JPH06280669A - Air fuel ratio detector for internal combustion engine - Google Patents

Air fuel ratio detector for internal combustion engine

Info

Publication number
JPH06280669A
JPH06280669A JP6532893A JP6532893A JPH06280669A JP H06280669 A JPH06280669 A JP H06280669A JP 6532893 A JP6532893 A JP 6532893A JP 6532893 A JP6532893 A JP 6532893A JP H06280669 A JPH06280669 A JP H06280669A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
optical elements
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6532893A
Other languages
Japanese (ja)
Other versions
JP2932887B2 (en
Inventor
Tsutomu Nakada
勉 中田
Hiroko Ogita
浩子 小木田
Teruyuki Ito
輝行 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6532893A priority Critical patent/JP2932887B2/en
Publication of JPH06280669A publication Critical patent/JPH06280669A/en
Application granted granted Critical
Publication of JP2932887B2 publication Critical patent/JP2932887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1451Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the sensor being an optical sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To detect air fuel ratio near an ignition plug before ignition timing with high accuracy. CONSTITUTION:A laser beam having the wave length for selectively absorbing gasoline is emitted from a laser sorce 12. After the laser beam is passed through a space in a combustion chamber 5 by a pair of optical elements 10, 11, it is conducted to a photoelectric transfer element 14. Here, the laser beam is absorbed according to the concentration of gasoline present in a gap between a pair of optical elements 10, 11 so that the brightness of a transmitting beam incident on the photoelectric transfer element 14 is changed and affected by pressure in the cylinder. Then, in a control unit 15, an air fuel ratio is calculated on the basis of the pressure in the cylinder detected by a pressure-in-cylinder sensor 7 and the output of the photoelectric transfer element 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の空燃比検出装
置に関し、詳しくは、機関吸入混合気の空燃比を、燃焼
室内の混合気から直接的に検出し得る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio detecting device for an internal combustion engine, and more particularly to a device for directly detecting the air-fuel ratio of an engine intake air-fuel mixture from the air-fuel mixture in a combustion chamber.

【0002】[0002]

【従来の技術】従来から、燃焼室内における燃焼光を検
出することにより機関吸入混合気の空燃比(A/F)を
測定する装置が知られている。例えば特開平1−247
740号公報に開示される空燃比検出装置では、点火栓
に埋め込んだ光ファイバーによって燃焼光を取り出し、
該取り出した燃焼光を光電変換することで空燃比を検出
する構成としてある。
2. Description of the Related Art Conventionally, there is known a device for measuring an air-fuel ratio (A / F) of an engine intake air-fuel mixture by detecting combustion light in a combustion chamber. For example, JP-A 1-247
In the air-fuel ratio detection device disclosed in Japanese Patent No. 740, combustion light is taken out by an optical fiber embedded in a spark plug,
The air-fuel ratio is detected by photoelectrically converting the extracted combustion light.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記特開平
1−247740号公報に開示される空燃比検出装置で
は、図26に示すように、光ファイバーによって燃焼光が
取り出される領域(ホロコーン領域)内では、光ファイ
バーの端面に近いA領域での発光と共に、前記端面から
比較的遠いB領域での発光も全て取り出されることにな
る。
By the way, in the air-fuel ratio detecting device disclosed in the above-mentioned Japanese Patent Laid-Open No. 1-247740, as shown in FIG. 26, in the region where the combustion light is taken out by the optical fiber (hollow cone region). In addition to the light emission in the area A near the end face of the optical fiber, all the light emission in the area B relatively far from the end face is extracted.

【0004】ここで、前記A領域とB領域とでは、燃焼
室内におけるガス流動によって空燃比が異なる場合があ
り、空燃比が異なれば火炎発光スペクトルが異なる。ま
た、光ファイバー端面からの距離が異なれば、その強度
は距離の二乗に反比例して変化する。従って、光ファイ
バーで燃焼光を取り出す構成では、空燃比が異なり、ま
た、距離の異なる領域での発光が混ざって取り出される
ことになり、例えば点火限界の決定因子である点火栓近
傍のA領域の空燃比を正確に求めたくても、B領域の発
光が影響して高精度な空燃比検出ができないという原理
的な問題がある。
Here, the air-fuel ratio may be different between the A region and the B region depending on the gas flow in the combustion chamber, and the flame emission spectrum is different when the air-fuel ratio is different. Further, if the distance from the end face of the optical fiber is different, the intensity thereof changes in inverse proportion to the square of the distance. Therefore, in the configuration in which the combustion light is taken out by the optical fiber, the lights emitted in the regions with different air-fuel ratios and different distances are mixed and taken out. For example, the air in the region A near the spark plug, which is the deciding factor of the ignition limit, is taken out. Even if it is desired to accurately obtain the fuel ratio, there is a theoretical problem that the light emission in the region B influences and highly accurate air-fuel ratio detection cannot be performed.

【0005】このため、従来では、ホロコーン領域内で
は空燃比一定であると見做したり、火炎発光を取り込む
時間を短くことで測定ホロコーン領域を距離方向に狭め
るなどして、燃焼光の取り出しによる空燃比検出を実現
させている。しかしながら、前述のようにホロコーン領
域内の空燃比は一定とは限らないし、また、取込み時間
を短くすれば取り出される光強度が低下し、結果的に測
定精度が低下してしまうという問題があった。
Therefore, conventionally, by taking out the combustion light, it is considered that the air-fuel ratio is constant in the hollow cone region, and the measurement hollow cone region is narrowed in the distance direction by shortening the time for capturing flame emission. Realizes air-fuel ratio detection. However, as described above, the air-fuel ratio in the hollow cone region is not always constant, and if the intake time is shortened, the intensity of the light extracted decreases, resulting in a decrease in measurement accuracy. .

【0006】また、点火限界を決定する因子である点火
栓近傍の空燃比は、燃料噴霧の粒径の他、噴射タイミン
グに強く依存して時系列的な変動を示す。従って、着火
性向上のために点火時期における点火栓近傍の空燃比を
制御するためには、点火前における点火栓近傍の空燃比
を検出することが望まれるが、前記燃焼光に基づく空燃
比検出では、点火前の空燃比を検出することができず、
点火時期における点火栓近傍の空燃比を精度良く制御す
ることができないという問題があった。
Further, the air-fuel ratio in the vicinity of the spark plug, which is a factor that determines the ignition limit, shows a time-series variation that strongly depends on the injection timing in addition to the particle size of the fuel spray. Therefore, in order to control the air-fuel ratio near the spark plug at the ignition timing in order to improve the ignitability, it is desirable to detect the air-fuel ratio near the spark plug before ignition. Then, it is not possible to detect the air-fuel ratio before ignition,
There is a problem that the air-fuel ratio near the spark plug at the ignition timing cannot be accurately controlled.

【0007】本発明は上記問題点に鑑みなされたもので
あり、点火栓近傍の空燃比を点火前に検出することがで
き、然も、かかる局所的な空燃比検出が高精度に行える
空燃比検出装置を提供することを目的とする。
The present invention has been made in view of the above problems, and the air-fuel ratio in the vicinity of the spark plug can be detected before ignition, and, still, the local air-fuel ratio can be detected with high accuracy. An object is to provide a detection device.

【0008】[0008]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の空燃比検出装置は、図1に示すように構成さ
れる。図1において、透過光強度検出手段は、内燃機関
の燃焼室内に臨ませて発光側と受光側とからなる一対の
光学素子を所定間隙をもって対向配置し、光源で発光し
た光を前記一対の光学素子を介して光電変換素子に導く
手段である。
Therefore, an air-fuel ratio detecting apparatus for an internal combustion engine according to the present invention is constructed as shown in FIG. In FIG. 1, the transmitted light intensity detecting means faces a combustion chamber of an internal combustion engine by arranging a pair of optical elements including a light emitting side and a light receiving side so as to face each other with a predetermined gap, and the light emitted from a light source is transmitted to the pair of optical elements. It is a means for leading to the photoelectric conversion element through the element.

【0009】また、筒内圧検出手段は、機関の筒内圧を
検出し、空燃比演算手段は、前記透過光強度検出手段に
おける前記光電変換素子の出力と前記筒内圧検出手段で
検出された筒内圧とに基づいて機関吸入混合気の空燃比
を演算する。ここで、前記透過光強度検出手段における
前記一対の光学素子を、機関の点火栓に一体的に設ける
ことが好ましい。
Further, the in-cylinder pressure detecting means detects the in-cylinder pressure of the engine, and the air-fuel ratio calculating means detects the output of the photoelectric conversion element in the transmitted light intensity detecting means and the in-cylinder pressure detected by the in-cylinder pressure detecting means. Based on and, the air-fuel ratio of the engine intake air-fuel mixture is calculated. Here, it is preferable that the pair of optical elements in the transmitted light intensity detecting means are integrally provided on an ignition plug of an engine.

【0010】また、前記透過光強度検出手段における前
記一対の光学素子を加熱する加熱手段と、機関運転条件
に応じて前記加熱手段を選択的に動作させる運転条件に
よる加熱制御手段と、を設けて構成すると良い。更に、
前記運転条件による加熱制御手段に代えて、前記透過光
強度検出手段における前記一対の光学素子に対する燃料
の付着状態を検知する燃料付着検知手段と、この燃料付
着検知手段で燃料の付着状態が検知されたときに前記加
熱手段を動作させる付着検知による加熱制御手段と、を
設けて構成することもできる。
Further, there are provided heating means for heating the pair of optical elements in the transmitted light intensity detecting means, and heating control means under operating conditions for selectively operating the heating means according to engine operating conditions. Good to configure. Furthermore,
Instead of the heating control means based on the operating conditions, a fuel adhesion detection means for detecting the adhesion status of fuel to the pair of optical elements in the transmitted light intensity detection means, and the fuel adhesion status is detected by the fuel adhesion detection means. It is also possible to provide a heating control means based on adhesion detection for operating the heating means at this time.

【0011】[0011]

【作用】かかる構成によると、透過光強度検出手段にお
いて、光源からの発光は、燃焼室内に臨む一対の光学素
子の間隙を通って光電変換素子に導かれる構成であり、
前記間隙を通るときに、かかる空間に存在する燃料によ
って減衰されることになる。そして、前記減衰は、燃料
濃度によって変化し、また、燃料濃度によって変化する
ということは燃焼室内の圧力(筒内圧)によっても変化
することになる。そこで、前記間隙を通った透過光が入
射する光電変換素子の出力と筒内圧検出手段で検出され
た筒内圧とに基づいて、筒内圧の要因を除外して燃料濃
度(空燃比)が検出できるようにした。
According to this structure, in the transmitted light intensity detecting means, the light emitted from the light source is guided to the photoelectric conversion element through the gap between the pair of optical elements facing the combustion chamber.
As it passes through the gap, it will be damped by the fuel present in such space. The attenuation changes depending on the fuel concentration, and the fact that it changes depending on the fuel concentration also changes depending on the pressure in the combustion chamber (cylinder pressure). Therefore, the fuel concentration (air-fuel ratio) can be detected by excluding the factor of the in-cylinder pressure based on the output of the photoelectric conversion element on which the transmitted light passing through the gap is incident and the in-cylinder pressure detected by the in-cylinder pressure detecting means. I did it.

【0012】また、燃焼室内における空燃比検出におい
ては、特に、点火栓近傍の空燃比が点火限界に大きく影
響するので、前記一対の光学素子を点火栓に一体的に設
けることで、点火栓近傍の空燃比を精度良く検出でき、
また、部品構成を簡略化できるようにした。更に、前記
一対の光学素子に液的燃料が付着すると、該付着燃料に
よって光が吸収されることによって混合気空燃比を精度
良く検出することができなくなる。そこで、前記一対の
光学素子を加熱する加熱手段を設け、前記燃料付着が予
測される機関運転条件のとき、又は、前記燃料付着状態
を検知して、前記加熱手段を動作させ、光学素子に付着
した燃料を早期に気化させることができるようにした。
Further, in detecting the air-fuel ratio in the combustion chamber, in particular, the air-fuel ratio near the ignition plug greatly affects the ignition limit. Therefore, by providing the pair of optical elements integrally with the ignition plug, Can accurately detect the air-fuel ratio of
Also, the parts configuration can be simplified. Further, if liquid fuel adheres to the pair of optical elements, the adhered fuel absorbs light, which makes it impossible to accurately detect the air-fuel mixture. Therefore, a heating means for heating the pair of optical elements is provided, and the engine is operated under the engine operating conditions where the fuel adhesion is predicted, or the fuel adhesion state is detected, and the heating means is operated to adhere to the optical element. It was made possible to vaporize the fuel that was made earlier.

【0013】[0013]

【実施例】以下に本発明の実施例を説明する。本実施例
のシステム構成を示す図2において、内燃機関1の吸気
ポート2には燃料噴射弁3が設けられており、図示しな
いエアクリーナ,スロットル弁を介して吸引される空気
に対して前記燃料噴射弁3から間欠的に燃料が噴射供給
されて混合気が形成される。
EXAMPLES Examples of the present invention will be described below. In FIG. 2 showing the system configuration of the present embodiment, a fuel injection valve 3 is provided in an intake port 2 of an internal combustion engine 1, and the fuel injection is performed on the air sucked through an air cleaner and a throttle valve (not shown). Fuel is intermittently injected and supplied from the valve 3 to form an air-fuel mixture.

【0014】そして、前記混合気は、吸気弁4を介して
燃焼室5内に吸引され、点火栓6による火花点火によっ
て着火燃焼する。機関1からの排気は、図示しない排気
弁,触媒,マフラーを介して大気中に排出される。ここ
で、前記燃焼室5内の圧力(筒内圧)を検出する筒内圧
センサ(筒内圧検出手段)7が設けられると共に、前記
燃焼室5を構成するシリンダヘッド8を貫通して点火栓
6の近傍に設けられた取付け穴に、空燃比検出装置(透
過光強度検出手段)を構成する円柱状の光学素子9が嵌
挿・保持されている。
Then, the air-fuel mixture is sucked into the combustion chamber 5 through the intake valve 4 and ignited and burned by spark ignition by the spark plug 6. Exhaust gas from the engine 1 is discharged into the atmosphere via an exhaust valve, a catalyst, and a muffler (not shown). Here, an in-cylinder pressure sensor (in-cylinder pressure detection means) 7 for detecting the pressure (in-cylinder pressure) in the combustion chamber 5 is provided, and the cylinder head 8 forming the combustion chamber 5 is penetrated to the spark plug 6 A cylindrical optical element 9 forming an air-fuel ratio detection device (transmitted light intensity detection means) is fitted and held in a mounting hole provided in the vicinity.

【0015】前記円柱状の光学素子9の燃焼室5内に臨
む先端部には、図3(a),(b),(c) に示すように、一対の
光学素子(三角プリズム)10,11が一体的に設けられて
いる。前記一対の光学素子10,11は、基体となる光学素
子9の基端面側から入射し、光学素子9の軸方向に沿っ
て燃焼室5内に向けて進む光ビームを、その先端に形成
された光学面によって他方の光学素子11に向けて反射さ
せる発光側の光学素子10と、該光学素子10に対して所定
間隙を介して対向配置され、前記光学素子10で反射され
た光ビームをその先端に形成された光学面によって光学
素子9に向けて反射させる受光側の光学素子11とからな
る。
As shown in FIGS. 3 (a), 3 (b) and 3 (c), a pair of optical elements (triangular prisms) 10 are provided at the tip of the cylindrical optical element 9 facing the combustion chamber 5. 11 are provided integrally. The pair of optical elements 10 and 11 are formed at their tips with a light beam which is incident from the base end face side of the optical element 9 serving as a base body and advances toward the inside of the combustion chamber 5 along the axial direction of the optical element 9. The optical element 10 on the light emitting side which is reflected by the optical surface toward the other optical element 11, and the optical element 10 which is arranged to face the optical element 10 with a predetermined gap therebetween, and which reflects the light beam reflected by the optical element 10. The optical element 11 on the light receiving side reflects the light toward the optical element 9 by the optical surface formed at the tip.

【0016】即ち、前記光ビームは、前記一対の光学素
子10,11によって燃焼室5内を経由しUターンして進む
構成となっており、前記光ビームは、前記光学素子10か
ら光学素子11に向けて進むときに、両者の間隙、即ち、
燃焼室内の空間を通過することになり、吸入行程から点
火までの燃焼室5内に混合気が存在する状態のときに
は、前記光学素子10,11を介して光ビームを混合気中に
透過させることになる。
That is, the light beam is configured to travel in a U-turn through the combustion chamber 5 by the pair of optical elements 10 and 11, and the light beam travels from the optical element 10 to the optical element 11. When going towards, the gap between the two,
When the mixture passes through the space in the combustion chamber and the mixture exists in the combustion chamber 5 from the intake stroke to the ignition, the light beam is transmitted through the mixture through the optical elements 10 and 11. become.

【0017】尚、前記光学素子9,10,11の材料として
は、石英やサファイヤなどを用いるが、耐熱,耐圧を考
慮すると、サファイヤを用いることが好ましい。また、
前記光学素子9,10,11は一体物として形成する必要は
なく、光学面の研磨が必要な場合には、かかる研磨が容
易に行えるように、例えば図3中に点線で示す分割面に
従った3部品構成とし、研磨加工の後で接合させても良
い。
Although quartz, sapphire or the like is used as the material of the optical elements 9, 10 and 11, sapphire is preferably used in consideration of heat resistance and pressure resistance. Also,
The optical elements 9, 10 and 11 do not have to be formed as one piece, and when polishing of the optical surface is required, for example, according to the division surface shown by the dotted line in FIG. Alternatively, the structure may be a three-part configuration, and the components may be joined after polishing.

【0018】前記光ビームとしては、使用するガソリン
燃料が選択的に吸収する波長の光を用いる。具体的には
赤外光であり、本実施例では、波長が赤外光領域に含ま
れる3.39μmのレーザ光を用いている。そして、かかる
レーザ光を発するレーザ源(光源)12から出射されるレ
ーザビームは、ミラーやプリズム等からなる光学素子13
によって前記光学素子9の軸に平行な方向に屈曲され、
光学素子9の基端面に対して直角に入射して進む。そし
て、前記一対の光学素子10,11によってUターンして再
び光学素子9内を通り、基端面から直角に出射する。光
学素子9から出射したレーザビームは、光学素子13によ
って光電変換素子14に向けて屈曲されて、前記光電変換
素子14に入射する。
As the light beam, light having a wavelength that is selectively absorbed by the gasoline fuel used is used. Specifically, it is infrared light, and in this embodiment, laser light having a wavelength of 3.39 μm included in the infrared light region is used. The laser beam emitted from the laser source (light source) 12 that emits the laser light is an optical element 13 including a mirror and a prism.
Is bent in a direction parallel to the axis of the optical element 9 by
The light enters at a right angle to the base end face of the optical element 9 and proceeds. Then, it makes a U-turn by the pair of optical elements 10 and 11, passes through the optical element 9 again, and exits at a right angle from the base end face. The laser beam emitted from the optical element 9 is bent toward the photoelectric conversion element 14 by the optical element 13 and enters the photoelectric conversion element 14.

【0019】尚、図2において、15は、前記光学素子9
を保持するためのホルダである。上記のレーザ源12、光
学素子9,10,11,13、光電変換素子14によって本実施
例の透過光強度検出手段が構成される。前記光電変換素
子14の出力及び筒内圧センサ7からの検出信号は、前記
燃料噴射弁3による燃料噴射を制御するためのマイクロ
コンピュータを内蔵したコントロールユニット15に入力
される。空燃比演算手段としてのコントロールユニット
15は、これらの検出信号に基づいて機関吸入混合気の空
燃比を検出し、該検出された空燃比に基づいて燃料噴射
を制御する。
In FIG. 2, 15 is the optical element 9 described above.
Is a holder for holding. The laser source 12, the optical elements 9, 10, 11, 13 and the photoelectric conversion element 14 constitute the transmitted light intensity detecting means of this embodiment. The output of the photoelectric conversion element 14 and the detection signal from the in-cylinder pressure sensor 7 are input to a control unit 15 containing a microcomputer for controlling fuel injection by the fuel injection valve 3. Control unit as means for calculating air-fuel ratio
Reference numeral 15 detects the air-fuel ratio of the engine intake air-fuel mixture based on these detection signals, and controls fuel injection based on the detected air-fuel ratio.

【0020】ここで、本実施例における空燃比検出の原
理を簡単に説明する。機関1に使用されるガソリン燃料
は、一般的に、赤外光を選択的に吸収する性質があり、
混合気においては該混合気中におけるガソリン濃度に略
比例して前記吸収量が増大する。即ち、入射光強度をI
O 、ガソリン濃度をC、吸収係数をKとすると、吸収量
Iは、I=IO exp -KC として表すことができる。
Here, the principle of air-fuel ratio detection in this embodiment will be briefly described. Gasoline fuel used in the engine 1 generally has a property of selectively absorbing infrared light,
In the air-fuel mixture, the absorption amount increases substantially in proportion to the gasoline concentration in the air-fuel mixture. That is, the incident light intensity is I
When O 2 , the gasoline concentration are C and the absorption coefficient is K, the absorption amount I can be expressed as I = I o exp -KC .

【0021】従って、混合気に対して所定強度の赤外光
を照射し、ガソリンによって赤外光がどの程度吸収され
たかを検出できれば、混合気中のガソリン濃度、換言す
れば、混合気の空燃比を検出できることになる。ここ
で、本実施例では、前記一対の光学素子10,11は、燃焼
室5内の空間を間隙として対向配置され、かかる間隙を
レーザ光が通過し、最終的に光電変換素子14に入射する
構成であるから、前記間隙に存在する混合気中のガソリ
ン濃度に見合う量だけレーザ光が吸収され、かかる吸収
によって減衰したレーザ光が光電変換素子14に入射する
ことになる。
Therefore, if it is possible to irradiate the air-fuel mixture with infrared light of a predetermined intensity and detect how much infrared light is absorbed by the gasoline, it is possible to detect the concentration of gasoline in the air-fuel mixture, in other words, the air in the air-fuel mixture. The fuel ratio can be detected. Here, in the present embodiment, the pair of optical elements 10 and 11 are arranged so as to face each other with the space in the combustion chamber 5 as a gap, and the laser light passes through the gap and finally enters the photoelectric conversion element 14. Due to the constitution, the laser light is absorbed by an amount commensurate with the gasoline concentration in the air-fuel mixture existing in the gap, and the laser light attenuated by such absorption enters the photoelectric conversion element 14.

【0022】また、レーザ光(赤外光)の吸収量がガソ
リン濃度に比例するということは、燃焼室内における圧
力(筒内圧)変化によっても吸収量が変化することにな
る。そこで、筒内圧によるキャリブレーション特性を予
め測定しておき(図4参照)、前記光電変換素子14の出
力と、筒内圧センサ7で検出された筒内圧とをパラメー
タとする空燃比の演算特性(変換マップ)をコントロー
ルユニット15に予め設定しておくことで、混合気が吸入
される吸気行程から点火時期まで間において、燃焼室5
内での局所的な空燃比を演算できることになる(図5参
照)。
Further, the fact that the absorption amount of laser light (infrared light) is proportional to the gasoline concentration means that the absorption amount also changes depending on the change in pressure (cylinder pressure) in the combustion chamber. Therefore, the calibration characteristic based on the in-cylinder pressure is measured in advance (see FIG. 4), and the air-fuel ratio calculation characteristic using the output of the photoelectric conversion element 14 and the in-cylinder pressure detected by the in-cylinder pressure sensor 7 as parameters ( By setting the conversion map) in the control unit 15 in advance, the combustion chamber 5 can be operated from the intake stroke when the mixture is sucked to the ignition timing.
It is possible to calculate the local air-fuel ratio in the inside (see FIG. 5).

【0023】前述のようにして検出された空燃比(点火
栓6近傍の局所空燃比)は、コントロールユニット15に
よる噴射制御(噴射量制御,噴射時期制御)の制御情報
として用いられる。点火時期における点火栓近傍の空燃
比は、点火限界を決定することになり、特に、着火性が
悪化する希薄燃焼機関では重要な要素となるが、上記の
ようにして点火前の点火栓近傍における空燃比を検出で
きれば、点火栓近傍の空燃比を高精度に制御して、良好
な着火性を安定的に得ることが可能となる。
The air-fuel ratio (local air-fuel ratio in the vicinity of the spark plug 6) detected as described above is used as control information for injection control (injection amount control, injection timing control) by the control unit 15. The air-fuel ratio in the vicinity of the spark plug at the ignition timing will determine the ignition limit, and is an important factor especially in a lean-burn engine in which the ignitability deteriorates. If the air-fuel ratio can be detected, it becomes possible to control the air-fuel ratio in the vicinity of the spark plug with high accuracy and stably obtain good ignitability.

【0024】また、前記光電変換素子14で検出される透
過光強度は、一対の光学素子10,11の間隙における空燃
比状態のみに影響されるから、局所的な空燃比を他の燃
焼室内領域での空燃比に影響されずに、高精度に検出で
きる。前記空燃比の検出結果を用いた燃料噴射制御とし
ては、検出された空燃比を目標空燃比に一致させるべく
噴射量をフィードバック制御したり、また、空燃比変動
のリッチピーク時期が点火時期と重なるように噴射弁に
よる噴射タイミングを制御することで、点火栓近傍の空
燃比を所期状態に制御できる。尚、かかる噴射制御につ
いては、後に詳細に説明する。
Further, since the transmitted light intensity detected by the photoelectric conversion element 14 is affected only by the air-fuel ratio state in the gap between the pair of optical elements 10 and 11, the local air-fuel ratio is changed to another combustion chamber area. It can be detected with high accuracy without being affected by the air-fuel ratio. As the fuel injection control using the detection result of the air-fuel ratio, the injection amount is feedback-controlled to match the detected air-fuel ratio with the target air-fuel ratio, and the rich peak timing of air-fuel ratio fluctuation overlaps with the ignition timing. By controlling the injection timing by the injection valve as described above, the air-fuel ratio near the spark plug can be controlled to a desired state. The injection control will be described later in detail.

【0025】ところで、上記のようにして、レーザ光を
導く光学素子10,11を燃焼室5内に臨ませて配設する
と、燃焼に伴う汚れが光学素子10,11に付着し、この汚
れ分がレーザ光を減衰させることによって、ガソリン燃
料によるレーザ光(赤外光)の吸収を精度良く検出する
ことができなくなる惧れがある。かかる汚れによる影響
を補正する方法としては、図6に示すように、排気行程
中の吸気弁が開く直前、即ち、混合気が吸引される直前
で燃焼室5内に燃料が殆どないときに、前記光電変換素
子14の出力A1 を取込む。そして、この出力A1を正規
化用の基準強度として、その後の吸気行程における空燃
比演算期間(例えば点火時期前の所定区間)における光
電変換素子14の出力Bn を、前記基準強度A1 で除算し
た値Bn /A1 を最終検出値とする。
By the way, when the optical elements 10 and 11 for guiding the laser light are arranged so as to face the inside of the combustion chamber 5 as described above, stains due to combustion adhere to the optical elements 10 and 11, and the amount of the stains is increased. There is a possibility that the absorption of the laser light (infrared light) by the gasoline fuel cannot be accurately detected by attenuating the laser light. As a method of correcting the influence of such dirt, as shown in FIG. 6, immediately before the intake valve is opened during the exhaust stroke, that is, immediately before the air-fuel mixture is sucked, when there is almost no fuel in the combustion chamber 5, The output A 1 of the photoelectric conversion element 14 is taken in. Then, using this output A 1 as the reference intensity for normalization, the output Bn of the photoelectric conversion element 14 in the subsequent air-fuel ratio calculation period in the intake stroke (for example, a predetermined section before the ignition timing) is divided by the reference intensity A 1 . a value Bn / a 1 was the final detection value.

【0026】上記方法によれば、前記基準強度A1 は、
一対の光学素子10,11の間隙に燃料が殆ど存在しない条
件で検出されるから、主に光学素子10,11の汚れによる
影響(レーザ源の劣化による出力強度の低下を含む)で
変化するものと推定される。そして、汚れの進行によっ
て前記基準強度A1 が低下すれば、光電変換素子14の出
力Bn をより増大補正することになり、汚れによるレー
ザ光の減衰分を補償できることになる。
According to the above method, the reference intensity A 1 is
It is detected under the condition that almost no fuel is present in the gap between the pair of optical elements 10 and 11, so it changes mainly due to the contamination of the optical elements 10 and 11 (including the decrease of output intensity due to deterioration of the laser source). It is estimated to be. If the reference intensity A 1 decreases due to the progress of dirt, the output Bn of the photoelectric conversion element 14 is corrected to be increased, and the attenuation of the laser light due to dirt can be compensated.

【0027】しかしながら、上記補正方法によると、補
正演算が比較的簡便に行えるものの、汚れの検出を空燃
比演算と同時に行わせることができず、1サイクル毎に
1回の汚れ検出の後に、空燃比演算用の透過光強度の検
出が行われるから、空燃比演算時の汚れ状態に対してず
れを生じる惧れがあり、また、一対の光学素子10,11の
間隙に燃料が存在しないという仮定で汚れレベルを推定
するから、高精度な補正が望めない。
However, according to the above-mentioned correction method, although the correction calculation can be performed relatively easily, the dirt cannot be detected at the same time as the air-fuel ratio calculation. Since the transmitted light intensity for fuel ratio calculation is detected, there is a risk of deviation from the dirt state during air-fuel ratio calculation, and there is no fuel in the gap between the pair of optical elements 10 and 11. Since the dirt level is estimated by, high precision correction cannot be expected.

【0028】前記汚れによる影響を補正する別の方法と
しては、ガソリンに吸収されずに汚れ分のみに吸収され
て減衰する波長の光を発する光源を別途設け、該光源か
ら発した光ビームを、空燃比検出に用いるガソリンが吸
収する波長の光と同軸に光学素子10,11に通し、図7に
示すように、ガソリンに吸収される波長光の透過光強度
Bn と同時に、汚れ分によってのみ吸収される波長光の
透過光強度An を検出させ、前記汚れ分にのみ吸収され
る光の透過光強度An で前記透過光強度Bn を補正する
(Bn /An )ことで、ガソリンに吸収される波長域の
光の汚れによる減衰分を補正する方法がある。
As another method for correcting the influence of the dirt, a light source which emits light having a wavelength which is not absorbed by gasoline but is absorbed only by the dirt and attenuated is provided, and the light beam emitted from the light source is Passing through the optical elements 10 and 11 coaxially with the light of the wavelength absorbed by gasoline used for air-fuel ratio detection, as shown in FIG. 7, at the same time as the transmitted light intensity Bn of the light absorbed by gasoline, it is absorbed only by dirt. The wavelength absorbed by gasoline is detected by detecting the transmitted light intensity An of the light having a wavelength that is absorbed, and correcting the transmitted light intensity Bn with the transmitted light intensity An of the light that is absorbed only by the dirt (Bn / An). There is a method of correcting the attenuation due to the dirt of the light in the area.

【0029】かかる補正方法によると、空燃比演算に同
期してそのときの汚れ状態を推定することができ、ま
た、一対の光学素子10,11に存在する燃料の影響を受け
ずに汚れ検出が行えるので、演算負担は大きくなるもの
の高精度な汚れ補正が可能である。ここで、前述のよう
な汚れに対する補正を行いながら空燃比(ガソリン濃
度)を検出するコントロールユニット15の機能を、図8
のフローチャートに従って説明する。尚、前記図8のフ
ローチャートは、上記2つの補正方法に共通のものとし
て簡略化して示してある。
According to such a correction method, the dirt state at that time can be estimated in synchronization with the calculation of the air-fuel ratio, and the dirt can be detected without being affected by the fuel existing in the pair of optical elements 10 and 11. Since it can be performed, a high-precision stain correction can be performed although the calculation load increases. Here, the function of the control unit 15 for detecting the air-fuel ratio (gasoline concentration) while correcting the dirt as described above is shown in FIG.
It will be described in accordance with the flowchart of. The flow chart of FIG. 8 is simplified and shown as being common to the above two correction methods.

【0030】この図8のフローチャートにおいて、ま
ず、S1では、汚れによるレーザ光の減衰レベルを示す
補正光強度An の検出を行わせる。具体的には、吸気弁
が開く直前のタイミングで光電変換素子14の出力を取り
込むか、又は、空燃比の演算期間内でガソリンに吸収さ
れずに汚れによってのみ吸収される波長の光の透過強度
を逐次取り込む。
In the flow chart of FIG. 8, first, in S1, the correction light intensity An indicating the attenuation level of the laser light due to dirt is detected. Specifically, the output of the photoelectric conversion element 14 is taken in at the timing immediately before the intake valve is opened, or the transmission intensity of light having a wavelength that is not absorbed by gasoline and is absorbed only by dirt within the calculation period of the air-fuel ratio. Sequentially take in.

【0031】次のS2では、空燃比演算のための透過光
強度Bn 検出を行わせる。そして、S3では、空燃比実
測用の透過光強度Bn を、汚れ分を補正するための光強
度An で除算して、該演算結果を汚れ分が補正された光
強度としてIにセットする。S4では、前記汚れ補正が
施された光強度Iと、筒内圧センサ7で検出された筒内
圧とに基づいてガソリン濃度C(空燃比)を演算する。
In the next step S2, the transmitted light intensity Bn for air-fuel ratio calculation is detected. Then, in S3, the transmitted light intensity Bn for air-fuel ratio measurement is divided by the light intensity An for correcting the stain amount, and the calculation result is set to I as the light intensity with the stain amount corrected. In S4, the gasoline concentration C (air-fuel ratio) is calculated based on the light intensity I after the stain correction and the in-cylinder pressure detected by the in-cylinder pressure sensor 7.

【0032】S5では、空燃比演算期間内で演算される
空燃比のデータナンバーを示すnを1アップし、次のS
6では、空燃比の実測期間(例えば点火時期前の所定区
間)内であるか否かを判別する。そして、実測区間でな
ければ、S7で前記データナンバーをリセットし、ま
た、実測区間内であれば、前記リセットを行うことなく
S1に戻り、汚れ補正を行いながら空燃比演算を繰り返
し、演算結果を時系列的に記憶する。
At S5, n, which indicates the data number of the air-fuel ratio calculated within the air-fuel ratio calculation period, is increased by 1, and the next S
At 6, it is determined whether or not it is within the actual measurement period of the air-fuel ratio (for example, a predetermined section before the ignition timing). Then, if it is not in the actual measurement section, the data number is reset in S7. If it is in the actual measurement section, the flow returns to S1 without performing the reset, and the air-fuel ratio calculation is repeated while performing the dirt correction, and the calculation result is obtained. Store in time series.

【0033】尚、前記汚れ分に影響される透過光強度A
n が所定以下に低下した場合には、所期の透過光強度検
出が不能であると判断し、所定のフェイルセーフモード
に移行させるようにすると良い。ところで、上記実施例
では、点火栓6の近傍に、一対の光学素子10,11を備え
た光学素子9(空燃比検出体)を配設する構成とした
が、点火栓6の電極雰囲気の空燃比を制御して点火限界
を高めるためには、点火栓6(電極部)になるべく近い
位置で空燃比を検出することが望まれ、また、部品点数
の削減,組み立て性及び燃焼室を構成するシリンダヘッ
ドにおけるスペース効率を考慮すると、点火栓6と前記
一対の光学素子10,11とを一体化して設けることが好ま
しい。
The transmitted light intensity A which is affected by the amount of dirt
If n is lower than a predetermined value, it is determined that the desired transmitted light intensity cannot be detected, and the predetermined fail-safe mode may be set. In the above embodiment, the optical element 9 (air-fuel ratio detector) including the pair of optical elements 10 and 11 is arranged in the vicinity of the spark plug 6, but the electrode atmosphere of the spark plug 6 is empty. In order to control the fuel ratio and raise the ignition limit, it is desirable to detect the air-fuel ratio at a position as close as possible to the spark plug 6 (electrode part), and also to reduce the number of parts, to assemble and to form a combustion chamber. Considering the space efficiency in the cylinder head, it is preferable to integrally provide the spark plug 6 and the pair of optical elements 10 and 11.

【0034】ここで、点火栓6に対して前記一対の光学
素子10,11を一体的に設けた実施例を、図9〜図11に基
づいて説明する。図9〜図11において、ホルダ21は取付
け用ねじ22によってシリンダヘッドに取付けられるもの
であり、このホルダ21には、ターミナル23a,中軸23
b,中心電極23c,接地電極23dからなる点火栓本体23
がホルダ21の軸心に対してオフセットして保持されてい
る。
An embodiment in which the pair of optical elements 10 and 11 are integrally provided on the spark plug 6 will be described with reference to FIGS. 9 to 11. 9 to 11, the holder 21 is attached to the cylinder head by a mounting screw 22, and the holder 21 includes a terminal 23a and a center shaft 23.
b, a central electrode 23c and a ground electrode 23d
Are held offset from the axis of the holder 21.

【0035】また、前記ホルダ21には、前記点火栓本体
23をオフセットさせて保持させたことによって生じる空
きスペース部分に、前記実施例における一対の光学素子
10,11に相当する2本の円柱状サファイヤロッド24,25
が、所定間隔を有して平行にホルダ21の軸方向に貫通し
て固着されている。前記2本のサファイヤロッド24,25
の先端部分は、図12に示すように、45°にカットされた
光学面をそれぞれ有し、かかる光学面を相対させること
で、前記実施例と同様に、一方のサファイヤロッド24を
通過してきたレーザ源からのレーザ光が、前記45°の光
学面で反射して、燃焼室5内の空間に出射した後、他方
のサファイヤロッド25に入射する。
Further, the holder 21 includes the spark plug body.
The pair of optical elements in the above embodiment is provided in a vacant space portion generated by offsetting and holding 23.
Two cylindrical sapphire rods 24 and 25 corresponding to 10 and 11
Are fixed in parallel with each other with a predetermined interval so as to penetrate the holder 21 in the axial direction. The two sapphire rods 24, 25
The tip portion of each has an optical surface cut at 45 °, as shown in FIG. 12, and the optical surfaces are made to face each other, and as in the above-described embodiment, one of the sapphire rods 24 has passed through. The laser light from the laser source is reflected by the optical surface of 45 °, emitted to the space in the combustion chamber 5, and then enters the other sapphire rod 25.

【0036】そして、サファイヤロッド25に入射したレ
ーザ光は、45°光学面によりサファイヤロッド25の基端
方向に反射して進み、サファイヤロッド25を介して取り
出されるレーザ光は光電変換素子14に導かれるようにし
てある。ここで、サファイヤロッド24から出射し、サフ
ァイヤロッド25側に入射されるまでの空間をレーザ光が
進むときに、前記空間に存在するガソリンに赤外光であ
るレーザ光が吸収されて、光電変換素子14に入射するレ
ーザ光強度によって前記吸収度合い、即ち、ガソリン濃
度が検出される。
The laser light incident on the sapphire rod 25 is reflected by the 45 ° optical surface in the direction of the base end of the sapphire rod 25 and travels, and the laser light extracted through the sapphire rod 25 is guided to the photoelectric conversion element 14. I'm allowed to do it. Here, when the laser light is emitted from the sapphire rod 24 and travels in the space until it is incident on the sapphire rod 25 side, the laser light that is infrared light is absorbed by the gasoline existing in the space, and photoelectric conversion is performed. The absorption degree, that is, the gasoline concentration is detected by the intensity of the laser light incident on the element 14.

【0037】尚、前記サファイヤロッド24,25のレーザ
光が反射又は透過する光学面は充分な研磨が必要である
ので、例えば各サファイヤロッド24,25を図12に点線で
示す面で分けて2部品構成とし、研磨加工後に溶着等で
一体にすると良い。また、サファイヤロッド24,25の径
及び位置は、前記ホルダ21の取付け用ねじ22の径が許す
限り、図11に示すD1 ,D2 ,θの値を大きくすると良
い。これはロッド径が太い方が加工・組み立てが容易で
然も反射面を大きくでき、また、ロッド間の間隔を大き
くすることで、ガソリン濃度の違いがレーザ光の減衰レ
ベルの違いとして明確に検知できることになる。
Since the optical surfaces of the sapphire rods 24 and 25 on which the laser light is reflected or transmitted need to be sufficiently polished, for example, the sapphire rods 24 and 25 are separated by a surface indicated by a dotted line in FIG. It is preferable that the components are configured and integrated after welding by welding or the like. Further, the diameters and positions of the sapphire rods 24 and 25 are preferably set to large values of D 1 , D 2 and θ shown in FIG. 11 as long as the diameter of the mounting screw 22 of the holder 21 allows. This is because the thicker the rod, the easier it is to process and assemble, and the larger the reflecting surface can be made.Also, by increasing the distance between the rods, the difference in gasoline concentration can be clearly detected as the difference in the laser light attenuation level. You can do it.

【0038】上記図9〜図11に示す構成では、2本のサ
ファイヤロッド24,25は、基端側から反射面を有する先
端側まで同一径に形成され、ホルダ21に対して固着され
る構成であるが、かかる取付け方法に限定されるもので
はない。例えば図13に示すように、サファイヤロッド2
4,25の途中部分に拡径されたフランジ部26を設ける一
方、ホルダ21のサファイヤロッド24,25の取付け穴21a
に前記フランジ部26に対応する段差部21bを設ける。そ
して、前記フランジ部26の両端面に、ガスケット27を挟
み込み、押さえ部材28によって基端側からフランジ部26
の上端面を押し込むようにして、サファイヤロッド24,
25をシール性を確保しつつホルダ21に対して保持させる
構成としても良い。
In the structure shown in FIGS. 9 to 11, the two sapphire rods 24 and 25 are formed to have the same diameter from the base end side to the tip side having the reflecting surface, and are fixed to the holder 21. However, the mounting method is not limited to this. For example, as shown in Figure 13, sapphire rod 2
The enlarged flange portion 26 is provided in the middle of 4 and 25, while the sapphire rods 24 and 25 of the holder 21 have mounting holes 21a.
A step portion 21b corresponding to the flange portion 26 is provided on the. Then, the gasket 27 is sandwiched between both end surfaces of the flange portion 26, and the flange portion 26 is inserted from the base end side by the pressing member 28.
Push in the upper end surface of the sapphire rod 24,
25 may be configured to be held by the holder 21 while ensuring the sealing property.

【0039】尚、サファイヤロッド24,25の先端側に設
ける45°の光学面の面積を大きくとりたい場合には、サ
ファイヤロッド24,25を円柱ではなく角柱に形成させて
も良い。また、サファイヤロッド24,25は、先端側では
所定の間隙を有して対向することが必要であるが、基端
側では別体である必要はなく、例えば図14に示すように
一体化させても良い。
When it is desired to increase the area of the 45 ° optical surface provided on the tip side of the sapphire rods 24 and 25, the sapphire rods 24 and 25 may be formed into a prism rather than a cylinder. Further, the sapphire rods 24 and 25 need to face each other with a predetermined gap on the distal end side, but they do not have to be separate bodies on the proximal end side, and are integrated as shown in FIG. 14, for example. May be.

【0040】図14において、サファイヤロッド24,25
は、その横断面が半円形に形成されており、その平らな
側面を相対させるようにして、サファイヤ製の板状連結
部材29をサファイヤロッド24,25間に挟み込むようにし
て溶着させてある。かかる構成によると、ホルダ21に対
する取付け時にサファイヤロッド24,25の光軸調整を行
う必要がなく、組付けが容易となる。また、前記板状連
結部材29の基端側端面29aを、ホルダ21の加工面に当接
させて接着する構成とすれば、前記端面29aがストッパ
となって燃焼室圧力によってサファイヤロッド24,25が
基端側に押し込まれることを回避できる。
In FIG. 14, sapphire rods 24, 25
Has a semicircular cross-section, and plate-like connecting members 29 made of sapphire are sandwiched between the sapphire rods 24 and 25 and welded with their flat side surfaces facing each other. According to such a configuration, it is not necessary to adjust the optical axes of the sapphire rods 24 and 25 when attaching to the holder 21, and the assembling becomes easy. If the base end side end surface 29a of the plate-like connecting member 29 is brought into contact with and bonded to the machined surface of the holder 21, the end surface 29a serves as a stopper and the sapphire rods 24, 25 are pressed by the combustion chamber pressure. Can be prevented from being pushed toward the base end side.

【0041】また、サファイヤロッド24,25の基端側の
端面(レーザ光の入出射面)を、凸レンズ形状に形成す
ることで、集光効率を向上させるようにしても良い。更
に、上記実施例では、サファイヤロッド24,25の先端側
でロッド間を移動するレーザ光の光路は、点火栓の火花
間隙の近傍を通過する構成であるが、更に、点火栓によ
る着火性を左右する空燃比を高精度に検出すべく、前記
光路が前記火花間隙を横切るようにして、火花間隙付近
の局所空燃比が検出できるようにすると良い。
Further, the light condensing efficiency may be improved by forming the end faces (laser light input / output faces) of the sapphire rods 24, 25 on the base end side into a convex lens shape. Further, in the above-mentioned embodiment, the optical path of the laser beam moving between the rods on the tip side of the sapphire rods 24, 25 is configured to pass near the spark gap of the spark plug, but the ignition performance by the spark plug is further improved. In order to detect the air-fuel ratio that varies depending on the accuracy, the optical path may cross the spark gap so that the local air-fuel ratio near the spark gap can be detected.

【0042】図15及び図16は、サファイヤロッド24,25
が、点火栓の中心電極23cを挟んで点火栓先端部に突出
するように一体的に設けたものであり、サファイヤロッ
ド24の先端側の45°光学面で反射したレーザ光が、中心
電極23cと接地電極23dとの間の火花間隙を通ってサフ
ァイヤロッド25側に入射する。かかる構成によると、点
火栓による着火性を左右する空燃比をより的確に検出す
ることができ、燃焼室5内における空燃比ばらつきに影
響されずに、高精度な空燃比制御が可能である。
15 and 16 show sapphire rods 24 and 25.
Of the sapphire rod 24, the laser beam reflected by the 45 ° optical surface on the tip side of the sapphire rod 24 is used as the center electrode 23c. The light enters the sapphire rod 25 side through the spark gap between the ground electrode and the ground electrode 23d. With this configuration, the air-fuel ratio that affects the ignitability of the spark plug can be detected more accurately, and highly accurate air-fuel ratio control is possible without being affected by the air-fuel ratio variation in the combustion chamber 5.

【0043】尚、光学素子10,11(サファイヤロッド2
4,25)を点火栓6に対して一体的に設ける構成を上記
に限定するものではない。但し、燃焼室5内における局
所空燃比を検出させる場合には、点火栓6の火花間隙部
の空燃比を検出させ、該検出結果に基づいて所期空燃比
とすべく燃料噴射を制御させることが望まれるので、図
15,図16に示したように、点火栓6の火花間隙を挟んで
両側に光学素子10,11を配設し、燃焼室5内における光
路が前記火花間隙を横切るようにすることが好ましい。
The optical elements 10 and 11 (sapphire rod 2
However, the configuration in which (4, 25) is integrally provided with the spark plug 6 is not limited to the above. However, in the case of detecting the local air-fuel ratio in the combustion chamber 5, the air-fuel ratio of the spark gap portion of the spark plug 6 is detected, and the fuel injection is controlled based on the detection result so as to obtain the desired air-fuel ratio. So the figure is
As shown in FIGS. 15 and 16, it is preferable that the optical elements 10 and 11 are arranged on both sides of the spark gap of the spark plug 6 so that the optical path in the combustion chamber 5 crosses the spark gap.

【0044】次に、上記実施例に示される構成によって
検出される空燃比を用いたコントロールユニット15によ
る空燃比フィードバック制御及び噴射タイミング制御の
様子を図17のフローチャートに従って具体的に説明す
る。図17のフローチャートにおいて、まず、S11では、
機関回転数Neをクランク角センサ(図示省略)からの
検出信号に基づいて算出する。また、S12では、スロッ
トルセンサ(図示省略)で検出されたスロットル弁開度
を機関負荷の代表値として読み込む。
Next, the state of the air-fuel ratio feedback control and the injection timing control by the control unit 15 using the air-fuel ratio detected by the configuration shown in the above embodiment will be concretely described with reference to the flowchart of FIG. In the flowchart of FIG. 17, first, in S11,
The engine speed Ne is calculated based on a detection signal from a crank angle sensor (not shown). Further, in S12, the throttle valve opening detected by the throttle sensor (not shown) is read as a representative value of the engine load.

【0045】そして、S13では、図18に示すように、予
め機関負荷と機関回転数とに応じた運転領域別に目標空
燃比を設定したマップを参照し、目標空燃比AFRを設
定する。図18に示す目標空燃比AFRを記憶したマップ
は、理論空燃比よりも大幅にリーンな目標空燃比を設定
するリーン領域と、目標空燃比として理論空燃比を設定
する理論空燃比領域と、理論空燃比よりもややリッチな
目標空燃比を設定させるリッチ領域とに大きく分けられ
ている。
Then, in S13, as shown in FIG. 18, the target air-fuel ratio AFR is set by referring to the map in which the target air-fuel ratio is set in advance for each operating region according to the engine load and the engine speed. The map that stores the target air-fuel ratio AFR shown in FIG. 18 is a lean region that sets a target air-fuel ratio that is significantly leaner than the theoretical air-fuel ratio, a theoretical air-fuel ratio region that sets the theoretical air-fuel ratio as the target air-fuel ratio, and a theoretical It is roughly divided into a rich region in which a target air-fuel ratio that is slightly richer than the air-fuel ratio is set.

【0046】次のS14では、現在の運転条件が、前記目
標空燃比AFRとして理論空燃比よりも大幅にリーンな
空燃比が設定されるリーン領域であるか否かを判別す
る。ここで、リーン領域であると判別されたときには、
S15へ進み、点火時期前の所定区間で、前述のように前
記光電変換素子14の出力と筒内圧センサ7との出力とに
基づいて演算された空燃比を時系列的に記憶させたデー
タから、前記所定区間内で変動する空燃比における最小
空燃比PAFM(空燃比演算区間内で最もリッチな空燃
比)を求める(図19参照)。
In the next step S14, it is determined whether or not the current operating condition is in the lean range where the target air-fuel ratio AFR is set to an air-fuel ratio which is significantly leaner than the stoichiometric air-fuel ratio. Here, when it is determined that the region is lean,
The process proceeds to S15, where the air-fuel ratio calculated based on the output of the photoelectric conversion element 14 and the output of the in-cylinder pressure sensor 7 is stored in a time series in a predetermined section before the ignition timing. , The minimum air-fuel ratio PAFM (the richest air-fuel ratio in the air-fuel ratio calculation section) at the air-fuel ratio fluctuating within the predetermined section is obtained (see FIG. 19).

【0047】そして、S16では、前記目標リーン空燃比
AFRと前記最小空燃比PAFMとを比較し、目標空燃
比に対する最小空燃比PAFMのリッチ・リーンを判定
する。ここで、目標リーン空燃比よりも最小空燃比PA
FMが小さい(リッチである)と判別されたときには、
S17へ進み、前記空燃比検出が行われた所定区間内で最
小空燃比PAFMが得られたクランク角位置TPAFM
を求める。
Then, in S16, the target lean air-fuel ratio AFR is compared with the minimum air-fuel ratio PAFM to determine the rich lean of the minimum air-fuel ratio PAFM with respect to the target air-fuel ratio. Here, the minimum air-fuel ratio PA rather than the target lean air-fuel ratio
When it is determined that the FM is small (rich),
Proceeding to S17, the crank angle position TPAFM at which the minimum air-fuel ratio PAFM is obtained within the predetermined section where the air-fuel ratio detection is performed.
Ask for.

【0048】また、S18では、現状の点火時期TIGを
求め、次のS19では、前記空燃比が最小となるクランク
角位置TPAFMと現状の点火時期TIGとの偏差TD
IFFを演算する。更に、S20では、現状における噴射
制御の基準タイミングTINJ(噴射開始時期又は噴射
終了時期)を求める。
Further, in S18, the current ignition timing TIG is obtained, and in the next S19, the deviation TD between the crank angle position TPAFM at which the air-fuel ratio becomes the minimum and the current ignition timing TIG.
Calculate IFF. Further, in S20, the reference timing TINJ (injection start timing or injection end timing) of the current injection control is obtained.

【0049】そして、S21では、前記偏差TDIFFに
よって前記基準タイミングTINJを補正することで、
前記最小空燃比PAFMが得られるタイミングが点火時
期TIGに一致するように噴射時期を進・遅角補正す
る。即ち、理論空燃比よりも大幅にリーンな空燃比で燃
焼させる場合には、着火性が悪化するので、平均空燃比
としてはリーン空燃比であっても点火栓近傍の空燃比が
なるべくリッチである状態で点火させることが着火性を
高めることになる。そこで、点火を行っている時期の前
の所定区間における空燃比の変動を求め、空燃比が最も
リッチとなるタイミングが点火時期に重なるように、噴
射時期をずらすようにしている。具体的には、点火時期
TIGよりもクランク角度位置TPAFMが早く現れる
場合、偏差TDIFFに相当する量だけ噴射時期を遅角
補正する。
Then, in S21, the reference timing TINJ is corrected by the deviation TDIFF,
The injection timing is advanced / retarded so that the timing at which the minimum air-fuel ratio PAFM is obtained matches the ignition timing TIG. That is, when the combustion is performed at an air-fuel ratio that is significantly leaner than the stoichiometric air-fuel ratio, the ignitability deteriorates, so even if the average air-fuel ratio is lean, the air-fuel ratio near the spark plug is as rich as possible. Ignition in this state enhances ignitability. Therefore, the variation of the air-fuel ratio in the predetermined section before the ignition timing is obtained, and the injection timing is shifted so that the timing when the air-fuel ratio becomes the richest overlaps the ignition timing. Specifically, when the crank angle position TPAFM appears earlier than the ignition timing TIG, the injection timing is retarded by an amount corresponding to the deviation TDIFF.

【0050】尚、前記噴射時期の補正制御においては、
基本噴射時期を中心とする所定範囲内でのみ噴射時期の
変更を許可する構成とすると良い。また、運転状態が変
化した場合には、噴射時期を一旦その運転状態の基準タ
イミングTINJに戻し、再度クランク角度位置TPA
FMを点火時期TIGに一致させると良い。一方、点火
栓近傍空燃比を目標空燃比に一致させるための噴射量補
正が、リーン空燃比領域以外、及び、前記S16で最小空
燃比PAFMが目標空燃比よりもリーンであると判別さ
れたリーン空燃比領域のときに、S22〜S25において行
われる。
In the injection timing correction control,
It is preferable to allow the change of the injection timing only within a predetermined range around the basic injection timing. When the operating state changes, the injection timing is once returned to the reference timing TINJ of the operating state, and the crank angle position TPA is again set.
It is advisable to make FM coincide with the ignition timing TIG. On the other hand, the injection amount correction for matching the spark plug vicinity air-fuel ratio with the target air-fuel ratio is performed outside the lean air-fuel ratio region, and the lean air-fuel ratio PAFM is determined to be leaner than the target air-fuel ratio in S16. This is performed in S22 to S25 in the air-fuel ratio range.

【0051】S22では、前記点火時期前の所定区間内で
逐次演算された空燃比の平均値MAFMを演算する。次
のS23では、目標空燃比AFRと前記平均空燃比MAF
Mとの偏差AFDIFFを演算する。S24では、現状の
噴射量QTpをセットし、次のS25では、前記偏差AF
DIFFに対応して設定された補正噴射量QAFDIF
Fを前記噴射量QTpに加算して補正する。
At S22, the average value MAFM of the air-fuel ratio successively calculated within the predetermined section before the ignition timing is calculated. Next, in S23, the target air-fuel ratio AFR and the average air-fuel ratio MAF
The deviation AFDIFF from M is calculated. In S24, the current injection amount QTp is set, and in the next S25, the deviation AF is set.
Corrected injection amount QAFDIF set corresponding to DIFF
F is added to the injection amount QTp for correction.

【0052】かかる燃料噴射量の補正制御によると、1
サイクル毎に目標空燃比に対する実際の空燃比の偏差を
求め、該偏差に応じた補正を次のサイクルにおける燃料
噴射量に反映させることができるので、目標空燃比に対
して高い収束性を有するフィードバック制御が可能であ
る。上記のような噴射タイミングの制御及び噴射量の制
御においては、点火栓6の着火雰囲気の空燃比を高精度
に検出することが望まれるので、光学素子10,11として
点火栓6の電極間にレーザ光を通す構成として点火栓に
一体化させた図15及び図16に示した実施例の構成で透過
光強度を検出させることが望ましい。
According to the correction control of the fuel injection amount, 1
It is possible to obtain the deviation of the actual air-fuel ratio from the target air-fuel ratio for each cycle, and to correct the deviation according to the deviation in the fuel injection amount in the next cycle. It can be controlled. In the control of the injection timing and the control of the injection amount as described above, it is desired to detect the air-fuel ratio of the ignition atmosphere of the spark plug 6 with high accuracy, so that the optical elements 10 and 11 are provided between the electrodes of the spark plug 6. It is desirable to detect the transmitted light intensity with the configuration of the embodiment shown in FIGS. 15 and 16 which is integrated with the ignition plug as a configuration for passing the laser light.

【0053】尚、上記では、偏差AFDIFFを噴射量
のデータに変換させたが、偏差AFDIFFから噴射量
の補正係数を設定し、該補正係数を基本噴射量に乗算し
て補正を施す構成であっても良い。また、本実施例で
は、燃料噴射弁3から噴射された燃料によって実際に燃
焼室内に吸引された混合気の空燃比を検出できるから、
例えば過渡運転時又は冷間時における壁流補正を空燃比
検出結果に基づいて適正化できる。即ち、燃料噴射弁3
から噴射供給される燃料には、衝突や壁面付着による輸
送遅れが生じ、過渡運転時や冷間時には、かかる遅れを
見込んだ増量補正が必要になるが、上記実施例の空燃比
検出装置によれば燃焼室内における空燃比が1サイクル
毎に検出できるので、増量補正の過不足を定量的に検出
でき、これによって過渡運転時用又は冷間時用の増量補
正量を適正化できるものである。
In the above description, the deviation AFDIFF is converted into the injection amount data. However, the correction coefficient of the injection amount is set from the deviation AFDIFF, and the basic injection amount is multiplied by the correction coefficient to perform the correction. May be. Further, in the present embodiment, the air-fuel ratio of the air-fuel mixture actually sucked into the combustion chamber by the fuel injected from the fuel injection valve 3 can be detected,
For example, wall flow correction during transient operation or cold can be optimized based on the air-fuel ratio detection result. That is, the fuel injection valve 3
The fuel injected and supplied from the fuel tank has a transportation delay due to collisions and adherence to the wall surface, and during transient operation or during cold, it is necessary to correct the fuel consumption increase in consideration of such delay. For example, since the air-fuel ratio in the combustion chamber can be detected for each cycle, excess or deficiency of the increase correction can be quantitatively detected, and thereby the increase correction amount for transient operation or cold operation can be optimized.

【0054】上記実施例における噴射タイミングの制御
では、点火前の空燃比変動の様子を時系列的に検出し、
該検出結果に基づいて空燃比がリッチ側にピークとなる
時期を求め、該リッチピーク時期と点火時期との偏差分
を噴射タイミングの補正量としたが、噴射タイミングを
進・遅角補正し、該補正結果による点火時期における空
燃比の変化方向を検出することで、点火時期における空
燃比がリッチピークとなる噴射タイミングを見つけ出す
構成としても良い。
In the control of the injection timing in the above embodiment, the state of the air-fuel ratio fluctuation before ignition is detected in time series,
The timing at which the air-fuel ratio peaks on the rich side is obtained based on the detection result, and the deviation amount between the rich peak timing and the ignition timing is used as the correction amount of the injection timing, but the injection timing is advanced / retarded, The injection timing at which the air-fuel ratio at the ignition timing becomes a rich peak may be found by detecting the changing direction of the air-fuel ratio at the ignition timing based on the correction result.

【0055】かかる噴射タイミング制御の実施例を、図
20のフローチャートに示す。まず、S51では、運転条件
に応じて予め設定されている基本噴射タイミング(噴射
開始クランク角又は噴射終了クランク角)をマップから
読み取る。そして、S52では、かかる基本噴射タイミン
グに応じた燃料噴射を行って、次のS53では、かかる燃
料噴射によって形成された混合気の空燃比を、前述のよ
うに光電変換素子14で検出される透過光強度と筒内圧と
に基づいて点火時期において演算する。
An example of such injection timing control is shown in FIG.
It is shown in the flow chart of 20. First, in S51, the basic injection timing (injection start crank angle or injection end crank angle) preset according to the operating conditions is read from the map. Then, in S52, fuel injection is performed in accordance with the basic injection timing, and in next S53, the air-fuel ratio of the air-fuel mixture formed by such fuel injection is detected by the photoelectric conversion element 14 as described above. The ignition timing is calculated based on the light intensity and the cylinder pressure.

【0056】S54では、前記S53で演算された空燃比
と、前回の点火時期における空燃比とを比較し、前回に
比べて点火時期における空燃比がリッチ方向に変化して
いるか否かを判別する。点火時期における空燃比がリッ
チ方向に変化しているときには、S55に進み、今回の点
火時期で演算された空燃比を前回空燃比として記憶させ
る。
At S54, the air-fuel ratio calculated at S53 is compared with the air-fuel ratio at the previous ignition timing to determine whether the air-fuel ratio at the ignition timing has changed in the rich direction as compared with the previous time. . When the air-fuel ratio at the ignition timing is changing in the rich direction, the routine proceeds to S55, where the air-fuel ratio calculated at this ignition timing is stored as the previous air-fuel ratio.

【0057】次いで、S56では、前回の噴射タイミング
補正で噴射タイミングを進めたか否かを判別する。ここ
で、噴射タイミングを進めた結果、点火時期の空燃比が
リッチ方向に変化したと判別されるときには、更に、噴
射タイミングを進めることで、よりリッチに点火時期の
空燃比が変化する可能性があるので、S57へ進んで、噴
射タイミングを所定微小角だけ進ませる噴射タイミング
の補正を行う。そして、S58では、噴射タイミングをよ
り進める補正を行った来歴を記憶させる。
Next, in S56, it is determined whether or not the injection timing was advanced by the previous injection timing correction. Here, when it is determined that the air-fuel ratio of the ignition timing has changed in the rich direction as a result of advancing the injection timing, the air-fuel ratio of the ignition timing may change more richly by advancing the injection timing. Therefore, the process proceeds to S57, and the injection timing for advancing the injection timing by a predetermined minute angle is corrected. Then, in S58, the history of correction that further advances the injection timing is stored.

【0058】一方、S54で、点火時期における空燃比が
前回に比べてリッチ方向に変化していないと判別された
ときには、S59へ進み、前回噴射タイミングを進める補
正を行ったかを判別する。噴射タイミングを進めた結
果、空燃比がリッチ方向に変化しなくなった場合には、
S60へ進み、逆に噴射タイミングを所定微小角度だけ遅
らせる補正を行い、次のS61では噴射タイミングを遅ら
せる補正を行った来歴を記憶させる。
On the other hand, when it is determined in S54 that the air-fuel ratio at the ignition timing has not changed in the rich direction compared to the previous time, the routine proceeds to S59, where it is determined whether or not the previous correction of advancing the injection timing has been performed. As a result of advancing the injection timing, if the air-fuel ratio does not change in the rich direction,
Proceeding to S60, on the contrary, the injection timing is corrected by delaying it by a predetermined minute angle, and in S61, the history of the correction of delaying the injection timing is stored.

【0059】また、S59で、噴射タイミングを遅らせた
結果、空燃比のリッチ方向への変化がなくなったと判別
された場合には、逆に、噴射タイミングを進めるべくS
57へ進む。即ち、例えば噴射タイミングを進めることに
よって点火時期における空燃比がリッチ方向に変化する
場合には、リッチ方向への変化が停止するまで徐々に噴
射タイミングを進めて行き、リッチ方向への変化が停止
すると今度は逆に遅らせることで、リッチピーク付近が
点火時期に一致するように噴射タイミングを制御するも
のである。
When it is determined in S59 that the change in the air-fuel ratio in the rich direction has disappeared as a result of delaying the injection timing, conversely, in order to advance the injection timing, S
Continue to 57. That is, for example, when the air-fuel ratio at the ignition timing changes in the rich direction by advancing the injection timing, the injection timing is gradually advanced until the change in the rich direction stops and the change in the rich direction stops. This time, by conversely delaying, the injection timing is controlled so that the vicinity of the rich peak coincides with the ignition timing.

【0060】尚、上記のような噴射タイミングの進・遅
角補正が収束したときに、そのときの噴射タイミングを
運転条件別に学習記憶させるようにしても良い。上記実
施例では、レーザ光の透過光強度に基づいて検出された
空燃比に基づいて噴射タイミング又は噴射量を補正する
実施例を示したが、燃料噴射弁の噴孔を燃焼室内に臨ま
せて圧縮行程中に燃料噴射を行わせる構成の直噴式火花
点火機関(特願平4−17738号参照)における噴射
圧制御に、前記構成による空燃比検出結果を用いること
で、前記直噴式火花点火機関における着火性能を向上さ
せることができる。
When the advance / retard correction of the injection timing has converged, the injection timing at that time may be learned and stored for each operating condition. In the above-mentioned embodiment, the embodiment is shown in which the injection timing or the injection amount is corrected based on the air-fuel ratio detected based on the transmitted light intensity of the laser light, but the injection hole of the fuel injection valve is made to face the combustion chamber. By using the air-fuel ratio detection result of the above configuration for injection pressure control in a direct injection spark ignition engine (see Japanese Patent Application No. 4-17738) configured to perform fuel injection during the compression stroke, the direct injection spark ignition engine The ignition performance can be improved.

【0061】即ち、前記直噴式火花点火機関で希薄燃焼
を行わせる場合には、点火栓近傍の空燃比を他に比べて
リッチ化させる成層化が望まれ、そのためには、燃料噴
射弁による噴霧を点火栓近傍に指向させると良い。しか
しながら、かかる構成の場合、噴射圧が適切でないと、
点火栓のかぶりが生じたり、逆に、点火可能な空燃比を
点火栓近傍に形成させることができなくなる。
That is, when lean combustion is performed in the direct injection spark ignition engine, stratification that enriches the air-fuel ratio in the vicinity of the spark plug as compared with the others is desired. For that purpose, atomization by the fuel injection valve is required. Should be directed near the spark plug. However, in the case of such a configuration, if the injection pressure is not appropriate,
Fogging of the spark plug occurs, and conversely, it becomes impossible to form an ignitable air-fuel ratio in the vicinity of the spark plug.

【0062】ここで、前記レーザ光の透過光強度に基づ
く点火直前の空燃比検出結果に基づいて、直噴式火花点
火機関の噴射圧を制御することで、点火栓のかぶりを回
避しつつ、高い着火性を発揮し得る空燃比を点火栓近傍
に安定的に形成させることが可能となり、以下にかかる
実施例を説明する。図21には、前記直噴式火花点火機関
に、既述したレーザ光の透過光強度に基づいて空燃比を
検出する装置を組み込んだシステム構成を示してある。
尚、図21において、既述した図2に示す構成と同一要素
には同一符合を付してある。
Here, by controlling the injection pressure of the direct injection type spark ignition engine based on the air-fuel ratio detection result immediately before ignition based on the transmitted light intensity of the laser light, it is possible to avoid the fog of the spark plug and to increase it. It becomes possible to stably form an air-fuel ratio capable of exhibiting ignitability in the vicinity of the spark plug, and the following examples will be described. FIG. 21 shows a system configuration in which a device for detecting the air-fuel ratio based on the transmitted light intensity of the laser light described above is incorporated in the direct injection spark ignition engine.
In FIG. 21, the same elements as those in the configuration shown in FIG. 2 described above are designated by the same reference numerals.

【0063】図21に示す構成では、燃料噴射弁3の噴孔
を燃焼室5内に臨ませ、然も、その噴霧が点火栓6を指
向するように配設されている。前記点火栓6には、既述
した図15及び図16に示すようにしてレーザ光を導く一対
の光学素子が一体に設けられており、かかる光学素子に
よって点火栓の火花間隙に存在する混合気中を通過する
レーザ光の透過強度が前述のように光電変換素子14で検
出され、該光電変換素子14の出力と筒内圧とに基づいて
空燃比が演算される構成については前述の実施例と同様
である。
In the structure shown in FIG. 21, the injection hole of the fuel injection valve 3 faces the inside of the combustion chamber 5, and the spray thereof is arranged so as to be directed to the spark plug 6. The spark plug 6 is integrally provided with a pair of optical elements for guiding the laser beam as shown in FIGS. 15 and 16 described above, and the air-fuel mixture existing in the spark gap of the spark plug is provided by the optical elements. The transmission intensity of the laser light passing through the inside is detected by the photoelectric conversion element 14 as described above, and the configuration in which the air-fuel ratio is calculated based on the output of the photoelectric conversion element 14 and the in-cylinder pressure is the same as the above-described embodiment. It is the same.

【0064】図21に示す構成では、前記直噴式の燃料噴
射弁3に供給される燃料の圧力(噴射圧)を調整する圧
力調整器51の調整圧をコントロールユニット15によって
制御できるようになっている。前記圧力調整器51は、例
えば燃料タンク52から燃料ポンプ53によって圧送された
燃料の圧力をリリーフ量の調整によって所定圧に調整す
るものである。尚、噴射圧の調整を、燃料ポンプ53の制
御によって行わせる構成としても良い。
In the structure shown in FIG. 21, the control unit 15 can control the adjusting pressure of the pressure adjuster 51 for adjusting the pressure (injection pressure) of the fuel supplied to the direct injection type fuel injection valve 3. There is. The pressure adjuster 51 adjusts the pressure of the fuel pumped from the fuel tank 52 by the fuel pump 53 to a predetermined pressure by adjusting the relief amount. Note that the injection pressure may be adjusted by controlling the fuel pump 53.

【0065】そして、コントロールユニット15は、図22
のフローチャートに示すようにして前記圧力調整器51に
よって調整される燃料圧力を制御し、また、かかる圧力
制御に対応して電磁式燃料噴射弁3に与える噴射パルス
幅を変化させる。図22のフローチャートにおいて、S71
では機関回転数Neを検出し、S72では機関負荷(吸入
空気量)を検出する。
The control unit 15 is shown in FIG.
The fuel pressure adjusted by the pressure adjuster 51 is controlled as shown in the flow chart of FIG. 1, and the injection pulse width given to the electromagnetic fuel injection valve 3 is changed corresponding to the pressure control. In the flowchart of FIG. 22, S71
At S72, the engine speed Ne is detected, and at S72, the engine load (intake air amount) is detected.

【0066】そして、S73では、前記回転,負荷の情報
に基づいて噴射量(噴射パルス幅)を演算する。尚、こ
のS73における噴射パルス幅の演算は、噴射圧が基本圧
に調整されることを前提として行われるものとする。ま
た、S74では、点火タイミングを、回転と負荷の情報に
基づいてマップから求める。
Then, in S73, the injection amount (injection pulse width) is calculated based on the information on the rotation and the load. The calculation of the injection pulse width in S73 is performed on the assumption that the injection pressure is adjusted to the basic pressure. Further, in S74, the ignition timing is obtained from the map based on the rotation and load information.

【0067】次のS75では、予め設定されている基本噴
射圧Poをセットし、前記圧力調整器51によって前記基
本噴射圧Poに調整されるようにする。そして、S76で
は、セットされている噴射パルス幅に従って所定噴射タ
イミングで燃料噴射弁3を開制御し、燃料噴射を行わせ
る。S77では、前記S74で求められた点火時期に従っ
て、レーザ光の透過光強度と筒内圧に基づき演算される
空燃比をサンプリングし、点火時期における点火栓6近
傍の空燃比Aoを得る。
At the next step S75, a preset basic injection pressure Po is set and adjusted by the pressure adjuster 51 to the basic injection pressure Po. Then, in S76, the fuel injection valve 3 is controlled to open at a predetermined injection timing according to the set injection pulse width, and fuel injection is performed. In S77, the air-fuel ratio calculated based on the transmitted light intensity of the laser light and the in-cylinder pressure is sampled in accordance with the ignition timing obtained in S74, and the air-fuel ratio Ao near the spark plug 6 at the ignition timing is obtained.

【0068】S78では、前記空燃比Aoと、点火可能空
燃比のリーン限界値Amin とを比較する。そして、点火
時期における点火栓6近傍の空燃比Aoがリーン限界値
Amin よりもリーンであるときには、S79へ進んで、噴
射圧を所定値だけ増大設定させる補正を行う。即ち、点
火時期における点火栓6近傍の空燃比が所期空燃比より
もリーンである場合には、噴射圧が要求よりも低いため
に、要求通りに燃料噴霧が噴射弁付近に到達していない
ものと推定できる。そこで、噴射圧をより高める補正を
行うことで、噴射弁3から噴射される燃料の到達距離を
延ばして、点火時期における点火栓6近傍の空燃比をよ
りリッチ化し、良好な着火が得られる空燃比雰囲気で点
火が行われるようにする。
In S78, the air-fuel ratio Ao is compared with the lean limit value Amin of the ignitable air-fuel ratio. Then, when the air-fuel ratio Ao near the spark plug 6 at the ignition timing is leaner than the lean limit value Amin, the routine proceeds to S79, where correction is performed to increase the injection pressure by a predetermined value. That is, when the air-fuel ratio in the vicinity of the spark plug 6 at the ignition timing is leaner than the desired air-fuel ratio, the injection pressure is lower than the request, so the fuel spray does not reach the vicinity of the injection valve as requested. It can be presumed. Therefore, by performing a correction to further increase the injection pressure, the arrival distance of the fuel injected from the injection valve 3 is extended, the air-fuel ratio near the spark plug 6 at the ignition timing is made richer, and good ignition is obtained. Ignition is performed in a fuel ratio atmosphere.

【0069】一方、S78で点火時期における点火栓6近
傍の空燃比Aoがリーン限界値Amin よりもリッチであ
ると判別されたときには、S80へ進み、今度は前記空燃
比Aoと点火可能空燃比のリッチ限界値Amax とを比較
する。ここで、点火時期における点火栓6近傍の空燃比
Aoがリッチ限界値Amax よりもリッチであると判別さ
れたときには、S81へ進み、噴射圧を所定値だけ減少設
定させる補正を行う。
On the other hand, when it is judged at S78 that the air-fuel ratio Ao near the spark plug 6 at the ignition timing is richer than the lean limit value Amin, the routine proceeds to S80, this time with the air-fuel ratio Ao and the ignitable air-fuel ratio. The rich limit value Amax is compared. Here, when it is determined that the air-fuel ratio Ao near the spark plug 6 at the ignition timing is richer than the rich limit value Amax, the process proceeds to S81, and correction is performed to reduce the injection pressure by a predetermined value.

【0070】即ち、点火栓6の雰囲気がリッチ限界値A
max を越えるリッチな雰囲気である場合には、燃料噴射
弁3から噴射される燃料の到達距離が長過ぎ、点火栓6
を燃料噴霧が直撃して濡れを生じさせるような状況であ
ると推定されるので、噴射圧を下げることで到達距離を
縮め、点火時期における点火栓6近傍の空燃比をリーン
化させる。
That is, the atmosphere of the spark plug 6 is the rich limit value A.
In a rich atmosphere exceeding max, the distance reached by the fuel injected from the fuel injection valve 3 is too long, and the spark plug 6
Since it is estimated that the fuel spray directly hits and causes wetting, the reaching distance is shortened by lowering the injection pressure, and the air-fuel ratio near the spark plug 6 at the ignition timing is made lean.

【0071】S79又はS81で噴射圧の変更を行った場合
には、噴射パルス幅を噴射圧の変更に応じて補正しない
と所期の燃料を噴射させることができなくなるので、S
82で変更された噴射圧に応じて噴射パルス幅を補正する
処理を施す。そして、S83では、前記S79又はS81で変
更された噴射圧P1 を、前記圧力調整器51における調整
圧Poにセットする。
When the injection pressure is changed in S79 or S81, the desired fuel cannot be injected unless the injection pulse width is corrected according to the change in injection pressure.
A process of correcting the injection pulse width according to the injection pressure changed in 82 is performed. Then, in S83, the injection pressure P 1 changed in S79 or S81 is set to the adjustment pressure Po in the pressure adjuster 51.

【0072】一方、S78,S80における判別によって前
記空燃比Aoが、リーン限界値Amin とリッチ限界値A
max とで挟まれる要求空燃比範囲内であると判別された
場合には、噴射圧の補正が必要ないので、S79〜S83を
ジャンプしてS84へ進む。S84では、運転条件(回転,
負荷)が変化したか否かを判別し、運転条件が一定で要
求燃料量が一定である場合には、S76へ戻り、点火時期
における点火栓6近傍の空燃比を要求範囲内に制御する
ための噴射圧調整を再度行わせる。
On the other hand, the air-fuel ratio Ao is determined to be lean limit value Amin and rich limit value A by the determinations in S78 and S80.
If it is determined that the air-fuel ratio is within the required air-fuel ratio range sandwiched by max, it is not necessary to correct the injection pressure. Therefore, steps S79 to S83 are skipped and the process proceeds to step S84. At S84, operating conditions (rotation,
Load) has changed, and if the operating conditions are constant and the required fuel amount is constant, the process returns to S76 to control the air-fuel ratio near the spark plug 6 at the ignition timing within the required range. Make the injection pressure adjustment again.

【0073】一方、運転条件が変化して要求燃料量が変
化する場合には、S71へ戻って、要求燃料量の演算を行
わせる。上記実施例によれば、点火時期における点火栓
6近傍の空燃比が、点火に最適な空燃比となるように直
噴式の燃料噴射弁3による噴射圧が調整されるから、常
に最適な空燃比条件の下に点火を行わせることができ
る。
On the other hand, when the operating condition changes and the required fuel amount changes, the process returns to S71 to calculate the required fuel amount. According to the above-described embodiment, the injection pressure by the direct injection type fuel injection valve 3 is adjusted so that the air-fuel ratio near the spark plug 6 at the ignition timing becomes the optimum air-fuel ratio for ignition. Ignition can be performed under certain conditions.

【0074】ところで、前記一対の光学素子10,11(サ
ファイヤロッド24,25)の汚れに対する透過光強度の補
正については既述したが、冷間・始動時には燃料の気化
性が悪化するために、燃料が壁流となって燃焼室5内に
流れ込み、燃焼室5内に突き出た光学素子10,11に前記
液状の燃料が付着して、前記補正制御の限界を越える光
強度の減衰が前記液的付着燃料によって生じる惧れがあ
る。
By the way, the correction of the transmitted light intensity with respect to the dirt of the pair of optical elements 10 and 11 (sapphire rods 24 and 25) has been described above. However, since the vaporization property of the fuel is deteriorated at the time of cold or starting, The fuel becomes a wall flow and flows into the combustion chamber 5, and the liquid fuel adheres to the optical elements 10 and 11 protruding into the combustion chamber 5, and the liquid intensity is attenuated beyond the limit of the correction control. There are fears caused by statically attached fuel.

【0075】そこで、例えば前記図2及び図3に示した
一対の光学素子10,11に対して、図23に示すように、光
学素子10,11の間隙の底面部(光学素子9の端面)に加
熱手段としてのヒータ(セラミックヒータ)31を付設
し、ヒータ電源線32を光学素子9内に埋設して外部に取
り出す構成とする。そして、前記液的燃料付着が予測さ
れる機関運転条件のときや、演算された空燃比の変化か
ら付着状態が検知されたときに、コントロールユニット
15による制御によって前記ヒータ31に電源を供給して発
熱させ、かかる発熱によって光学素子10,11を暖めて、
付着した液的燃料を早期に気化させるようにする。
Therefore, for example, with respect to the pair of optical elements 10 and 11 shown in FIGS. 2 and 3, as shown in FIG. 23, the bottom surface portion of the gap between the optical elements 10 and 11 (the end surface of the optical element 9) is shown. A heater (ceramic heater) 31 serving as a heating means is attached to the above, and a heater power supply line 32 is embedded in the optical element 9 and taken out to the outside. The control unit is operated under the engine operating conditions in which the liquid fuel adhesion is predicted, or when the adhered state is detected from the change in the calculated air-fuel ratio.
Power is supplied to the heater 31 to generate heat by the control of 15, and the optical elements 10 and 11 are warmed by the generated heat,
The attached liquid fuel should be vaporized early.

【0076】上記図23に示す光学素子10,11は、図2及
び図3に示される点火栓6と別体のタイプのものである
が、図9〜図11又は図15,図16に示されるような点火栓
6と一体型の場合にも同様にしてヒータ31を付設できる
ことは明らかであり、後述するヒータ制御も、点火栓6
に対する一体型,別体を問わずに共通の仕様によって行
われるものとする。
The optical elements 10 and 11 shown in FIG. 23 are of a type different from the spark plug 6 shown in FIGS. 2 and 3, but are shown in FIGS. 9 to 11 or FIGS. 15 and 16. It is obvious that the heater 31 can be attached in the same manner even in the case of being integrated with the spark plug 6 as described above.
It shall be carried out according to common specifications regardless of whether it is an integrated type or a separate type.

【0077】具体的なヒータ制御を様子を図24のフロー
チャートに従い、図2及び図23を参照しつつ説明する。
尚、前記図24のフローチャートに示されるコントロール
ユニット15のソフトウェア的機能が運転条件による加熱
制御手段,燃料付着検知手段及び付着検知による加熱制
御手段に相当し、本実施例では、かかる加熱制御を行う
条件判定のために、後述するように、水温センサ61及び
スタートスイッチ62(図2参照)の信号を用いる。
A concrete heater control will be described in accordance with the flowchart of FIG. 24 and with reference to FIGS. 2 and 23.
The software function of the control unit 15 shown in the flow chart of FIG. 24 corresponds to the heating control means according to the operating conditions, the fuel adhesion detection means, and the heating control means by the adhesion detection. In the present embodiment, such heating control is performed. As will be described later, the signals of the water temperature sensor 61 and the start switch 62 (see FIG. 2) are used for the condition determination.

【0078】図24のフローチャートにおいて、まず、S
31では、水温センサ61で検出される冷却水温度Twと所
定温度とを比較する。そして、機関温度を代表する冷却
水温度Twが所定温度よりも低いと判別された場合に
は、S32へ進み、スタートスイッチ62の信号に基づいて
計測される始動からの経過時間Taと所定時間とを比較
する。
In the flowchart of FIG. 24, first, S
At 31, the cooling water temperature Tw detected by the water temperature sensor 61 is compared with a predetermined temperature. Then, when it is determined that the cooling water temperature Tw representing the engine temperature is lower than the predetermined temperature, the process proceeds to S32, and the elapsed time Ta from the start measured based on the signal of the start switch 62 and the predetermined time To compare.

【0079】ここで、始動からの経過時間Taが所定時
間に達していないと判別された場合には、S33へ進んで
前記ヒータ31に電源を供給してヒータ31を発熱させるこ
とにより光学素子10,11を加熱する。即ち、冷間始動直
後の所定期間内においてヒータ31を発熱させて光学素子
10,11を加熱するものであり、これにより、液状の燃料
が燃焼室5内に流れ込んで光学素子10,11に付着して
も、かかる液的付着燃料を早期に気化させることがで
き、光学素子10,11を介してレーザ光を混合気中に通過
させて行われる空燃比検出の精度を冷間始動時にも保つ
ことができる。
Here, if it is determined that the elapsed time Ta from the start has not reached the predetermined time, the process proceeds to S33, the power is supplied to the heater 31 and the heater 31 is heated to generate the optical element 10. , 11 is heated. That is, the heater 31 is caused to generate heat within a predetermined period immediately after the cold start, and the optical element
This is for heating the liquids 10, 11 and by this, even if liquid fuel flows into the combustion chamber 5 and adheres to the optical elements 10, 11, such liquid fuel can be vaporized at an early stage. The accuracy of the air-fuel ratio detection performed by passing the laser light through the air-fuel mixture via the elements 10 and 11 can be maintained even during cold starting.

【0080】一方、希薄燃焼機関などでは吸気行程中に
燃料噴射を行わせる場合があり、かかる構成のときに
は、上記のような冷間始動直後でない場合であっても、
噴射された燃料が直接的に燃焼室5内に吸引されること
によって、光学素子10,11(サファイヤロッド24,25)
に液的燃料が付着する場合がある。ここで、前記液的燃
料の付着が発生すると、レーザ光が前記付着燃料によっ
て大幅に吸収されるようになることで、演算される空燃
比が急激にリッチ方向に変化する。
On the other hand, in a lean burn engine or the like, fuel injection may be performed during the intake stroke, and with such a configuration, even if it is not immediately after cold start as described above,
The injected fuel is directly sucked into the combustion chamber 5 so that the optical elements 10 and 11 (sapphire rods 24 and 25)
Liquid fuel may adhere to the. Here, when the liquid fuel adheres, the laser light is largely absorbed by the adhered fuel, so that the calculated air-fuel ratio rapidly changes in the rich direction.

【0081】そこで、空燃比演算期間内で、演算された
空燃比の一次微分値AFDIFを求め(図25参照)、冷
却水温度Tw及び始動後時間Taが光学素子10,11に対
する液的燃料の付着条件になっていない場合であって
も、S34で前記一次微分値AFDIFと所定値とを比較
して、空燃比演算値の大きな変動が検知されたときに
は、光学素子10,11に対して液的燃料が付着しているも
のと推定し、S33へ進んでヒータ31に電源を供給する。
かかる空燃比微分値に基づく付着状態の検知が、コント
ロールユニット15による燃料付着検知手段としての機能
を示す。
Therefore, within the air-fuel ratio calculation period, the calculated first derivative value AFDIF of the air-fuel ratio is obtained (see FIG. 25), and the cooling water temperature Tw and the post-starting time Ta are the liquid fuel for the optical elements 10 and 11. Even if the adhesion condition is not satisfied, the primary differential value AFDIF is compared with a predetermined value in S34, and when a large change in the calculated air-fuel ratio value is detected, the liquid is fed to the optical elements 10 and 11. It is estimated that the static fuel is attached, and the process proceeds to S33, in which power is supplied to the heater 31.
The detection of the adhesion state based on such an air-fuel ratio differential value shows the function of the control unit 15 as the fuel adhesion detection means.

【0082】尚、前記空燃比の微分値AFDIFに基づ
くヒータ制御においては、微分値の変動によって頻繁に
ON・OFF制御されることを回避すべく、判定レベル
にヒステリシスを設けたり、一旦付着状態を検知したら
強制的に所定時間だけ継続的に通電させる構成とした
り、又は、微分値が判定レベル以下に所定時間以上安定
してことをON→OFF制御の条件とすることが好まし
い。
Incidentally, in the heater control based on the differential value AFDIF of the air-fuel ratio, in order to avoid frequent ON / OFF control due to the variation of the differential value, a hysteresis is provided in the determination level, or the adhered state is temporarily set. It is preferable that the ON-OFF control condition is such that the current is forcibly energized continuously for a predetermined time when detected, or that the differential value is stable below the judgment level for a predetermined time or more.

【0083】上記のようにして空燃比演算値の変動から
光学素子10,11に対する液的燃料の付着を検知する構成
であれば、冷却水温度Twなどの機関運転条件に相関し
ない燃料付着状態を検知でき、吸入行程中にずれ込んで
燃料噴射が行われるような機関においても、光学素子1
0,11に対する液的燃料の付着状態を早期に解消して空
燃比検出精度を維持できる。
As described above, with the structure for detecting the adherence of the liquid fuel to the optical elements 10 and 11 from the fluctuation of the calculated air-fuel ratio value, the fuel adhered state which does not correlate with the engine operating conditions such as the cooling water temperature Tw is detected. Even in an engine that can detect and inject fuel during the intake stroke, the optical element 1
The state of liquid fuel adhesion to 0 and 11 can be eliminated early to maintain the air-fuel ratio detection accuracy.

【0084】一方、冷間始動直後でなく、然も、空燃比
演算値が安定している場合には、S35へ進み、ヒータ31
に対する電源供給を停止し、無用な電力消費を避ける。
尚、図9〜図11又は図15,図16に示すような構成によっ
て点火栓に対して一体的に光学素子10,11(サファイヤ
ロッド24,25)を設ける場合に、上記ようにしてヒータ
31による加熱制御を行えば、光学素子10,11に対する液
的燃料の付着は点火栓6における電極部の燃料濡れを推
定させることにもなるので、光学素子10,11を加熱する
ことで点火栓の電極部も同時に加熱され、点火栓の濡れ
による着火性の悪化を回避できるという副次的な効果も
ある。
On the other hand, immediately after the cold start and when the calculated air-fuel ratio is still stable, the routine proceeds to S35, where the heater 31
Stop the power supply to and avoid unnecessary power consumption.
When the optical elements 10 and 11 (sapphire rods 24 and 25) are integrally provided to the spark plug by the configuration shown in FIGS. 9 to 11 or FIGS. 15 and 16, the heater is configured as described above.
If the heating control by 31 is performed, the adhesion of the liquid fuel to the optical elements 10 and 11 also makes it possible to estimate the wetting of the electrode portion of the spark plug 6, so that the spark plug 6 is heated by heating the optical elements 10 and 11. The electrode part of 1 is also heated at the same time, and there is a secondary effect that deterioration of ignitability due to wetting of the spark plug can be avoided.

【0085】尚、上記ヒータ制御では、機関温度を代表
するパラメータとして冷却水温度Twを用いたが、この
他、潤滑油の温度や吸気ポート部の温度などを用いても
良いことは明らかである。
In the above heater control, the cooling water temperature Tw was used as a parameter representing the engine temperature, but it is obvious that the temperature of the lubricating oil, the temperature of the intake port, etc. may be used. .

【0086】[0086]

【発明の効果】以上説明したように本発明によると、燃
焼室内の局所空燃比を高精度に検出することができ、特
に、点火栓の近傍の空燃比を点火前に検出することが可
能であるので、点火時期における点火栓近傍の空燃比を
高精度に制御して、点火栓による着火性を最良に維持で
きるという効果がある。
As described above, according to the present invention, the local air-fuel ratio in the combustion chamber can be detected with high accuracy, and in particular, the air-fuel ratio near the spark plug can be detected before ignition. Therefore, there is an effect that the air-fuel ratio in the vicinity of the spark plug at the ignition timing can be controlled with high accuracy, and the ignitability of the spark plug can be optimally maintained.

【0087】また、燃料による光の吸収を検出するため
の光学素子を点火栓に一体に設けることで、空燃比検出
装置の構成を簡略化でき、また、点火栓に対してより近
い位置での空燃比検出が行えるという効果がある。ま
た、前記光学素子に対する液的燃料の付着が予測される
運転条件又は付着状態が検知されたときに、前記光学素
子を加熱することで、前記液的燃料の付着による空燃比
検出精度の悪化を回避できるという効果がある。
Further, by integrally providing the spark plug with an optical element for detecting the absorption of light by the fuel, the structure of the air-fuel ratio detecting device can be simplified, and at a position closer to the spark plug. There is an effect that the air-fuel ratio can be detected. Further, when the operating condition or the adhered state in which the liquid fuel is expected to adhere to the optical element is detected, by heating the optical element, the deterioration of the air-fuel ratio detection accuracy due to the liquid fuel adhered is deteriorated. The effect is that it can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の一実施例を示すシステム概略図。FIG. 2 is a system schematic diagram showing an embodiment of the present invention.

【図3】同上実施例における光学素子を示す図。FIG. 3 is a diagram showing an optical element in the same example.

【図4】透過光強度と筒内圧とに対応する空燃比を示す
線図。
FIG. 4 is a diagram showing an air-fuel ratio corresponding to transmitted light intensity and in-cylinder pressure.

【図5】透過光強度と筒内圧の変化をクランク角に応じ
て示す線図。
FIG. 5 is a diagram showing changes in transmitted light intensity and in-cylinder pressure according to a crank angle.

【図6】吸気弁の開直前の光強度に基づく汚れ補正の特
性を示す線図。
FIG. 6 is a diagram showing characteristics of stain correction based on light intensity immediately before opening of an intake valve.

【図7】異なる波長の光を用いた汚れ補正の特性を示す
線図。
FIG. 7 is a diagram showing characteristics of stain correction using lights of different wavelengths.

【図8】汚れを補正を伴う空燃比演算の様子を示すフロ
ーチャート。
FIG. 8 is a flow chart showing a state of air-fuel ratio calculation accompanied by dirt correction.

【図9】光学素子を一体化させた点火栓の一例を示す側
面図。
FIG. 9 is a side view showing an example of an ignition plug in which an optical element is integrated.

【図10】図9に示す点火栓の上面図。FIG. 10 is a top view of the spark plug shown in FIG. 9.

【図11】図9に示す点火栓の底面図。FIG. 11 is a bottom view of the spark plug shown in FIG. 9.

【図12】図9に示す光学素子の拡大図。FIG. 12 is an enlarged view of the optical element shown in FIG. 9.

【図13】点火栓に対する光学素子の取付け方法の別の例
を示す図。
FIG. 13 is a diagram showing another example of a method of attaching the optical element to the spark plug.

【図14】一対の光学素子を一体化させた例を示す図。FIG. 14 is a diagram showing an example in which a pair of optical elements are integrated.

【図15】点火栓の火花間隙を光路とする実施例を示す側
面図。
FIG. 15 is a side view showing an embodiment in which a spark gap of an ignition plug is used as an optical path.

【図16】図16に示す点火栓の底面図。16 is a bottom view of the spark plug shown in FIG. 16.

【図17】空燃比検出結果を用いた燃料噴射制御を示すフ
ローチャート。
FIG. 17 is a flowchart showing fuel injection control using the air-fuel ratio detection result.

【図18】目標空燃比のマップを示す線図。FIG. 18 is a diagram showing a map of a target air-fuel ratio.

【図19】燃料噴射制御のための空燃比検出の特性を示す
線図。
FIG. 19 is a diagram showing characteristics of air-fuel ratio detection for fuel injection control.

【図20】噴射タイミング制御の別の実施例を示すフロー
チャート。
FIG. 20 is a flowchart showing another embodiment of injection timing control.

【図21】直噴式火花点火機関に適用された実施例を示す
システム図。
FIG. 21 is a system diagram showing an embodiment applied to a direct injection spark ignition engine.

【図22】直噴式火花点火機関における噴射圧制御を示す
フローチャート。
FIG. 22 is a flowchart showing injection pressure control in a direct injection spark ignition engine.

【図23】光学素子にヒータを付設した実施例を示す構造
図。
FIG. 23 is a structural diagram showing an embodiment in which a heater is attached to an optical element.

【図24】ヒータのオン・オフ制御を示すフローチャー
ト。
FIG. 24 is a flowchart showing ON / OFF control of the heater.

【図25】空燃比検出データの微分値とヒータ制御との関
係を示す線図。
FIG. 25 is a diagram showing a relationship between a differential value of air-fuel ratio detection data and heater control.

【図26】従来の燃焼光による空燃比検出の問題点を説明
するための図。
FIG. 26 is a diagram for explaining a problem of conventional air-fuel ratio detection using combustion light.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 吸気ポート 3 燃料噴射弁 4 吸気弁 5 燃焼室 6 点火栓 7 筒内圧センサ 8 シリンダヘッド 9,10,11,13 光学素子 12 レーザ源 14 光電変換素子 15 コントロールユニット 21 ホルダ 23 点火栓本体 23c 中心電極 23d 接地電極 24,25 サファイヤロッド 31 ヒータ 61 水温センサ 62 スタートスイッチ 1 Internal Combustion Engine 2 Intake Port 3 Fuel Injection Valve 4 Intake Valve 5 Combustion Chamber 6 Spark Plug 7 Cylinder Pressure Sensor 8 Cylinder Head 9, 10, 11, 13 Optical Element 12 Laser Source 14 Photoelectric Conversion Element 15 Control Unit 21 Holder 23 Spark Plug Main unit 23c Center electrode 23d Ground electrode 24, 25 Sapphire rod 31 Heater 61 Water temperature sensor 62 Start switch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の燃焼室内に臨ませて発光側と
受光側とからなる一対の光学素子を所定間隙をもって対
向配置し、光源で発光した光を前記一対の光学素子を介
して光電変換素子に導く透過光強度検出手段と、 機関の筒内圧を検出する筒内圧検出手段と、 前記透過光強度検出手段における前記光電変換素子の出
力と前記筒内圧検出手段で検出された筒内圧とに基づい
て機関吸入混合気の空燃比を演算する空燃比演算手段
と、 を含んで構成されたことを特徴とする内燃機関の空燃比
検出装置。
1. A pair of optical elements consisting of a light emitting side and a light receiving side facing each other in a combustion chamber of an internal combustion engine are arranged to face each other with a predetermined gap, and light emitted from a light source is photoelectrically converted through the pair of optical elements. The transmitted light intensity detecting means for guiding the element, the in-cylinder pressure detecting means for detecting the in-cylinder pressure of the engine, the output of the photoelectric conversion element in the transmitted light intensity detecting means and the in-cylinder pressure detected by the in-cylinder pressure detecting means. An air-fuel ratio detecting device for an internal combustion engine, comprising: an air-fuel ratio calculating means for calculating an air-fuel ratio of an engine intake air-fuel mixture based on the above.
【請求項2】 前記透過光強度検出手段における前記一
対の光学素子を、機関の点火栓に一体的に設けたことを
特徴とする請求項1記載の内燃機関の空燃比検出装置。
2. The air-fuel ratio detecting device for an internal combustion engine according to claim 1, wherein the pair of optical elements in the transmitted light intensity detecting means are provided integrally with an ignition plug of the engine.
【請求項3】 前記透過光強度検出手段における前記一
対の光学素子を加熱する加熱手段と、 機関運転条件に応じて前記加熱手段を選択的に動作させ
る運転条件による加熱制御手段と、 を設けたことを特徴とする請求項1又は2のいずれかに
記載の内燃機関の空燃比検出装置。
3. A heating means for heating the pair of optical elements in the transmitted light intensity detecting means, and a heating control means under operating conditions for selectively operating the heating means according to engine operating conditions. The air-fuel ratio detection device for an internal combustion engine according to claim 1 or 2, characterized in that.
【請求項4】 前記透過光強度検出手段における前記一
対の光学素子を加熱する加熱手段と、 前記透過光強度検出手段における前記一対の光学素子に
対する燃料の付着状態を検知する燃料付着検知手段と、 該燃料付着検知手段で燃料の付着状態が検知されたとき
に前記加熱手段を動作させる付着検知による加熱制御手
段と、 を設けたことを特徴とする請求項1又は2のいずれかに
記載の内燃機関の空燃比検出装置。
4. A heating means for heating the pair of optical elements in the transmitted light intensity detecting means, and a fuel adhesion detecting means for detecting an adhesion state of fuel to the pair of optical elements in the transmitted light intensity detecting means, 3. The internal combustion engine according to claim 1, further comprising: a heating control unit that detects the adhesion of the fuel and that operates the heating unit when the adhesion state of the fuel is detected by the fuel adhesion detection unit. Air-fuel ratio detector for engines.
JP6532893A 1993-03-24 1993-03-24 Air-fuel ratio detection device for internal combustion engine Expired - Fee Related JP2932887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6532893A JP2932887B2 (en) 1993-03-24 1993-03-24 Air-fuel ratio detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6532893A JP2932887B2 (en) 1993-03-24 1993-03-24 Air-fuel ratio detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06280669A true JPH06280669A (en) 1994-10-04
JP2932887B2 JP2932887B2 (en) 1999-08-09

Family

ID=13283749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6532893A Expired - Fee Related JP2932887B2 (en) 1993-03-24 1993-03-24 Air-fuel ratio detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2932887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309117A (en) * 2007-06-15 2008-12-25 Toyota Motor Corp Control device of internal combustion engine
JP2012117535A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> Advanced optics and optical access for laser ignition system for gas turbine including aircraft engine
JP2016151572A (en) * 2015-02-19 2016-08-22 アズビル株式会社 Dryness measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309117A (en) * 2007-06-15 2008-12-25 Toyota Motor Corp Control device of internal combustion engine
JP2012117535A (en) * 2010-11-30 2012-06-21 General Electric Co <Ge> Advanced optics and optical access for laser ignition system for gas turbine including aircraft engine
JP2016151572A (en) * 2015-02-19 2016-08-22 アズビル株式会社 Dryness measurement device

Also Published As

Publication number Publication date
JP2932887B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JPS5825584A (en) Method and device for forming actual combustion starting timing signal of compression ignition engine
EP0358419A2 (en) Control system for an internal combustion engine
JP4415269B2 (en) Laser ignition device for internal combustion engine
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
JP2932887B2 (en) Air-fuel ratio detection device for internal combustion engine
JPS5825547A (en) Method of controlling process of combustion of internal combustion engine
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2917737B2 (en) Direct injection spark ignition engine
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JP4294603B2 (en) Laser ignition device for internal combustion engine
JP2001132511A (en) Air-fuel ratio control device for internal combustion engine
CN110121637A (en) Combustion pressure sensor and its component in the engine components of internal combustion engine
JP2004300999A (en) Device and method for detecting engine combustion chamber environment, and engine control device
JP2921325B2 (en) Fuel injection control device for internal combustion engine
JP3784768B2 (en) Gas concentration sensor
JP2950107B2 (en) Control device for spark ignition engine
JPH08261048A (en) Air-fuel ratio control device for internal combustion engine
JP3963044B2 (en) Control unit for direct injection gasoline engine
JP3211573B2 (en) Engine ignition timing control device
JPH11229949A (en) Fuel concentration detector for internal combustion engine
JPH048285Y2 (en)
JPH0681698A (en) Air fuel ratio control device for internal combustion engine
JP4274966B2 (en) Control device for internal combustion engine
JP2005042591A (en) Multiple pulse laser radiating laser igniting engine and method of operating the engine
JPH0742592A (en) Fuel injection quantity control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees