fuel control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412669B1 (en) * 2001-07-11 2003-12-31 현대자동차주식회사 Method for controlling fuel compensation for vehicles
US7516730B2 (en) 2004-01-09 2009-04-14 Honda Motor Co., Ltd. Fuel pump control system for cylinder cut-off internal combustion engine
JP2018066349A (en) * 2016-10-21 2018-04-26 マツダ株式会社 Engine fuel control device

Similar Documents

Publication Publication Date Title
US6227177B1 (en) Apparatus for controlling internal combustion engine equipped with evaporative emission control system
US5699778A (en) Fuel evaporative emission suppressing apparatus
JP2615285B2 (en) Evaporative fuel control system for internal combustion engine
KR100306186B1 (en) Gasoline vapor purging system of interal combustion engine
JP6299801B2 (en) Engine control device
JP4742721B2 (en) Combustion air-fuel ratio control device for internal combustion engine
JP2007198210A (en) Evaporated fuel control device for engine
JP2002332872A (en) Controller of internal combustion engine
US7367184B2 (en) Fuel injection control device for internal combustion engine
JPH07109941A (en) Fuel controller of engine
JP2000087813A (en) Evaporative fuel purge device for engine with supercharger and evaporative fuel purge control device
JP3355872B2 (en) Engine excess air ratio detection device and exhaust gas recirculation control device
JPS63189665A (en) Vapor fuel processing device for engine
JP4052710B2 (en) Engine air-fuel ratio control method and air-fuel ratio control apparatus
JPH11182360A (en) Evaporated fuel treatment device of internal combustion engine
JP3212211B2 (en) Canister purge control method
JP2913835B2 (en) Fuel evaporative emission control system
JP3551488B2 (en) Engine air-fuel ratio control device
JP3306146B2 (en) Control device for engine with evaporative fuel supply device
JP2021169783A (en) Engine device
JP3575075B2 (en) Engine air-fuel ratio control device
JP2800055B2 (en) Evaporative fuel control system for vehicles
JP2857467B2 (en) Failure diagnosis device for evaporative fuel supply system of engine
JPH0586997A (en) Fuel vaporized gas outflow preventing device
JPH07247919A (en) Canister purge control

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226